Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.608
Filter
1.
Carbohydr Polym ; 339: 122238, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823908

ABSTRACT

The study aimed to develop a novel, transparent and non-toxic coating with antimicrobial, antioxidant, and antifogging properties. The p-coumaric acid-grafted chitosan (CS-PCA) was synthesized via a carbodiimide coupling reaction and then characterized. The CS-PCA coatings were further prepared using the casting method. The CS-PCA coatings obtained exhibited excellent transparency, UV-light barrier ability, and antifogging properties, as confirmed by spectroscopy and antifogging tests. The CS-PCA coatings showed stronger antioxidant capacity and antimicrobial properties against Escherichia coli, Staphylococcus aureus and Botrytis cinerea compared to CS. The multifunctional coatings were further coated on the polyethylene cling film and their effectiveness was confirmed through a strawberry preservation test. The decay of the strawberries was reduced by CS-PCA coated film at room temperature.


Subject(s)
Antioxidants , Chitosan , Coumaric Acids , Escherichia coli , Food Packaging , Fragaria , Fruit , Propionates , Staphylococcus aureus , Chitosan/chemistry , Chitosan/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Fragaria/microbiology , Food Packaging/methods , Fruit/chemistry , Propionates/chemistry , Propionates/pharmacology , Botrytis/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
2.
Food Microbiol ; 122: 104564, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839226

ABSTRACT

Botrytis cinerea is a destructive necrotrophic phytopathogen causing overwhelming diseases in more than 1400 plant species, especially fruit crops, resulting in significant economic losses worldwide. The pathogen causes rotting of fruits at both pre-harvest and postharvest stages. Aside from causing gray mold of the mature fruits, the fungus infects leaves, flowers, and seeds, which makes it a notorious phytopathogen. Worldwide, in the majority of fruit crops, B. cinerea causes gray mold. In order to effectively control this pathogen, extensive research has been conducted due to its wide host range and the huge economic losses it causes. It is advantageous to explore detection and diagnosis techniques of B. cinerea to provide the fundamental basis for mitigation strategies. Botrytis cinerea has been identified and quantified in fruit/plant samples at pre- and post-infection levels using various detection techniques including DNA markers, volatile organic compounds, qPCR, chip-digital PCR, and PCR-based nucleic acid sensors. In addition, cultural, physical, chemical, biological, and botanical methods have all been used to combat Botrytis fruit rot. This review discusses research progress made on estimating economic losses, detection and diagnosis, as well as management strategies, including cultural, physical, chemical, and biological studies on B. cinerea along with knowledge gaps and potential areas for future research.


Subject(s)
Botrytis , Fruit , Plant Diseases , Botrytis/genetics , Plant Diseases/microbiology , Fruit/microbiology , Crops, Agricultural/microbiology
3.
BMC Genom Data ; 25(1): 40, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724915

ABSTRACT

Bulb rot, a highly damaging disease of tulip plants, has hindered their profitable cultivation worldwide. This rot occurs in both field and storage conditions posing significant challenges. While this disease has been attributed to a range of pathogens, previous investigations have solely examined it within the framework of a single-pathogen disease model. Our study took a different approach and identified four pathogens associated with the disease: Fusarium solani, Penicillium chrysogenum, Botrytis tulipae, and Aspergillus niger. The primary objective of our research was to examine the impact of co-infections on the overall virulence dynamics of these pathogens. Through co-inoculation experiments on potato dextrose agar, we delineated three primary interaction patterns: antibiosis, deadlock, and merging. In vitro trials involving individual pathogen inoculations on tulip bulbs revealed that B. tulipae,was the most virulent and induced complete bulb decay. Nonetheless, when these pathogens were simultaneously introduced in various combinations, outcomes ranged from partial bulb decay to elongated rotting periods. This indicated a notable degree of antagonistic behaviour among the pathogens. While synergistic interactions were evident in a few combinations, antagonism overwhelmingly prevailed. The complex interplay of these pathogens during co-infection led to a noticeable change in the overall severity of the disease. This underscores the significance of pathogen-pathogen interactions in the realm of plant pathology, opening new insights for understanding and managing tulip bulb rot.


Subject(s)
Fusarium , Plant Diseases , Tulipa , Plant Diseases/microbiology , Fusarium/pathogenicity , Tulipa/microbiology , Botrytis/pathogenicity , Penicillium chrysogenum/pathogenicity , Aspergillus niger/pathogenicity , Virulence , Plant Roots/microbiology
4.
Physiol Plant ; 176(3): e14325, 2024.
Article in English | MEDLINE | ID: mdl-38715548

ABSTRACT

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Subject(s)
Bacillus , Fructans , Plant Diseases , Solanum lycopersicum , Triticum , Fructans/metabolism , Triticum/microbiology , Triticum/metabolism , Triticum/immunology , Triticum/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Plant Diseases/microbiology , Plant Diseases/immunology , Bacillus/physiology , Botrytis , Plant Immunity , Disease Resistance , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/immunology , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , Seeds/growth & development , Seeds/metabolism , Seeds/microbiology , Seeds/immunology , Ascomycota
5.
Sci Total Environ ; 932: 173109, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729361

ABSTRACT

The influence of endophytic microbial community on plant growth and disease resistance is of considerable importance. Prior research indicates that pre-treatment of kiwifruit with the biocontrol yeast Debaryomyces hansenii suppresses gray mold disease induced by Botrytis cinerea. However, the specific underlying mechanisms remain unclear. In this study, Metagenomic sequencing was utilized to analyze the composition of the endophytic microbiome of kiwifruit under three distinct conditions: the healthy state, kiwifruit inoculated with B. cinerea, and kiwifruit treated with D. hansenii prior to inoculation with B. cinerea. Results revealed a dominance of Proteobacteria in all treatment groups, accompanied by a notable increase in the relative abundance of Actinobacteria and Firmicutes. Ascomycota emerged as the major dominant group within the fungal community. Treatment with D. hansenii induced significant alterations in microbial community diversity, specifically enhancing the relative abundance of yeast and exerting an inhibitory effect on B. cinerea. The introduction of D. hansenii also enriched genes associated with energy metabolism and signal transduction, positively influencing the overall structure and function of the microbial community. Our findings highlight the potential of D. hansenii to modulate microbial dynamics, inhibit pathogenic organisms, and positively influence functional attributes of the microbial community.


Subject(s)
Actinidia , Botrytis , Endophytes , Microbiota , Plant Diseases , Endophytes/physiology , Botrytis/physiology , Actinidia/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fruit/microbiology , Disease Resistance , Debaryomyces/physiology , Ascomycota/physiology
6.
Braz J Biol ; 84: e276874, 2024.
Article in English | MEDLINE | ID: mdl-38808783

ABSTRACT

Strawberry (Fragaria x ananassa Duch.) is a highly perishable fruit whose characteristics make it susceptible to developing microorganisms. Plant extracts have been studied as an alternative to pesticides to control spoilage microorganisms, responding to the expectation of the population seeking a healthier way of life. The fungus Botrytis cinerea is a facultative pathogen of vegetables, which can affect all stages of the development of several fruits, such as the strawberry, where it causes gray rot. Trichilia catigua (catuaba), Paullinia cupana (guarana), Stryphnodendron barbatiman (barbatimão), and Caesalpinia peltophoroides (sibipiruna) are planted in the Brazilian flora and have demonstrated pharmacological properties in their extracts. This work aimed to treat strawberries with a biodegradable film containing extracts of these species to evaluate strawberry conservation. There were notable distinctions in mass loss between the extract-treated and control samples. The pH, total acidity (TA), and soluble solids parameters exhibited consistently significant means across both sets of samples. Luminosity increased over the course of days in the color parameters, with the exception of strawberries coated with guarana. The red color showed greater intensity, except for those coated with barbatimão extract. Considering the results, it is possible to conclude that the coatings used can become an alternative to enhance the conservation of strawberries.


Subject(s)
Fragaria , Plant Extracts , Fragaria/chemistry , Fragaria/microbiology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Botrytis/drug effects , Paullinia/chemistry , Caesalpinia/chemistry , Fruit/chemistry
7.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791163

ABSTRACT

The genome sequencing of Botrytis cinerea supplies a general overview of the map of genes involved in secondary metabolite synthesis. B. cinerea genomic data reveals that this phytopathogenic fungus has seven sesquiterpene cyclase (Bcstc) genes that encode proteins involved in the farnesyl diphosphate cyclization. Three sesquiterpene cyclases (BcStc1, BcStc5 and BcStc7) are characterized, related to the biosynthesis of botrydial, abscisic acid and (+)-4-epi-eremophilenol, respectively. However, the role of the other four sesquiterpene cyclases (BcStc2, BcStc3, BcStc4 and BcStc6) remains unknown. BcStc3 is a well-conserved protein with homologues in many fungal species, and here, we undertake its functional characterization in the lifecycle of the fungus. A null mutant ΔBcstc3 and an overexpressed-Bcstc3 transformant (OvBcstc3) are generated, and both strains show the deregulation of those other sesquiterpene cyclase-encoding genes (Bcstc1, Bcstc5 and Bcstc7). These results suggest a co-regulation of the expression of the sesquiterpene cyclase gene family in B. cinerea. The phenotypic characterization of both transformants reveals that BcStc3 is involved in oxidative stress tolerance, the production of reactive oxygen species and virulence. The metabolomic analysis allows the isolation of characteristic polyketides and eremophilenols from the secondary metabolism of B. cinerea, although no sesquiterpenes different from those already described are identified.


Subject(s)
Botrytis , Sesquiterpenes , Botrytis/genetics , Botrytis/metabolism , Sesquiterpenes/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Oxidative Stress , Carbon-Carbon Lyases
8.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792074

ABSTRACT

The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide-hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide-hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide-hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested.


Subject(s)
Hydrazones , Laccase , Hydrazones/pharmacology , Hydrazones/chemistry , Laccase/metabolism , Crops, Agricultural/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Ascomycota/drug effects , Animals , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Botrytis/drug effects , Humans , Mice , Parabens
9.
J Agric Food Chem ; 72(20): 11392-11404, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717972

ABSTRACT

Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.


Subject(s)
Botrytis , Fragaria , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Salicylates , Fragaria/genetics , Fragaria/immunology , Fragaria/microbiology , Fragaria/enzymology , Fragaria/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Salicylates/metabolism , Salicylates/pharmacology , Disease Resistance/genetics , Multigene Family , Molecular Docking Simulation , Fruit/genetics , Fruit/immunology , Fruit/microbiology , Fruit/chemistry , Fruit/enzymology , Fruit/metabolism
10.
Food Chem ; 453: 139612, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38772306

ABSTRACT

Fusarium oxysporum and Botrytis cinerea are the main pathogens that cause fruit decay and reduce the postharvest shelf life of cherry tomatoes. Boosting the potency of natural products requires implementing structural modification to combat postharvest pathogens. Herein, we developed a novel Vanillin-Deep Eutectic Agent (V-DEA) from natural compounds and evaluated its effectiveness against tomato fruit rot pathogens. The results demonstrated that V-DEA suppressed mycelium growth and spore germination of F. oxysporum and B. cinerea by enhancing cell membrane permeability, increasing lipid peroxidation, and inhibiting enzyme activities. Importantly, using 8-mM V-DEA successfully prevented postharvest decay in cherry tomatoes, while 4-mM significantly extended their shelf life by reducing weight loss and shriveling, and enhancing key fruit qualities such as total soluble solids, ascorbic acid, tartaric acid, and lycopene. In conclusion, V-DEA exhibits dual properties as a potent pathogen inhibitor and antioxidant activity, thus prolonging the shelf life of cherry tomatoes.


Subject(s)
Benzaldehydes , Botrytis , Food Preservation , Fruit , Fusarium , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Benzaldehydes/pharmacology , Benzaldehydes/chemistry , Botrytis/growth & development , Botrytis/drug effects , Food Preservation/methods , Fruit/chemistry , Fruit/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fusarium/drug effects , Fusarium/growth & development , Fusarium/metabolism , Food Storage
11.
J Agric Food Chem ; 72(21): 11990-12002, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757490

ABSTRACT

The main challenge in the development of agrochemicals is the lack of new leads and/or targets. It is critical to discover new molecular targets and their corresponding ligands. YZK-C22, which contains a 1,2,3-thiadiazol-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole skeleton, is a fungicide lead compound with broad-spectrum fungicidal activity. Previous studies suggested that the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole scaffold exhibited good antifungal activity. Inspired by this, a series of pyrrolo[2,3-d]thiazole derivatives were designed and synthesized through a bioisosteric strategy. Compounds C1, C9, and C20 were found to be more active against Rhizoctonia solani than the positive control YZK-C22. More than half of the target compounds provided favorable activity against Botrytis cinerea, where the EC50 values of compounds C4, C6, C8, C10, and C20 varied from 1.17 to 1.77 µg/mL. Surface plasmon resonance and molecular docking suggested that in vitro potent compounds C9 and C20 have a new mode of action instead of acting as pyruvate kinase inhibitors. Transcriptome analysis revealed that compound C20 can impact the tryptophan metabolic pathway, cutin, suberin, and wax biosynthesis of B. cinerea. Overall, pyrrolo[2,3-d]thiazole is discovered as a new fungicidal lead structure with a potential new mode of action for further exploration.


Subject(s)
Botrytis , Fungicides, Industrial , Rhizoctonia , Thiazoles , Tryptophan , Waxes , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Rhizoctonia/drug effects , Botrytis/drug effects , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Tryptophan/metabolism , Tryptophan/chemistry , Waxes/chemistry , Waxes/metabolism , Structure-Activity Relationship , Metabolic Networks and Pathways/drug effects , Molecular Docking Simulation , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/metabolism , Plant Diseases/microbiology , Molecular Structure
12.
J Agric Food Chem ; 72(21): 12260-12269, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38759097

ABSTRACT

Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 µg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 µg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 µg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.


Subject(s)
14-alpha Demethylase Inhibitors , Ascomycota , Drug Design , Fungal Proteins , Fungicides, Industrial , Pyrimidines , Rhizoctonia , Sterol 14-Demethylase , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/metabolism , Structure-Activity Relationship , Rhizoctonia/drug effects , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemistry , 14-alpha Demethylase Inhibitors/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Ascomycota/drug effects , Ascomycota/enzymology , Models, Molecular , Botrytis/drug effects , Penicillium/drug effects , Penicillium/enzymology , Molecular Structure , Molecular Docking Simulation
13.
Int J Food Microbiol ; 418: 110735, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38761714

ABSTRACT

This research aimed to develop, optimize, and evaluate a new antifungal nanoemulsion system based on the crude reuterin-synergistic essential oils (EOs) hybrid to overcome the EOs application limits. At first, the antifungal effects of the Lactobacillus plantarum and Lactobacillus reuteri cell-free extracts (CFE) were tested against the Botrytis cinerea, Penicillium expansum, and Alternaria alternata as indicator fungus using broth microdilution method. The L. reuteri CFE with the MIC of 125 µL/mL for B. cinerea and 250 µL/mL for P. expansum and A. alternata showed more inhibitory effects than L. plantarum. Next, reuterin as a significant antibacterial compound in the L. reuteri CFE was induced in glycerol-containing culture media. To reach a nanoemulsion with maximum antifungal activity and stability, the reuterin concentration, Tween 80 %, and ultrasound time were optimized using response surface methodology (RSM) with a volumetric constant ratio of 5 % v/v oil phase including triple synergistic EOs (thyme, cinnamon, and rosemary) at MIC concentrations. Based on the Box-Behnken Design, the maximum antifungal effect was observed in the treatment with 40 mM reuterin, 1 % Tween 80, and 3 min of ultrasound. The growth inhibitory diameter zones of B. cinerea, P. expansum, and A. alternata were estimated 6.15, 4.25, and 4.35 cm in optimum nanoemulsion, respectively. Also, the minimum average particle size diameter (16.3 nm) was observed in nanoemulsion with reuterin 40 mM, Tween 80 5 %, and 3 min of ultrasound treatment. Zeta potential was relatively high within -30 mV range in all designed nanoemulsions which indicates the nanoemulsion's stability. Also, the prepared nanoemulsions, despite initial particle size showed good stability in a 90-d storage period at 25 °C. In vivo assay, showed a significant improvement in the protection of apple fruit treated with reuterin-EOs nanoemulsions against fungal spoilage compared to free reuterin nanoemulsion. Treatment of apples with nanoemulsion containing 40 mM reuterin showed a maximum inhibitory effect on B. cinerea (5.1 mm lesion diameter compared to 29.2 mm for control fruit) within 7 d at 25 °C. In summary, the present study demonstrated that reuterin-synergistic EOs hybrid with boosted antifungal activities can be considered as a biopreservative for food applications.


Subject(s)
Antifungal Agents , Emulsions , Glyceraldehyde , Oils, Volatile , Propane , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Emulsions/pharmacology , Propane/pharmacology , Propane/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Glyceraldehyde/pharmacology , Glyceraldehyde/analogs & derivatives , Microbial Sensitivity Tests , Limosilactobacillus reuteri/drug effects , Penicillium/drug effects , Penicillium/growth & development , Botrytis/drug effects , Botrytis/growth & development , Alternaria/drug effects , Alternaria/growth & development
14.
J Med Chem ; 67(10): 7954-7972, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38703119

ABSTRACT

To discover potential sterol 14α-demethylase (CYP51) inhibitors, thirty-four unreported 4H-pyrano[3,2-c]pyridine derivatives were designed and synthesized. The assay results indicated that most compounds displayed significant fungicidal activity against Sclerotinia sclerotiorum, Colletotrichum lagenarium, Botrytis cinerea, Penicillium digitatum, and Fusarium oxysporum at 16 µg/mL. The half maximal effective concentration (EC50) values of compounds 7a, 7b, and 7f against B. cinerea were 0.326, 0.530, and 0.610, respectively. Namely, they had better antifungal activity than epoxiconazole (EC50 = 0.670 µg/mL). Meanwhile, their half maximal inhibitory concentration (IC50) values against CYP51 were 0.377, 0.611, and 0.748 µg/mL, respectively, representing that they also possessed better inhibitory activities than epoxiconazole (IC50 = 0.802 µg/mL). The fluorescent quenching tests of proteins showed that 7a and 7b had similar quenching patterns to epoxiconazole. The molecular dynamics simulations indicated that the binding free energy of 7a and epoxiconazole to CYP51 was -35.4 and -27.6 kcal/mol, respectively.


Subject(s)
14-alpha Demethylase Inhibitors , Antifungal Agents , Drug Design , Molecular Dynamics Simulation , Pyridines , Sterol 14-Demethylase , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemical synthesis , 14-alpha Demethylase Inhibitors/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Pyridines/chemistry , Sterol 14-Demethylase/metabolism , Sterol 14-Demethylase/chemistry , Structure-Activity Relationship , Microbial Sensitivity Tests , Fusarium/drug effects , Penicillium , Ascomycota/drug effects , Colletotrichum/drug effects , Botrytis/drug effects , Molecular Structure , Molecular Docking Simulation
15.
Colloids Surf B Biointerfaces ; 239: 113933, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729019

ABSTRACT

Lipopeptides produced by beneficial bacilli present promising alternatives to chemical pesticides for plant biocontrol purposes. Our research explores the distinct plant biocontrol activities of lipopeptides surfactin (SRF) and fengycin (FGC) by examining their interactions with lipid membranes. Our study shows that FGC exhibits a direct antagonistic activity against Botrytis cinerea and no marked immune-eliciting activity in Arabidopsis thaliana while SRF only demonstrates an ability to stimulate plant immunity. It also reveals that SRF and FGC exhibit diverse effects on membrane integrity and lipid packing. SRF primarily influences membrane physical state without significant membrane permeabilization, while FGC permeabilizes membranes without significantly affecting lipid packing. From our results, we can suggest that the direct antagonistic activity of lipopeptides is linked to their capacity to permeabilize lipid membrane while the stimulation of plant immunity is more likely the result of their ability to alter the mechanical properties of the membrane. Our work also explores how membrane lipid composition modulates the activities of SRF and FGC. Sterols negatively impact both lipopeptides' activities while sphingolipids mitigate the effects on membrane lipid packing but enhance membrane leakage. In conclusion, our findings emphasize the importance of considering both membrane lipid packing and leakage mechanisms in predicting the biological effects of lipopeptides. It also sheds light on the intricate interplay between the membrane composition and the effectiveness of the lipopeptides, providing insights for targeted biocontrol agent design.


Subject(s)
Botrytis , Lipopeptides , Membrane Lipids , Peptides, Cyclic , Lipopeptides/pharmacology , Lipopeptides/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Membrane Lipids/metabolism , Membrane Lipids/chemistry , Botrytis/drug effects , Arabidopsis/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/chemistry
16.
J Agric Food Chem ; 72(20): 11716-11723, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728745

ABSTRACT

A total of 32 novel sulfoximines bearing cyanoguanidine and nitroguanidine moieties were designed and synthesized by a rational molecule design strategy. The bioactivities of the title compounds were evaluated and the results revealed that some of the target compounds possessed excellent antifungal activities against six agricultural fungi, including Sclerotinia sclerotiorum, Fusarium graminearum, Phytophthora capsici, Botrytis cinerea, Rhizoctonia solani, and Pyricularia grisea. Among them, compounds 8e1 and 8e4 exhibited significant efficacy against P. grisea with EC50 values of 2.72 and 2.98 µg/mL, respectively, which were much higher than that of commercial fungicides boscalid (47.95 µg/mL). Interestingly, in vivo assays determined compound 8e1 possessed outstanding activity against S. sclerotiorum with protective and curative effectiveness of 98 and 95.6% at 50 µg/mL, which were comparable to those of boscalid (93.2, 91.9%). The further preliminary mechanism investigation disclosed that compound 8e1 could damage the structure of the cell membrane of S. sclerotiorum, increase its permeability, and suppress its growth. Overall, the findings enhanced that these novel sulfoximine derivatives could be potential lead compounds for the development of new fungicides.


Subject(s)
Drug Design , Fungicides, Industrial , Fusarium , Guanidines , Plant Diseases , Rhizoctonia , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Guanidines/chemistry , Guanidines/pharmacology , Guanidines/chemical synthesis , Structure-Activity Relationship , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Fusarium/drug effects , Fusarium/growth & development , Plant Diseases/microbiology , Phytophthora/drug effects , Phytophthora/growth & development , Ascomycota/drug effects , Ascomycota/growth & development , Botrytis/drug effects , Botrytis/growth & development , Molecular Structure
17.
Int J Biol Macromol ; 270(Pt 1): 132218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750844

ABSTRACT

Botrytis cinerea and Penicillium expansum are phytopathogenic fungi that produce the deterioration of fruits. Thus, essential oil (EO) has emerged as a sustainable strategy to minimize the use of synthetic fungicides, but their volatility and scarce solubility restrict their application. This study proposes the EO of Oreganum vulgare and Thymus vulgaris-loaded solid lipid nanoparticles (SLN) based chitosan/PVA hydrogels to reduce the infestation of fungi phytopathogen. EO of O. vulgare and T. vulgaris-loaded SLN had a good homogeneity (0.21-0.35) and stability (-28.8 to -33.0 mV) with a mean size of 180.4-188.4 nm. The optimization of EO-loaded SLN showed that the encapsulation of 800 and 1200 µL L-1 of EO of O vulgare and T. vulgaris had the best particle size. EO-loaded SLN significantly reduced the mycelial growth and spore germination of both fungi pathogen. EO-loaded SLN into hydrogels showed appropriate physicochemical characteristics to apply under environmental conditions. Furthermore, rheological analyses evidenced that hydrogels had solid-like characteristics and elastic behavior. EO-loaded SLN-based hydrogels inhibited the spore germination in B. cinerea (80.9 %) and P. expansum (55.7 %). These results show that SLN and hydrogels are eco-friendly strategies for applying EO with antifungal activity.


Subject(s)
Botrytis , Chitosan , Hydrogels , Nanoparticles , Oils, Volatile , Penicillium , Chitosan/chemistry , Botrytis/drug effects , Botrytis/growth & development , Penicillium/drug effects , Penicillium/growth & development , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Hydrogels/chemistry , Nanoparticles/chemistry , Lipids/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Rheology , Particle Size , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Liposomes
18.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38599633

ABSTRACT

AIMS: This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS: The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION: The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.


Subject(s)
Botrytis , Plant Diseases , Pseudomonas putida , Solanum lycopersicum , Solanum lycopersicum/microbiology , Pseudomonas putida/physiology , Pseudomonas putida/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Siderophores/metabolism , Plant Roots/microbiology , Rhizosphere , Biological Control Agents/pharmacology , Plant Leaves/microbiology , Disease Resistance
19.
Pestic Biochem Physiol ; 201: 105884, 2024 May.
Article in English | MEDLINE | ID: mdl-38685250

ABSTRACT

Botrytis cinerea is one of the most destructive pathogens worldwide. It can damage over 200 crops, resulting in significant yield and quality losses. Cyclobutrifluram, a new generation of succinate dehydrogenase inhibitors, exhibits excellent inhibitory activity against B. cinerea. However, the baseline sensitivity and resistance of B. cinerea to cyclobutrifluram remains poorly understood. This study was designed to monitor the sensitivity frequency distribution, assess the resistance risk, and clarify the resistance mechanism of B. cinerea to cyclobutrifluram. The baseline sensitivity of B. cinerea isolates to cyclobutrifluram was 0.89 µg/mL. Cyclobutrifluram-resistant B. cinerea populations are present in the field. Six resistant B. cinerea isolates investigated in this study possessed enhanced compound fitness index compared to the sensitive isolates according to mycelial growth, mycelial dry weight, conidiation, conidial germination rate, and pathogenicity. Cyclobutrifluram exhibited no cross-resistance with tebuconazole, fludioxonil, cyprodinil, or iprodione. Sequence alignment revealed that BcSDHB from cyclobutrifluram-resistant B. cinerea isolates had three single substitutions (P225F, N230I, or H272R). Molecular docking verified that these mutations in BcSDHB conferred cyclobutrifluram resistance in B. cinerea. In conclusion, the resistance risk of B. cinerea to cyclobutrifluram is high, and the point mutations in BcSDHB (P225F, N230I, or H272R) confer cyclobutrifluram resistance in B. cinerea. This study provided important insights into cyclobutrifluram resistance in B. cinerea and offered valuable information for monitoring and managing cyclobutrifluram resistance in the future.


Subject(s)
Botrytis , Drug Resistance, Fungal , Fungicides, Industrial , Norbornanes , Point Mutation , Pyrazoles , Botrytis/drug effects , Botrytis/genetics , Drug Resistance, Fungal/genetics , Fungicides, Industrial/pharmacology , China , Succinate Dehydrogenase/genetics , Fungal Proteins/genetics , Plant Diseases/microbiology
20.
Physiol Plant ; 176(2): e14309, 2024.
Article in English | MEDLINE | ID: mdl-38659152

ABSTRACT

Although microRNAs (miRNAs) regulate the defense response of a variety of plant species against a variety of pathogenic fungi, the involvement of miRNAs in mulberry's defense against Botrytis cinerea has not yet been documented. In this study, we identified responsive B. cinerea miRNA mno-miR164a in mulberry trees. After infection with B. cinerea, the expression of mno-miR164a was reduced, which was fully correlated with the upregulation of its target gene, MnNAC100, responsible for encoding a transcription factor. By using transient infiltration/VIGS mulberry that overexpressed mno-miR164a or knocked-down MnNAC100, our study revealed a substantial enhancement in mulberry's resistance to B. cinerea when mno-miR164a was overexpressed or MnNAC100 expression was suppressed. This enhancement was accompanied by increased catalase (CAT) activity and reduced malondialdehyde (MDA) content. In addition, mno-miR164a-mediated inhibition of MnNAC100 enhanced the expression of a cluster of defense-related genes in transgenic plants upon exposure to B. cinerea. Meanwhile, MnNAC100 acts as a transcriptional repressor, directly suppressing the expression of MnPDF1.2. Our study indicated that the mno-miR164a-MnNAC100 regulatory module manipulates the defense response of mulberry to B. cinerea infection. This discovery has great potential in breeding of resistant varieties and disease control.


Subject(s)
Botrytis , Disease Resistance , Gene Expression Regulation, Plant , MicroRNAs , Morus , Plant Diseases , Plant Proteins , Morus/genetics , Morus/microbiology , Botrytis/physiology , Botrytis/pathogenicity , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Malondialdehyde/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...