Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(1): eadg7888, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170767

ABSTRACT

Understanding plant-microbe interactions requires examination of root exudation under nutrient stress using standardized and reproducible experimental systems. We grew Brachypodium distachyon hydroponically in fabricated ecosystem devices (EcoFAB 2.0) under three inorganic nitrogen forms (nitrate, ammonium, and ammonium nitrate), followed by nitrogen starvation. Analyses of exudates with liquid chromatography-tandem mass spectrometry, biomass, medium pH, and nitrogen uptake showed EcoFAB 2.0's low intratreatment data variability. Furthermore, the three inorganic nitrogen forms caused differential exudation, generalized by abundant amino acids-peptides and alkaloids. Comparatively, nitrogen deficiency decreased nitrogen-containing compounds but increased shikimates-phenylpropanoids. Subsequent bioassays with two shikimates-phenylpropanoids (shikimic and p-coumaric acids) on soil bacteria or Brachypodium seedlings revealed their distinct capacity to regulate both bacterial and plant growth. Our results suggest that (i) Brachypodium alters exudation in response to nitrogen status, which can affect rhizobacterial growth, and (ii) EcoFAB 2.0 is a valuable standardized plant research tool.


Subject(s)
Brachypodium , Ecosystem , Brachypodium/microbiology , Nitrogen , Shikimic Acid , Biomass
2.
Biointerphases ; 17(3): 031006, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35738921

ABSTRACT

The plant growth-promoting rhizobacteria (PGPR) on the host plant surface play a key role in biological control and pathogenic response in plant functions and growth. However, it is difficult to elucidate the PGPR effect on plants. Such information is important in biomass production and conversion. Brachypodium distachyon (Brachypodium), a genomics model for bioenergy and native grasses, was selected as a C3 plant model; and the Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.) were chosen as representative PGPR strains. The PGPRs were introduced to the Brachypodium seed's awn prior to germination, and their possible effects on the seeding and growth were studied using different modes of time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements, including a high mass-resolution spectral collection and delayed image extraction. We observed key plant metabolic products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and auxin indole-3-acetic acid in the Brachypodium awns. Furthermore, principal component analysis and two-dimensional imaging analysis reveal that the Brachypodium awns are sensitive to the PGPR, leading to chemical composition and morphology changes on the awn surface. Our results show that ToF-SIMS can be an effective tool to probe cell-to-cell interactions at the biointerface. This work provides a new approach to studying the PGPR effects on awn and shows its potential for the research of plant growth in the future.


Subject(s)
Brachypodium , Brachypodium/metabolism , Brachypodium/microbiology
3.
PLoS One ; 17(3): e0265357, 2022.
Article in English | MEDLINE | ID: mdl-35286339

ABSTRACT

Brachypodium distachyon is a useful model organism for studying interaction of cereals with phytopathogenic fungi. The present study tested the possibility of a compatible interaction of B. distachyon with the endophytic fungus Microdochium bolleyi originated from wheat roots. There was evaluated the effect of this endophytic fungus on the intensity of the attack by pathogen Fusarium culmorum in B. distachyon and wheat, and also changes in expression of genes (in B. distachyon: BdChitinase1, BdPR1-5, BdLOX3, BdPAL, BdEIN3, and BdAOS; and in wheat: TaB2H2(chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2, and TaAOS) involved in defence against pathogens. Using light microscopy and newly developed specific primers was found to be root colonization of B. distachyon by the endophyte M. bolleyi. B. distachyon plants, as well as wheat inoculated with M. bolleyi showed significantly weaker symptoms on leaves from infection by fungus F. culmorum than did plants without the endophyte. Expression of genes BdPR1-5, BdChitinase1, and BdLOX3 in B. distachyon and of TaPR1.1 and TaB2H2 in wheat was upregulated after infection with F. culmorum. M. bolleyi-mediated resistance in B. distachyon was independent of the expression of the most tested genes. Taken together, the results of the present study show that B. distachyon can be used as a model host system for endophytic fungus M. bolleyi.


Subject(s)
Ascomycota , Brachypodium , Ascomycota/genetics , Brachypodium/genetics , Brachypodium/microbiology , Host-Pathogen Interactions , Plant Diseases/microbiology , Triticum/genetics
4.
Plant Cell Environ ; 44(12): 3526-3544, 2021 12.
Article in English | MEDLINE | ID: mdl-34591319

ABSTRACT

Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.


Subject(s)
Brachypodium/microbiology , Fusarium/physiology , Metabolome , Mycotoxins/metabolism , Transcriptome , Trichothecenes/metabolism , Adaptation, Biological , Brachypodium/genetics , Brachypodium/immunology , Brachypodium/metabolism , Host Microbial Interactions , Plant Immunity/physiology , Plant Roots/microbiology , Signal Transduction/immunology
5.
PLoS One ; 16(8): e0252365, 2021.
Article in English | MEDLINE | ID: mdl-34351929

ABSTRACT

In filamentous fungi, gene silencing by RNA interference (RNAi) shapes many biological processes, including pathogenicity. Recently, fungal small RNAs (sRNAs) have been shown to act as effectors that disrupt gene activity in interacting plant hosts, thereby undermining their defence responses. We show here that the devastating mycotoxin-producing ascomycete Fusarium graminearum (Fg) utilizes DICER-like (DCL)-dependent sRNAs to target defence genes in two Poaceae hosts, barley (Hordeum vulgare, Hv) and Brachypodium distachyon (Bd). We identified 104 Fg-sRNAs with sequence homology to host genes that were repressed during interactions of Fg and Hv, while they accumulated in plants infected by the DCL double knock-out (dKO) mutant PH1-dcl1/2. The strength of target gene expression correlated with the abundance of the corresponding Fg-sRNA. Specifically, the abundance of three tRNA-derived fragments (tRFs) targeting immunity-related Ethylene overproducer 1-like 1 (HvEOL1) and three Poaceae orthologues of Arabidopsis thaliana BRI1-associated receptor kinase 1 (HvBAK1, HvSERK2 and BdSERK2) was dependent on fungal DCL. Additionally, RNA-ligase-mediated Rapid Amplification of cDNA Ends (RLM-RACE) identified infection-specific degradation products for the three barley gene transcripts, consistent with the possibility that tRFs contribute to fungal virulence via targeted gene silencing.


Subject(s)
Brachypodium , Fusarium/physiology , Hordeum , Host-Pathogen Interactions , Plant Diseases/microbiology , RNA, Fungal/metabolism , Ribonuclease III/metabolism , Virulence Factors/metabolism , Brachypodium/metabolism , Brachypodium/microbiology , Fungal Proteins , Hordeum/metabolism , Hordeum/microbiology , Plant Diseases/genetics , RNA, Fungal/genetics , Ribonuclease III/genetics , Virulence Factors/genetics
6.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360661

ABSTRACT

Fabricated ecosystems (EcoFABs) offer an innovative approach to in situ examination of microbial establishment patterns around plant roots using nondestructive, high-resolution microscopy. Previously high-resolution imaging was challenging because the roots were not constrained to a fixed distance from the objective. Here, we describe a new 'Imaging EcoFAB' and the use of this device to image the entire root system of growing Brachypodium distachyon at high resolutions (20×, 40×) over a 3-week period. The device is capable of investigating root-microbe interactions of multimember communities. We examined nine strains of Pseudomonas simiae with different fluorescent constructs to B. distachyon and individual cells on root hairs were visible. Succession in the rhizosphere using two different strains of P. simiae was examined, where the second addition was shown to be able to establish in the root tissue. The device was suitable for imaging with different solid media at high magnification, allowing for the imaging of fungal establishment in the rhizosphere. Overall, the Imaging EcoFAB could improve our ability to investigate the spatiotemporal dynamics of the rhizosphere, including studies of fluorescently-tagged, multimember, synthetic communities.


Subject(s)
Brachypodium/microbiology , Microtechnology/instrumentation , Molecular Imaging/methods , Plant Roots/microbiology , Pseudomonas/physiology , Rhizosphere , Brachypodium/metabolism , Plant Roots/metabolism , Soil Microbiology
7.
BMC Plant Biol ; 21(1): 304, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193039

ABSTRACT

BACKGROUND: The production of cereal crops is frequently affected by diseases caused by Fusarium graminearum and Magnaporthe oryzae, two devastating fungal pathogens. To improve crop resistance, many studies have focused on understanding the mechanisms of host defense against these two fungi individually. However, our knowledge of the common and different host defenses against these pathogens is very limited. RESULTS: In this study, we employed Brachypodium distachyon as a model for cereal crops and performed comparative transcriptomics to study the dynamics of host gene expression at different infection stages. We found that infection with either F. graminearum or M. oryzae triggered massive transcriptomic reprogramming in the diseased tissues. Numerous defense-related genes were induced with dynamic changes during the time course of infection, including genes that function in pattern detection, MAPK cascade, phytohormone signaling, transcription, protein degradation, and secondary metabolism. In particular, the expression of jasmonic acid signaling genes and proteasome component genes were likely specifically inhibited or manipulated upon infection by F. graminearum. CONCLUSIONS: Our analysis showed that, although the affected host pathways are similar, their expression programs and regulations are distinct during infection by F. graminearum and M. oryzae. The results provide valuable insight into the interactions between B. distachyon and two important cereal pathogens.


Subject(s)
Ascomycota/physiology , Brachypodium/genetics , Brachypodium/microbiology , Fusarium/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Protein Interaction Maps/genetics
8.
Methods Mol Biol ; 2309: 157-177, 2021.
Article in English | MEDLINE | ID: mdl-34028686

ABSTRACT

Arbuscular mycorrhiza is an ancient symbiosis between most land plants and fungi of the Glomeromycotina, in which the fungi provide mineral nutrients to the plant in exchange for photosynthetically fixed organic carbon. Strigolactones are important signals promoting this symbiosis, as they are exuded by plant roots into the rhizosphere to stimulate activity of the fungi. In addition, the plant karrikin signaling pathway is required for root colonization. Understanding the molecular mechanisms underpinning root colonization by AM fungi, requires the use of plant mutants as well as treatments with different environmental conditions or signaling compounds in standardized cocultivation systems to allow for reproducible root colonization phenotypes. Here we describe how we set up and quantify arbuscular mycorrhiza in the model plants Lotus japonicus and Brachypodium distachyon under controlled conditions. We illustrate a setup for open pot culture as well as for closed plant tissue culture (PTC) containers, for plant-fungal cocultivation in sterile conditions. Furthermore, we explain how to harvest, store, stain, and image AM roots for phenotyping and quantification of different AM structures.


Subject(s)
Biological Assay , Brachypodium/microbiology , Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Lotus/microbiology , Mycorrhizae/drug effects , Plant Growth Regulators/pharmacology , Plant Roots/microbiology , Brachypodium/growth & development , Lotus/growth & development , Mycorrhizae/growth & development , Phenotype , Plant Roots/growth & development
9.
Int J Mol Sci ; 22(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440747

ABSTRACT

The hemibiotrophic fungus Magnaporthe oryzae (Mo) is the causative agent of rice blast and can infect aerial and root tissues of a variety of Poaceae, including the model Brachypodium distachyon (Bd). To gain insight in gene regulation processes occurring at early disease stages, we comparatively analyzed fungal and plant mRNA and sRNA expression in leaves and roots. A total of 310 Mo genes were detected consistently and differentially expressed in both leaves and roots. Contrary to Mo, only minor overlaps were observed in plant differentially expressed genes (DEGs), with 233 Bd-DEGs in infected leaves at 2 days post inoculation (DPI), compared to 4978 at 4 DPI, and 138 in infected roots. sRNA sequencing revealed a broad spectrum of Mo-sRNAs that accumulated in infected tissues, including candidates predicted to target Bd mRNAs. Conversely, we identified a subset of potential Bd-sRNAs directed against fungal cell wall components, virulence genes and transcription factors. We also show a requirement of operable RNAi genes from the DICER-like (DCL) and ARGONAUTE (AGO) families for fungal virulence. Overall, our work elucidates the extensive reprogramming of transcriptomes and sRNAs in both plant host (Bd) and fungal pathogen (Mo), further corroborating the critical role played by sRNA species in the establishment of the interaction and its outcome.


Subject(s)
Brachypodium/genetics , Brachypodium/microbiology , Gene Expression Profiling , Magnaporthe/genetics , RNA, Small Untranslated/genetics , Transcriptome , Computational Biology/methods , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Plant , Models, Molecular , Mutation , Plant Diseases/genetics , Plant Diseases/microbiology , RNA Interference , Structure-Activity Relationship , Virulence
10.
Sci Rep ; 10(1): 14889, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913311

ABSTRACT

Rhizoctonia solani is a necrotrophic phytopathogen belonging to basidiomycetes. It causes rice sheath blight which inflicts serious damage in rice production. The infection strategy of this pathogen remains unclear. We previously demonstrated that salicylic acid-induced immunity could block R. solani AG-1 IA infection in both rice and Brachypodium distachyon. R. solani may undergo biotrophic process using effector proteins to suppress host immunity before necrotrophic stage. To identify pathogen genes expressed at the early infection process, here we developed an inoculation method using B. distachyon which enables to sample an increased amount of semi-synchronous infection hyphae. Sixty-one R. solani secretory effector-like protein genes (RsSEPGs) were identified using in silico approach with the publicly available gene annotation of R. solani AG-1 IA genome and our RNA-sequencing results obtained from hyphae grown on agar medium. Expression of RsSEPGs was analyzed at 6, 10, 16, 24, and 32 h after inoculation by a quantitative reverse transcription-polymerase chain reaction and 52 genes could be detected at least on a single time point tested. Their expressions showed phase-specific patterns which were classified into 6 clusters. The 23 RsSEPGs in the cluster 1-3 and 29 RsSEPGs in the cluster 4-6 are expected to be involved in biotrophic and necrotrophic interactions, respectively.


Subject(s)
Brachypodium/microbiology , Genes, Fungal , Rhizoctonia/genetics , Computer Simulation , Gene Expression Regulation, Fungal , Molecular Sequence Annotation , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
11.
Plant J ; 104(4): 995-1008, 2020 11.
Article in English | MEDLINE | ID: mdl-32891065

ABSTRACT

Rhizoctonia solani is a soil-borne necrotrophic fungus that causes sheath blight in grasses. The basal resistance of compatible interactions between R. solani and rice is known to be modulated by some WRKY transcription factors (TFs). However, genes and defense responses involved in incompatible interaction with R. solani remain unexplored, because no such interactions are known in any host plants. Recently, we demonstrated that Bd3-1, an accession of the model grass Brachypodium distachyon, is resistant to R. solani and, upon inoculation with the fungus, undergoes rapid induction of genes responsive to the phytohormone salicylic acid (SA) that encode the WRKY TFs BdWRKY38 and BdWRKY44. Here, we show that endogenous SA and these WRKY TFs positively regulate this accession-specific R. solani resistance. In contrast to a susceptible accession (Bd21), the infection process in the resistant accessions Bd3-1 and Tek-3 was suppressed at early stages before the development of fungal biomass and infection machinery. A comparative transcriptome analysis during pathogen infection revealed that putative WRKY-dependent defense genes were induced faster in the resistant accessions than in Bd21. A gene regulatory network (GRN) analysis based on the transcriptome dataset demonstrated that BdWRKY38 was a GRN hub connected to many target genes specifically in resistant accessions, whereas BdWRKY44 was shared in the GRNs of all three accessions. Moreover, overexpression of BdWRKY38 increased R. solani resistance in Bd21. Our findings demonstrate that these resistant accessions can activate an incompatible host response to R. solani, and BdWRKY38 regulates this response by mediating SA signaling.


Subject(s)
Brachypodium/genetics , Disease Resistance/genetics , Plant Diseases/immunology , Rhizoctonia/physiology , Transcription Factors/metabolism , Transcriptome , Brachypodium/microbiology , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylic Acid/metabolism , Signal Transduction , Transcription Factors/genetics
12.
Plant Physiol ; 184(3): 1263-1272, 2020 11.
Article in English | MEDLINE | ID: mdl-32873628

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis is a mutually beneficial association of plants and fungi of the subphylum Glomeromycotina. Endosymbiotic AM fungi colonize the inner cortical cells of the roots, where they form branched hyphae called arbuscules that function in nutrient exchange with the plant. To support arbuscule development and subsequent bidirectional nutrient exchange, the root cortical cells undergo substantial transcriptional reprogramming. REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1), previously studied in several dicot plant species, is a major regulator of this cortical cell transcriptional program. Here, we generated ram1 mutants and RAM1 overexpressors in a monocot, Brachypodium distachyon. The AM phenotypes of two ram1 lines revealed that RAM1 is only partly required to enable arbuscule development in B. distachyon Transgenic lines constitutively overexpressing BdRAM1 showed constitutive expression of AM-inducible genes even in the shoots. Following inoculation with AM fungi, BdRAM1-overexpressing plants showed higher arbuscule densities relative to controls, indicating the potential to manipulate the relative proportion of symbiotic interfaces via modulation of RAM1 However, the overexpressors also show altered expression of hormone biosynthesis genes and aberrant growth patterns, including stunted bushy shoots and poor seed set. While these phenotypes possibly provide additional clues about the scope of influence of BdRAM1, they also indicate that directed approaches to increase the density of symbiotic interfaces will require a more focused, potentially cell type specific manipulation of transcription factor gene expression.


Subject(s)
Brachypodium/genetics , Brachypodium/microbiology , Glomeromycota/growth & development , Glomeromycota/genetics , Mycorrhizae/genetics , Plant Roots/genetics , Symbiosis/genetics , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , Genes, Fungal , Mycorrhizae/growth & development , Phenotype , Plant Roots/growth & development , Plants, Genetically Modified , Symbiosis/physiology , Transcription Factors
13.
ACS Synth Biol ; 9(9): 2610-2615, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32786359

ABSTRACT

Developing sustainable agricultural practices will require increasing our understanding of plant-microbe interactions. To study these interactions, new genetic tools for manipulating nonmodel microbes will be needed. To help meet this need, we recently reported development of chassis-independent recombinase-assisted genome engineering (CRAGE). CRAGE relies on cassette exchange between two pairs of mutually exclusive lox sites and allows direct, single-step chromosomal integration of large, complex gene constructs into diverse bacterial species. We then extended CRAGE by introducing a third mutually exclusive lox site, creating CRAGE-Duet, which allows modular integration of two constructs. CRAGE-Duet offers advantages over CRAGE, especially when a cumbersome recloning step is required to build single-integration constructs. To demonstrate the utility of CRAGE-Duet, we created a set of strains from the plant-growth-promoting rhizobacterium Pseudomonas simiae WCS417r that expressed various fluorescence marker genes. We visualized these strains simultaneously under a confocal microscope, demonstrating the usefulness of CRAGE-Duet for creating biological systems to study plant-microbe interactions.


Subject(s)
Genetic Engineering/methods , Plants, Genetically Modified/metabolism , Pseudomonas/metabolism , Brachypodium/metabolism , Brachypodium/microbiology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Plant Roots/metabolism , Plant Roots/microbiology , Plants, Genetically Modified/genetics , Plasmids/genetics , Plasmids/metabolism , Recombinases/genetics , Recombination, Genetic , Rhizosphere
14.
Can J Microbiol ; 66(10): 562-575, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32348684

ABSTRACT

Root colonization by plant-growth-promoting bacteria could not be useful without the beneficial properties of the bacterium itself. Thus, it is necessary to evaluate the bacterial capacity to form biofilms and establish a successful interaction with the plant roots. We assessed the ability of growth-promoting bacterial strains to form biofilm and display chemotactic behaviour in response to organic acids and (or) root exudates of the model plant Brachypodium distachyon. This assessment was based on the evaluation of single strains of bacteria and a multispecies consortium. The strains coexisted together and formed biofilm under biotic (living root) and abiotic (glass) surfaces. Citric acid stimulated biofilm formation in all individual strains, indicating a strong chemotactic behaviour towards organic acids. Recognizing that the transition from single strains of bacteria to a "multicellular" system would not happen without the presence of adhesion, the alginate and exopolysaccharide (EPS) contents were evaluated. The EPS amounts were comparable in single strains and consortium forms. Alginate production increased 160% in the consortium subjected to drought stress (10% PEG). These findings demonstrated that (i) bacteria-bacteria interaction is the hub of various factors that would not only affect their relation but also could indirectly affect the balanced plant-microbe relation and (ii) root exudates could be very selective in recruiting a highly qualified multispecies consortium.


Subject(s)
Biofilms/growth & development , Brachypodium/chemistry , Brachypodium/microbiology , Chemotaxis/physiology , Endophytes/physiology , Acids/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Biofilms/drug effects , Chemotaxis/drug effects , Endophytes/drug effects , Host Microbial Interactions , Microbial Consortia/drug effects , Plant Exudates/pharmacology , Plant Roots/chemistry , Plant Roots/microbiology
15.
Plant Cell Environ ; 43(4): 1084-1101, 2020 04.
Article in English | MEDLINE | ID: mdl-31930733

ABSTRACT

Necrotrophic fungi constitute the largest group of plant fungal pathogens that cause heavy crop losses worldwide. Phymatotrichopsis omnivora is a broad host, soil-borne necrotrophic fungal pathogen that infects over 2,000 dicotyledonous plants. The molecular basis of such broad host range is unknown. We conducted cell biology and transcriptomic studies in Medicago truncatula (susceptible), Brachypodium distachyon (resistant/nonhost), and Arabidopsis thaliana (partially resistant) to understand P. omnivora virulence mechanisms. We performed defence gene analysis, gene enrichments, and correlational network studies during key infection stages. We identified that P. omnivora infects the susceptible plant as a traditional necrotroph. However, it infects the partially resistant plant as a hemi-biotroph triggering salicylic acid-mediated defence pathways in the plant. Further, the infection strategy in partially resistant plants is determined by the host responses during early infection stages. Mutant analyses in A. thaliana established the role of small peptides PEP1 and PEP2 in defence against P. omnivora. The resistant/nonhost B. distachyon triggered stress responses involving sugars and aromatic acids. Bdwat1 mutant analysis identified the role of cell walls in defence. This is the first report that describes the plasticity in infection strategies of P. omnivora providing insights into broad host range.


Subject(s)
Ascomycota/physiology , Plant Diseases/microbiology , Arabidopsis/immunology , Arabidopsis/microbiology , Ascomycota/metabolism , Brachypodium/immunology , Brachypodium/microbiology , Gene Expression Profiling , Medicago truncatula/immunology , Medicago truncatula/microbiology , Microscopy, Electron, Scanning , Plant Diseases/immunology , Plant Roots/microbiology , Plant Roots/ultrastructure , Polymerase Chain Reaction , Virulence
16.
New Phytol ; 225(4): 1777-1787, 2020 02.
Article in English | MEDLINE | ID: mdl-31610023

ABSTRACT

Fungal communities in the root endosphere are heterogeneous at fine scale. The passenger hypothesis assumes that this heterogeneity is driven by host plant distribution. Plant composition and host plant configuration should then influence root fungal assemblages. We used a large-scale experimental design of 25 mixtures of grassland plants. We sampled Brachypodium pinnatum in each mesocosm, and used amplicon mass-sequencing to analyze the endospheric mycobiota. We used plant distribution maps to assess plant species richness and evenness (heterogeneity of composition), and patch size and the degree of isolation of B. pinnatum (heterogeneity of configuration) on fungal community assembly. The Glomeromycotina community in B. pinnatum roots was not related to either floristic heterogeneity or productivity. For Ascomycota, the composition of operational taxonomic units (OTUs) was driven by plant evenness while OTU richness decreased with plant richness. For Basidiomycota, richness increased with host plant aggregation and connectivity. Plant productivity influenced Ascomycota, inducing a shift in OTU composition and decreasing evenness. Plant heterogeneity modified root mycobiota, with potential direct (i.e. host preference) and indirect (i.e. adaptations to abiotic conditions driven by plant occurrence over time) effects. Plant communities can be envisioned as microlandscapes consisting of a variety of fungal niches.


Subject(s)
Ascomycota/classification , Basidiomycota/classification , Brachypodium/microbiology , Glomeromycota/classification , Plant Roots/microbiology
17.
Analyst ; 145(2): 393-401, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31789324

ABSTRACT

The rhizosphere is arguably the most complex microbial habitat on Earth, comprising an integrated network of plant roots, soil and a highly diverse microbial community (the rhizosphere microbiome). Understanding, predicting and controlling plant-microbe interactions in the rhizosphere will allow us to harness the plant microbiome as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate the effects of climate change by designing ecosystems for long-term soil carbon storage. To this end, it is imperative to develop new molecular approaches with high spatial resolution to capture interactions at the plant-microbe, microbe-microbe, and plant-plant interfaces. In this work, we designed an imaging sample holder that allows integrated surface imaging tools to map the same locations of a plant root-microbe interface with submicron lateral resolutions, providing novel in vivo analysis of root-microbe interactions. Specifically, confocal fluorescence microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used for the first time for the correlative imaging of the Brachypodium distachyon root and its interaction with Pseudomonas SW25, a typical plant growth-promoting soil bacterium. Imaging data suggest that the root surface is inhomogeneous and that the interaction between Pseudomonas and Brachypodium roots was confined to only a few spots along the sampled root segments and that the bacterial attachment spots were enriched in Na- and S-related and high-mass organic species. We conclude that the attachment of the Pseudomonas cells to the root surface is outcompeted by strong root-soil mineral interactions but facilitated by the formation of extracellular polymeric substances (EPS).


Subject(s)
Brachypodium/metabolism , Organic Chemicals/metabolism , Plant Roots/metabolism , Pseudomonas Infections/microbiology , Pseudomonas/metabolism , Brachypodium/microbiology , Mass Spectrometry , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Plant Roots/microbiology , Pseudomonas/isolation & purification , Pseudomonas Infections/metabolism , Soil Microbiology
18.
Mol Plant Microbe Interact ; 32(12): 1623-1634, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31657673

ABSTRACT

Pathogenic fungi can have devastating effects on agriculture and health. One potential challenge in dealing with pathogens is the possibility of a host jump (i.e., when a pathogen infects a new host species). This can lead to the emergence of new diseases or complicate the management of existing threats. We studied host specificity by using a hybrid fungus formed by mating two closely related fungi: Ustilago bromivora, which normally infects Brachypodium spp., and U. hordei, which normally infects barley. Although U. hordei was unable to infect Brachypodium spp., the hybrid could. These hybrids also displayed the same mating-type bias that had been observed in U. bromivora and provide evidence of a dominant spore-killer-like system on the sex chromosome of U. bromivora. By analyzing the genomic composition of 109 hybrid strains, backcrossed with U. hordei over four generations, we identified three regions associated with infection on Brachypodium spp. and 75 potential virulence candidates. The most strongly associated region was located on chromosome 8, where seven genes encoding predicted secreted proteins were identified. The fact that we identified several regions relevant for pathogenicity on Brachypodium spp. but that none were essential suggests that host specificity, in the case of U. bromivora, is a multifactorial trait which can be achieved through different subsets of virulence factors.


Subject(s)
Brachypodium , Ustilago , Brachypodium/microbiology , Genomics , Hordeum/microbiology , Hybridization, Genetic , Ustilago/genetics , Ustilago/pathogenicity , Virulence/genetics
19.
Plant Signal Behav ; 14(10): e1651608, 2019.
Article in English | MEDLINE | ID: mdl-31392918

ABSTRACT

Auxin is a major phytohormone that controls root development. A role for auxin is also emerging in the control of plant-microbe interactions, including for the establishment of root endosymbiosis between plants and arbuscular mycorrhizal fungi (AMF). Auxin perception is important both for root colonization by AMF and for arbuscule formation. AMF produce symbiotic signals called lipo-chitooligosaccharides (LCOs) that can modify auxin homeostasis and promote lateral root formation (LRF). Since Brachypodium distachyon (Brachypodium) has a different auxin sensitivity compared to other plant species, we wondered whether this would interfere with the effect of auxin in arbuscular mycorrhizal (AM) symbiosis. Here we tested whether tar2lhypo a Brachypodium mutant with an increase in endogenous auxin content is affected in LRF stimulation by LCOs and in AM symbiosis. We found that, in contrast to control plants, LCO treatment inhibited LRF of the tar2lhypo mutant. However, the level of AMF colonization and the abundance of arbuscules were increased in tar2lhypo compared to control plants, suggesting that auxin also plays a positive role in both AMF colonization and arbuscule formation in Brachypodium.


Subject(s)
Brachypodium/genetics , Brachypodium/microbiology , Mutation/genetics , Mycorrhizae/physiology , Plant Proteins/genetics , Plant Roots/growth & development , Symbiosis/physiology , Brachypodium/drug effects , Chitin/analogs & derivatives , Chitin/pharmacology , Chitosan , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Indoles/pharmacology , Mycorrhizae/drug effects , Mycorrhizae/growth & development , Oligosaccharides , Plant Roots/drug effects , Symbiosis/drug effects
20.
Mol Plant Microbe Interact ; 32(4): 392-400, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30261155

ABSTRACT

The emergence of new races of Puccinia graminis f. sp. tritici, the causal pathogen of wheat stem rust, has spurred interest in developing durable resistance to this disease in wheat. Nonhost resistance holds promise to help control this and other diseases because it is durable against nonadapted pathogens. However, the genetic and molecular basis of nonhost resistance to wheat stem rust is poorly understood. In this study, the model grass Brachypodium distachyon, a nonhost of P. graminis f. sp. tritici, was used to genetically dissect nonhost resistance to wheat stem rust. A recombinant inbred line (RIL) population segregating for response to wheat stem rust was evaluated for resistance. Evaluation of genome-wide cumulative single nucleotide polymorphism allele frequency differences between contrasting pools of resistant and susceptible RILs followed by molecular marker analysis identified six quantitative trait loci (QTL) that cumulatively explained 72.5% of the variation in stem rust resistance. Two of the QTLs explained 31.7% of the variation, and their interaction explained another 4.6%. Thus, nonhost resistance to wheat stem rust in B. distachyon is genetically complex, with both major and minor QTLs acting additively and, in some cases, interacting. These findings will guide future research to identify genes essential to nonhost resistance to wheat stem rust.


Subject(s)
Basidiomycota , Brachypodium , Disease Resistance , Genome, Plant , Basidiomycota/physiology , Brachypodium/microbiology , Chromosome Mapping , Disease Resistance/genetics , Genome, Plant/genetics , Humans , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...