Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 472
Filter
1.
J Agric Food Chem ; 72(20): 11820-11835, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38710668

ABSTRACT

Physicochemical properties and protein alterations in Ovalipes punctatus during cold-chain transportation were examined via sensory scores, water-holding capacity (WHC), glucose (GLU) content, catalase (CAT) activity, urea nitrogen (UN) content, and tandem mass tag (TMT)-based proteomic analysis. The results revealed that sensory characteristics and texture of crab muscle deteriorated during transportation. Proteomic analysis revealed 442 and 470 different expressed proteins (DEPs) in crabs after 18 h (FC) and 36 h (DC) of transportation compared with live crabs (LC). Proteins related to muscle structure and amino acid metabolism significantly changed, as evidenced by the decreased WHC and sensory scores of crab muscle. Glycolysis, calcium signaling, and peroxisome pathways were upregulated in the FC/LC comparison, aligning with the changes in GLU content and CAT activity, revealing the stress response of energy metabolism and immune response in crabs during 0-18 h of transportation. The downregulated tricarboxylic acid (TCA) cycle and carcinogenesis-reactive oxygen species pathways were correlated with the decreasing trend in CAT activity, suggesting a gradual retardation in both energy and antioxidant metabolism in crabs during 18-36 h of transportation. Furthermore, the regulated purine nucleoside metabolic and nucleoside diphosphate-related processes, with the increasing changes in UN content, revealed the accumulation of metabolites in crabs.


Subject(s)
Brachyura , Muscles , Proteomics , Animals , Brachyura/metabolism , Brachyura/chemistry , Muscles/metabolism , Muscles/chemistry , Transportation , Shellfish/analysis , Cold Temperature , Tandem Mass Spectrometry , Seafood/analysis
2.
Environ Res ; 252(Pt 4): 119065, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723990

ABSTRACT

The present research study combines chitin from shrimp waste with the oxide-rich metakaolin. Metakaolin is a blend of mixed oxides rich in silica and alumina with good adsorbent properties. The chitin@metakaolin (CHt@M.K.) composite was synthesized and characterized using FTIR, SEM, TGA, XRD and XPS techniques. Cr(VI) removal studies were compared for chitin and CHt@M.K. through adsorption. It was found that the adsorption capacity of CHt@M.K. is 278.88 mg/g, almost double that of chitin, at pH 5.0 in just 120 min of adsorption. Isotherm models like Langmuir, Freundlich, Temkin and Dubinin-Radushkevich were investigated to comprehend the adsorption process. It was revealed that Langmuir adsorption isotherm is most suitable to elucidate Cr(VI) adsorption on CHt@M.K. The adsorption kinetics indicate that pseudo first order was followed, indicating that the physisorption was the process that limited the sorption process rate. The positive enthalpy change (20.23 kJ/mol) and positive entropy change (0.083 kJ/mol K) showed that the adsorption process was endothermic and more random at the solid-liquid interface. The negative free energy change over entire temperature range was an indicator of spontaneity of the process. Apart from all these, the non-covalent interactions between Cr(VI) and composite were explained by quantum calculations based models.


Subject(s)
Animal Shells , Chitin , Chromium , Water Pollutants, Chemical , Chitin/chemistry , Animals , Chromium/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Animal Shells/chemistry , Brachyura/chemistry , Kinetics
3.
Food Chem ; 449: 139263, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38657553

ABSTRACT

Crab meatballs with more unsaturated fat tend to spoil. Ginger essential oil (GEO) with oxidation resistance was encapsulated into microcapsules (GM) by complex cohesion of mung bean protein isolate (MBPI) and chitosan (CS) in a ratio of 8:1 at pH = 6.4, encapsulation efficiency (EE) and payload (PL) of GM (D50 = 26.16 ± 0.45 µm) with high thermal stability were 78.35 ± 1.02% and 55.43 ± 0.64%. GM (0.6%, w/w) did not interfere with the original flavor of crab meatballs, and lowered values of pH, thiobarbituric acid reactive substances (TBARS) and total bacteria counts (TBC) of the products than those spiked with GEO and the control. The prediction accuracy of the logistic first-order growth kinetic equation in line with TBC (2.84%) was better than that of zero-order and Arrhenius coupled equation based on pH (7.48%) and TBARS (5.94%), but all of them could predict the shelf life of crab meatballs containing GM stored at 4-25 °C.


Subject(s)
Chitosan , Drug Compounding , Food Preservation , Food Storage , Oils, Volatile , Vigna , Zingiber officinale , Chitosan/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Animals , Food Preservation/methods , Zingiber officinale/chemistry , Vigna/chemistry , Vigna/growth & development , Plant Proteins/chemistry , Brachyura/chemistry , Brachyura/microbiology , Shellfish/analysis , Shellfish/microbiology
4.
Food Chem ; 451: 139429, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670016

ABSTRACT

Geographical traceability plays a crucial role in ensuring quality assurance, brand establishment, and the sustainable development of the crab industry. In this study, we examined the possibility of using gas chromatography-ion mobility spectrometry with multivariate statistical authenticity analysis to identify the origin of crabs from five sites downstream of the Yangtze River. Significant variations were observed in the levels of alcoholic flavor compounds in the hepatopancreas and muscles of crabs from different geographical locations, and a support vector machine exhibited discriminant ability with 100% accuracy. These flavor variations exhibited significant correlations with the types and concentrations of elements within the crabs, as well as with free amino acids. This study offers a practical approach for determining the geographical traceability of Chinese mitten crabs and elucidates the role of elements in flavor modulation, thereby providing innovative strategies to enhance the efficiency of crab farming.


Subject(s)
Brachyura , Shellfish , Animals , Brachyura/chemistry , Brachyura/classification , China , Shellfish/analysis , Flavoring Agents/chemistry , Flavoring Agents/analysis , Gas Chromatography-Mass Spectrometry , Quality Control , Taste , Geography , Hepatopancreas/chemistry
5.
Food Chem ; 451: 139286, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670021

ABSTRACT

The quantity of snow crabs (Chionoecetes opilio) harvested in Korea is subject to seasonal restrictions; therefore, snow crabs are imported from Russia. Metabolites in snow crabs from two geographic origins were compared. The metabolites were subjected to metabolomic analysis to prevent fraudulent sales of marine products from a particular country. Capillary electrophoresis time-of-flight mass spectrometry was used. Seventy-seven target metabolites were identified using a mass spectral library. Through orthogonal partial least squares discriminant analysis, the top 25 biomarker candidates were evaluated based on p-values and fold changes. A total of 246 peaks (187 and 59 in the cation and anion modes, respectively) were identified. Among the biomarker candidates, 2-oxovaleric acid, asymmetric dimethylarginine, hypotaurine, and allo-threonine were selected as final biomarkers to unequivocally determine the geographic origin. Overall, metabolic analyses allowed us to differentiate snow crabs from different geographic origins. This method could also be extended of other marine products.


Subject(s)
Biomarkers , Brachyura , Electrophoresis, Capillary , Metabolomics , Animals , Biomarkers/analysis , Biomarkers/metabolism , Brachyura/chemistry , Brachyura/metabolism , Brachyura/classification , Russia , Republic of Korea , Mass Spectrometry , Discriminant Analysis , Shellfish/analysis
6.
Int J Biol Macromol ; 266(Pt 2): 131047, 2024 May.
Article in English | MEDLINE | ID: mdl-38521325

ABSTRACT

This investigation aimed to scrutinize the chemical and structural analogies between chitosan extracted from crab exoskeleton (High Molecular Weight Chitosan, HMWC) and chitosan obtained from mushrooms (Mushroom-derived Chitosan, MRC), and to assess their biological functionalities. The resulting hydrolysates from the hydrolysis of HMWC by chitosanase were categorized as chitosan oligosaccharides (csCOS), while those from MRC were denoted as mrCOS. The molecular weights (MW) of csCOS and mrCOS were determined using Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry. Furthermore, structural resemblances of csCOS and mrCOS were assessed utilizing X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Intriguingly, no apparent structural disparity between csCOS and mrCOS was noted in terms of the glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) composition ratios. Consequently, the enzymatic activities of chitosanase for HMWC and MRC exhibited remarkable similarity. A topological examination was performed between the enzyme and the substrate to deduce the alteration in MW of COSs following enzymatic hydrolysis. Moreover, the evaluation of antioxidant activity for each COS revealed insignificance in the structural disparity between HMWC and MRC. In summary, grounded on the chemical structural similarity of HMWC and MRC, we propose the potential substitution of HMWC with MRC, incorporating diverse biological functionalities.


Subject(s)
Agaricales , Animal Shells , Brachyura , Chitosan , Molecular Weight , Chitosan/chemistry , Brachyura/chemistry , Animal Shells/chemistry , Animals , Hydrolysis , Agaricales/chemistry , Agaricales/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Molecular Structure
7.
Bol. latinoam. Caribe plantas med. aromát ; 23(1): 41-60, ene. 2024. tab, graf
Article in English | LILACS | ID: biblio-1552796

ABSTRACT

Hystrix brach yura bezoar is calcified undigested material found in the gastrointestinal tract known for various medicinal benefits including as an anticancer agent. However, the H. brachyura population has been declining due to its demand and is under Malaysian law pro tection. Therefore, present study aimed to identify bezoar anticancer active compounds through metabolomics and in - silico approaches. Five replicates of bezoar powder were subjected to extraction using different solvent ratios of methanol - water (100, 75, 5 0, 25, 0% v/v). Cytotoxicity and metabolite profiling using liquid chromatography - mass spectrometry were conducted. Putative compounds identified were subjected to in - silico analysis with targeted anticancer proteins namely, Bcl - 2, Cyclin B/CDK1 complex, V EGF and NM23 - H1. The correlation of LC - MS and cytotoxicity profile pinpointed two compounds, mangiferin and propafenone. In - silico study showed both compounds exerted good binding scores to all proteins with hydrophobic interaction dominating the ligand - pr otein complex binding, suggesting the ligands act as hydrophobes in the interactions.


El bezpar de Hystrix branchyura es material calcificado sin digerir encontr ados en el tracto gastrointestinal, conocido por sus variados beneficios médicos, incluyendo propiedades anticancerosas. De todas formas, la población de H. Branchyura ha ido declinando debido a su demanda y está bajo la protección de la ley de Malasia. Po r esto, este estudio busca identificar los componentes activos anticancerosos del bezoar mediante abordajes metabolómico e in silico. Cinco réplicas de polvo de bezoar fueron sometidos a extracción usando solventes con diferentes proporciones metanol - agua (100, 75, 50, 25, 0% v/v). Se hicieron perfiles de citotoxicidad y de metabolitos usando cromatografía líquida - espectrometría de masa ( LC - MS ). Se identificaron compuestos putativos yse sometieron a a nálisis in silico, buscando las proteínas anticancerosas B cl - 2, complejo Cyclin B/CDK1, VEGF, y NM23 - H1. La correlación LC - MS y el perfil de citotoxicidad identificaron dos compuestos: mangiferina y propafenona. El estudio in silico mostró que ambos compuestos tenían buenos índices de enlace con todas las proteín as con interacción hidrofóbica dominando el enlace complejo proteína - ligando, sugeriendo que los ligandos actúan como hidrófobos en las interacciones


Subject(s)
Bezoars/metabolism , Brachyura/chemistry , Bezoars/drug therapy , Liquid Chromatography-Mass Spectrometry , Neoplasms/drug therapy
8.
Mar Pollut Bull ; 198: 115862, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38041886

ABSTRACT

This study investigates the concentration of metals in the different developmental phases of the gonads of Ucides cordatus from mangrove areas of Vila do Bacuriteua on the Bragança Peninsula, Caeté-Taperaçu Marine Extractive Reserve, state of Pará, on the Brazilian Amazon coast. Elemental analysis was determined by inductively coupled plasma optical emission spectrometry (ECP-OES). Metal concentration in males ranged from Cd = 0.04 to Cu = 2.27 mg kg-1 ww in the Developing and Developed gonadal stages, respectively. In females it was from Cd = 0.11 to Cu = 8.43 mg kg-1 ww only in the Developed stage). The elements Cr and Pb, for both sexes, presented concentrations above the limits allowed by the Brazilian regulatory body and only Pb by the international agencies, revealing a higher degree of contamination of these metals in the gonads of the mangrove crabs. Increasing mangrove crab consumption amplifies the risks of metal contamination among the human population and may cause public health problems.


Subject(s)
Brachyura , Metals, Heavy , Water Pollutants, Chemical , Male , Humans , Animals , Female , Brachyura/chemistry , Cadmium/analysis , Lead/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Biomarkers/analysis , Metals, Heavy/analysis
9.
Food Res Int ; 175: 113758, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128998

ABSTRACT

The objective of this study was to compare the effect of freezing and heating treatment sequences on the biochemical properties and flavor of crab (Portunus trituberculatus) meat during freeze-thaw cycles. The results showed that pH, color, K and microstructure changes in the H-F group were not significant with increasing number of freeze-thaw cycles, but TVB-N values increased and WHC values decreased. However, with the increase in the number of freeze-thaw cycles, pH and WHC significantly decreased and TVB-N, L* and K values significantly increased in the C and F-H groups. Proteins were degraded in all groups, but the lower degree of degradation occurred in the H-F group. Although the total free amino acid content decreased with increasing number of freeze-thaw cycles in each group, the high content of AMP and IMP in the H-F group suggested that it still had a better flavor.


Subject(s)
Brachyura , Animals , Freezing , Brachyura/chemistry , Swimming , Heating , Meat/analysis
10.
Mar Pollut Bull ; 196: 115638, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37839132

ABSTRACT

We studied the depuration mechanisms of metals (Cd, Cu, Pb, Zn, Mn, Ni, Cr, Fe) in Neohelice granulata, from sites with different human impacts (PC, a more impacted site and VM, a less impacted one). Our objectives included assessing metal concentrations (essential and non-essential) before and after depuration treatment, evaluating biochemical biomarkers (non-enzymatic and enzymatic) pre and post-treatment, and determining the role of metal-rich granules (MRG) in depuration. We observed variability in metals and biomarkers post-depuration, with no significant differences observed in PC, while Cd and Mn increased and Ni, Cu, and Fe decreased in VM. Integrated biomarkers' response indicated the prevailing antioxidant capacity in depurated organisms. Lipid peroxidation changes were insignificant, except in depurated-VM where values increased. MRG showed a significant decrease only for Mn and Fe, suggesting they were not the primary depuration structure. We concluded that depuration might depend on the species, gender and contamination history.


Subject(s)
Brachyura , Metals, Heavy , Water Pollutants, Chemical , Animals , Humans , Metals, Heavy/analysis , Brachyura/chemistry , Cadmium , Bioaccumulation , Water Pollutants, Chemical/analysis , Environmental Monitoring , Biomarkers
11.
Mar Drugs ; 21(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37367691

ABSTRACT

Green extraction methods using a combination of mechanical, enzymatic, and green chemical treatments were evaluated for the sequential extraction of carotenoid pigments, protein, and chitin from crab processing discards. Key objectives included avoiding the use of hazardous chemical solvents, conducting as close to a 100% green extraction as possible, and developing simple processes to facilitate implementation into processing plants without the need for complicated and expensive equipment. Three crab bio-products were obtained: pigmented vegetable oil, pigmented protein powder, and chitin. Carotenoid extractions were performed using vegetable oils (corn, canola, and sunflower oils), giving between 24.85% and 37.93% astaxanthin recovery. Citric acid was used to demineralize the remaining material and afforded a pigmented protein powder. Three different proteases were used to deproteinate and isolate chitin in yields between 17.06% and 19.15%. The chitin was still highly colored and therefore decolorization was attempted using hydrogen peroxide. Characterization studies were conducted on each of the crab bio-products isolated including powder X-ray diffraction analysis on the chitin (80.18% crystallinity index, CI, achieved using green methods). Overall, three valuable bio-products could be obtained but further research is needed to obtain pigment-free chitin in an environmentally friendly manner.


Subject(s)
Brachyura , Animals , Brachyura/chemistry , Powders , Proteins , Peptide Hydrolases , Chitin/chemistry
12.
Sci Rep ; 13(1): 8502, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231086

ABSTRACT

The study investigates some biological indices and chemical compositions of Callinectes amnicola and their potential for reuse in the context of the circular economy paradigm. The total of 322 mixed-sex C. amnicola collected over a period of six months was examined. The morphometric and meristic characteristics were estimated for biometric assessment. The gonads were obtained from the female crabs for gonadosomatic indices. The shell was obtained using the hand removal technique by detaching it from the crab body. The edible and shell portions were processed separately and subjected to chemical analysis. Our findings showed that females had the highest sex ratio across the six months. The slope values (b) for both sexes exhibited negative allometric growth across all months since the slope values obtained were less than 3 (b < 3). The values obtained for Fulton's condition factor (K) of crabs in all examined months were greater than 1. The edible portion had the highest moisture level at 62.57 ± 2.16% and varied significantly (P < 0.05). The high amount of total ash obtained in the shell sample showed that ash is the main mineral present in crab shells and showed a significant difference (P < 0.05). The shell sample had the highest concentrations of Na and CaCO3. Based on the findings of this study, it was observed that the shell waste contains some essential and transitional minerals (Ca, CaCO3, Na, and Mg) and can be utilized as catalysts in several local and industrial applications, such as pigments, adsorbents, therapeutics, livestock feeds, biomedical industries, liming, fertilization, and so on. Proper valorization of this shell waste should be encouraged rather than discarding it.


Subject(s)
Brachyura , Exoskeleton Device , Gastropoda , Animals , Male , Female , Brachyura/chemistry , Biometry
13.
Biotechnol Appl Biochem ; 70(3): 1421-1434, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36807387

ABSTRACT

The purpose of this article is to design a green and comprehensive utilization process for preparing chitosan from crab shells. Glutamate acid was used as a decalcifying agent for crab shells, and the mixed solution of potassium hydroxide/isopropanol was used for deproteinization and deacetylation to prepare chitosan. Glutamic acid and isopropanol could be recovered for recycling. At the same time, calcium carbonate and protein in crab shells were converted into calcium hydrogen phosphate and compound fertilizer containing nitrogen, phosphorus, and potassium, respectively. The prepared chitosan was characterized by Fourier-transform infrared (FT-IR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), and scanning electron microscopy (SEM), and its deacetylation degree and viscosity average molecular weight were 88.7% ± 0.68% and 792.1 ± 10.82 kDa, respectively. The recoveries of glutamic acid and isopropanol were 95.56% ± 1.39% and 88.14% ± 1.13%, respectively. The prepared chitosan has large molecular weight and deacetylation degree, controllable production cost, comprehensive utilization of crab shell components, and greatly reduced waste emissions.


Subject(s)
Brachyura , Chitosan , Animals , Chitosan/chemistry , Brachyura/chemistry , Brachyura/metabolism , Glutamic Acid/metabolism , Spectroscopy, Fourier Transform Infrared , 2-Propanol/metabolism , X-Ray Diffraction
14.
Mar Pollut Bull ; 185(Pt A): 114253, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36279728

ABSTRACT

This study analyzed the cadmium accumulation differences in edible tissues of the swimming crabs (Portunus trituberculatus) from Shanghai markets, which were mostly caught in the East China Sea, and the human health risk of cadmium from crabs consumption was evaluated. A total of 78 swimming crabs were collected, and the white meat and brown meat were separated for the cadmium analysis by Inductively coupled plasma mass spectrometry. The results revealed that there was difference in cadmium content in brown meat (1.260-16.303 mg/kg) and white meat (0.005-0.542 mg/kg). Furthermore, pollution index (Pi) results showed that only the claw muscle was at low contamination levels, while other edible tissues had varying degrees of contamination. Based on the health risk assessment by estimated daily intake (EDI), target hazard quotient (THQ) and target cancer risk (TCR), the consumption of the swimming crabs in Shanghai is considered safe, however, the accumulation of cadmium in the brown meat of swimming crabs deserves further attention and evaluation.


Subject(s)
Brachyura , Animals , Humans , Brachyura/chemistry , Cadmium , Swimming , China , Risk Assessment
15.
J Agric Food Chem ; 70(38): 12189-12202, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36110087

ABSTRACT

Tropomyosin (Scy p 1) and myosin light chain (Scy p 3) are investigated to be important heat-stable allergens in Scylla paramamosain. However, the epitopes of Scy p 1 and Scy p 3 are limited. In this study, recombinant Scy p 1 and Scy p 3 had similar IgE-binding capacity to natural proteins. Mimotopes of Scy p 1 and Scy p 3 were analyzed by bioinformatics, phage display, and one-bead-one-compound technology. Ten linear epitopes of Scy p 1 and seven linear epitopes of Scy p 3 were identified by synthetic peptides and inhibition dot blot. Meanwhile, three conformational epitopes of Scy p 1 and seven conformational epitopes of Scy p 3 were verified by site-directed mutagenesis and the serological test. Furthermore, strong IgE-binding epitopes of Scy p 1 and Scy p 3 were conserved in multiple crustaceans. Overall, these epitopes could enhance our understanding of crab allergens, which lay the foundation for a cross-reaction.


Subject(s)
Allergens , Brachyura , Allergens/chemistry , Amino Acid Sequence , Animals , Brachyura/chemistry , Epitopes/chemistry , Hot Temperature , Immunoglobulin E , Myosin Light Chains , Peptides/metabolism , Tropomyosin/genetics
16.
Bioorg Chem ; 127: 106023, 2022 10.
Article in English | MEDLINE | ID: mdl-35853295

ABSTRACT

Diseases emerging from oxidative stress and inflammatory imbalance are deeply threatening the modern world. Fisheries by-products are rich in bioactive metabolites. However, they are usually discarded, posing a real environmental burden. Herein we aimed to explore the bioactive compounds, anti-oxidant, and anti-inflammatory capabilities of the shell of the freshwater Nile crab Potamonautes niloticus. Methanolic extract of crab shell was subjected to GC/MS and HPLC analyses of total lipids, flavonoids, and phenolic acids. Also, zebrafish Danio rerio was subjected to inflammatory status using CuSO4, then treated with different doses of shell extract. Total antioxidant capacity and QPCR analyses for gene expression of different antioxidant enzymes, i.e. superoxide dismutase(sod), catalase (cat), and glutathione peroxidase (gpx) and pro-inflammatory cytokines, i.e. tumor necrosis factor alpha (tnf-α), nuclear factor kappa B (nf-κb), interleukin 1-Beta (il-1b) were assessed. The results showed the richness of crab shell extract with ω - 9 (32.78 %), ω - 7 (6.37 %), and ω - 6 (4 %) unsaturated fatty acids. Diverse phenolic acids and flavonoids were found, dominaed by Benzoic acid (11.24 µg mL-1), Syringic acid (11.4 µg mL-1), Ferulic acid (10.55 µg mL-1), Kampferol (9.47 µg mL-1), Quercetin (6.33 µg mL-1), and Naringin (4.16 µg mL-1). Crab extract also increased the total antioxidant capacity and oxidative stress enzymes mRNA levels by 1.3-2.15 folds. It down-regulated pro-inflammatory cytokines mRNA levels by 1.3-2 folds in comparison to positive control (CuSO4-induced) zebrafishes. The net results indicated that Nile crab shell extract is a rich source of anti-oxidant and anti-inflammatory compounds. Therefore, we recommend to continuously explore the bioactive capabilities of exoskeletons of different shellfish species. This can provide additive values for these products and reduce the environmental burden of their irresponsible discarding.


Subject(s)
Antioxidants , Brachyura , Animals , Anti-Inflammatory Agents/chemistry , Antioxidants/therapeutic use , Brachyura/chemistry , Brachyura/metabolism , Cytokines/metabolism , Flavonoids/pharmacology , Oxidative Stress , RNA, Messenger/metabolism , Zebrafish/metabolism
17.
Microb Cell Fact ; 21(1): 141, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842620

ABSTRACT

BACKGROUND: There are substantial environmental and health risks associated with the seafood industry's waste of crab shells. In light of these facts, shellfish waste management is critical for environmental protection against hazardous waste produced from the processing industries. Undoubtedly, improved green production strategies, which are based on the notion of "Green Chemistry," are receiving a lot of attention. Therefore, this investigation shed light on green remediation of the potential hazardous crab shell waste for eco-friendly production of bacterial alkaline phosphatase (ALP) through bioprocessing development strategies. RESULTS: It was discovered that by utilizing sequential statistical experimental designs, commencing with Plackett-Burman design and ending with spherical central composite design, and then followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, an innovative medium formulation could be developed that boosted ALP production from Bacillus licheniformis strain ALP3 to 212 U L-1. The highest yield of ALP was obtained after 22 h of incubation time with yield coefficient Yp/s of 795 U g-1, which was 4.35-fold higher than those obtained in the shake-flask system. ALP activity has a substantial impact on the volatilization of crab shell particles, as shown by the results of several analytical techniques such as atomic absorption spectrometry, TGA, DSC, EDS, FTIR, and XRD. CONCLUSIONS: We highlighted in the current study that the biovalorization of crab shell waste and the production of cost-effective ALP were being combined and that this was accomplished via the use of a new and innovative medium formulation design for seafood waste management as well as scaling up production of ALP on the bench-top scale.


Subject(s)
Brachyura , Waste Management , Alkaline Phosphatase , Animals , Brachyura/chemistry , Fermentation , Seafood
18.
Article in English | MEDLINE | ID: mdl-35565023

ABSTRACT

Aquatic ecosystems are severely threatened by the presence of a multitude of pollutants. In seas and oceans, the amount of plastics continues to increase and there is great concern about toxic element accumulation. Specifically, cadmium (Cd), a toxic metal, is highly relevant to public health safety due to its ability to accumulate in the internal tissues of crustaceans; likewise, microplastics (MPs) are emerging as pollutants capable of causing alterations in marine organisms. The aim of this study was thus to evaluate the accumulation and distribution of Cd in the tissue of blue crabs (Callinectes sapidus) chronically exposed to MPs (25 µg L-1). In total, 24 crabs were exposed in water for 118 days to 2 types of MPs (virgin and oxidised). During the final 21 days of the experiment, the crabs were fed with tuna liver, a viscera in which Cd accumulates (mean of 7.262 µg g-1). The presence of MPs caused no changes in Cd concentrations in either the haemolymph or tissues (hepatopancreas, gills, and muscles) of the crabs, although for oxidised MPs, there was a positive correlation between Cd concentrations in the hepatopancreas and muscles, a relevant finding for food safety.


Subject(s)
Brachyura , Water Pollutants, Chemical , Animals , Brachyura/chemistry , Cadmium/analysis , Ecosystem , Gills , Microplastics , Plastics/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
Environ Toxicol Pharmacol ; 90: 103810, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35033685

ABSTRACT

Metals accumulating in mud crab from Indonesia's East Java estuaries have been assessed for potential health effects. Mud crabs from the Solo River estuary (JS) had the highest levels of all metals tested when compared to mud crabs from the Brantas River estuary (MS) and the Banyuwangi coastal area (BS). Metal accumulation in mud crabs occurred in the following order: Zn > Cu > Cr > Pb > Cd > Hg. The estimated weekly intake values for all metals from all stations were less than the provisional tolerable weekly intake requirement. Similarly, all metal target hazard quotient values from all stations were less than one, suggesting that all metals were within the allowable intake limit. The target cancer risk values for Cd and Cr, on the other hand, were somewhat higher than 10-4, indicating that they were dangerous for human ingestion and possibly linked to a risk associated with carcinogenic agent exposure over a lifetime.


Subject(s)
Brachyura/chemistry , Food Contamination/analysis , Metals, Heavy/analysis , Animals , Cadmium/analysis , Carcinogens/analysis , Chromium/analysis , Environmental Monitoring , Estuaries , Indonesia , Risk Assessment , Shellfish/analysis
20.
Environ Toxicol Chem ; 41(2): 474-482, 2022 02.
Article in English | MEDLINE | ID: mdl-34913519

ABSTRACT

Postecdysial mineralization in crustaceans involves the deposition of carbonate salts, such as calcium carbonate, to the organic matrix. Because of the resemblance between Pb2+ and Ca2+ , the present study was carried out to investigate whether Pb is incorporated into the new shell during postecdysial mineralization using the blue crab (Callinectes sapidus) as the model crustacean. It was hypothesized that injected Pb would be deposited in the shell via calcium transporters in the epidermis during the mineralization process. Postecdysial blue crabs were injected with two doses of 5 µg Pb/g wet weight each in lead acetate, and then Pb, Ca, and Mg contents were analyzed in the exoskeleton, while only Pb bioaccumulation was quantified for the hepatopancreas, gills, muscles, and hemolymph. The results showed a statistically nonsignificant increase in exoskeletal Pb content in Pb-treated crabs compared to control, suggesting that exoskeletal Pb may not be a sensitive proxy for aquatic Pb pollution. There was a significant decrease in Ca content in Pb-treated crabs, suggesting that Pb hindered the deposition of Ca to crab exoskeleton, thereby obstructing calcification. A trend of a decrease in exoskeletal Mg was also observed in Pb-treated crabs. There was a significant increase in Pb content found in the gills, hepatopancreas, muscle, and hemolymph in Pb-treated crabs. The rank of the Pb level among three soft tissues in a decreasing order is hepatopancreas > gill > muscle. This is the first study to present evidence that Pb disrupts postecdysial exoskeletal calcification in a crustacean. Environ Toxicol Chem 2022;41:474-482. © 2021 SETAC.


Subject(s)
Brachyura , Animals , Brachyura/chemistry , Gills , Hemolymph , Hepatopancreas , Lead/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...