Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 389
Filter
1.
Bioresour Technol ; 404: 130918, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823562

ABSTRACT

Symbiosis between Glycine max and Bradyrhizobium diazoefficiens were used as a model system to investigate whether biohydrogen utilization promotes the transformation of the tetrachlorobiphenyl PCB77. Both a H2 uptake-positive (Hup+) strain (wild type) and a Hup- strain (a hupL deletion mutant) were inoculated into soybean nodules. Compared with Hup- nodules, Hup+ nodules increased dechlorination significantly by 61.1 % and reduced the accumulation of PCB77 in nodules by 37.7 % (p < 0.05). After exposure to nickel, an enhancer of uptake hydrogenase, dechlorination increased significantly by 2.2-fold, and the accumulation of PCB77 in nodules decreased by 54.4 % (p < 0.05). Furthermore, the tetrachlorobiphenyl transformation in the soybean root nodules was mainly testified to be mediated by nitrate reductase (encoded by the gene NR) for tetrachlorobiphenyl dechlorination and biphenyl-2,3-diol 1,2-dioxygenase (bphC) for biphenyl degradation. This study demonstrates for the first time that biohydrogen utilization has a beneficial effect on tetrachlorobiphenyl biotransformation in a legume-rhizobium symbiosis.


Subject(s)
Glycine max , Hydrogen , Polychlorinated Biphenyls , Symbiosis , Polychlorinated Biphenyls/metabolism , Symbiosis/physiology , Glycine max/metabolism , Glycine max/microbiology , Hydrogen/metabolism , Rhizobium/physiology , Biotransformation , Bradyrhizobium/metabolism , Bradyrhizobium/physiology , Biodegradation, Environmental
2.
Commun Biol ; 7(1): 644, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802699

ABSTRACT

The post-translational modification of proteins by ubiquitin-like modifiers (UbLs), such as SUMO, ubiquitin, and Nedd8, regulates a vast array of cellular processes. Dedicated UbL deconjugating proteases families reverse these modifications. During bacterial infection, effector proteins, including deconjugating proteases, are released to disrupt host cell defenses and promote bacterial survival. NopD, an effector protein from rhizobia involved in legume nodule symbiosis, exhibits deSUMOylation activity and, unexpectedly, also deubiquitination and deNeddylation activities. Here, we present two crystal structures of Bradyrhizobium (sp. XS1150) NopD complexed with either Arabidopsis SUMO2 or ubiquitin at 1.50 Å and 1.94 Å resolution, respectively. Despite their low sequence similarity, SUMO and ubiquitin bind to a similar NopD interface, employing a unique loop insertion in the NopD sequence. In vitro binding and activity assays reveal specific residues that distinguish between deubiquitination and deSUMOylation. These unique multifaceted deconjugating activities against SUMO, ubiquitin, and Nedd8 exemplify an optimized bacterial protease that disrupts distinct UbL post-translational modifications during host cell infection.


Subject(s)
Bacterial Proteins , Bradyrhizobium , Ubiquitin , Bradyrhizobium/metabolism , Bradyrhizobium/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Ubiquitin/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/microbiology , Arabidopsis/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Crystallography, X-Ray , Protein Processing, Post-Translational , Ubiquitins/metabolism , Ubiquitins/genetics , Protein Binding
3.
Mol Microbiol ; 121(6): 1217-1227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725184

ABSTRACT

The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.


Subject(s)
5' Untranslated Regions , Bacterial Proteins , Bradyrhizobium , Gene Expression Regulation, Bacterial , Operon , RNA-Binding Proteins , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Operon/genetics , 5' Untranslated Regions/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Heme/metabolism , Promoter Regions, Genetic , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Protein Binding
4.
Environ Microbiol Rep ; 16(3): e13271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692852

ABSTRACT

Tuber magnatum is the most expensive truffle, but its large-scale cultivation is still a challenge compared to other valuable Tuber species. T. magnatum mycelium has never been grown profitably until now, which has led to difficulties to studying it in vitro. This study describes beneficial interactions between T. magnatum mycelium and never before described bradyrhizobia, which allows the in vitro growth of T. magnatum mycelium. Three T. magnatum strains were co-isolated on modified Woody Plant Medium (mWPM) with aerobic bacteria and characterised through microscopic observations. The difficulties of growing alone both partners, bacteria and T. magnatum mycelium, on mWPM demonstrated the reciprocal dependency. Three bacterial isolates for each T. magnatum strain were obtained and molecularly characterised by sequencing the 16S rRNA, glnII, recA and nifH genes. Phylogenetic analyses showed that all nine bacterial strains were distributed among five subclades included in a new monophyletic lineage belonging to the Bradyrhizobium genus within the Bradyrhizobium jicamae supergroup. The nifH genes were detected in all bacterial isolates, suggesting nitrogen-fixing capacities. This is the first report of consistent T. magnatum mycelium growth in vitro conditions. It has important implications for the development of new technologies in white truffle cultivation and for further studies on T. magnatum biology and genetics.


Subject(s)
Bradyrhizobium , Mycelium , Phylogeny , RNA, Ribosomal, 16S , Bradyrhizobium/genetics , Bradyrhizobium/classification , Bradyrhizobium/isolation & purification , Bradyrhizobium/physiology , Bradyrhizobium/growth & development , Bradyrhizobium/metabolism , Mycelium/growth & development , RNA, Ribosomal, 16S/genetics , Nitrogen Fixation , DNA, Bacterial/genetics , Symbiosis
6.
Antonie Van Leeuwenhoek ; 117(1): 69, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647727

ABSTRACT

A novel bacterial symbiont, strain A19T, was previously isolated from a root-nodule of Aeschynomene indica and assigned to a new lineage in the photosynthetic clade of the genus Bradyrhizobium. Here data are presented for the detailed genomic and taxonomic analyses of novel strain A19T. Emphasis is placed on the analysis of genes of practical or ecological significance (photosynthesis, nitrous oxide reductase and nitrogen fixation genes). Phylogenomic analysis of whole genome sequences as well as 50 single-copy core gene sequences placed A19T in a highly supported lineage distinct from described Bradyrhizobium species with B. oligotrophicum as the closest relative. The digital DNA-DNA hybridization and average nucleotide identity values for A19T in pair-wise comparisons with close relatives were far lower than the respective threshold values of 70% and ~ 96% for definition of species boundaries. The complete genome of A19T consists of a single 8.44 Mbp chromosome and contains a photosynthesis gene cluster, nitrogen-fixation genes and genes encoding a complete denitrifying enzyme system including nitrous oxide reductase implicated in the reduction of N2O, a potent greenhouse gas, to inert dinitrogen. Nodulation and type III secretion system genes, needed for nodulation by most rhizobia, were not detected. Data for multiple phenotypic tests complemented the sequence-based analyses. Strain A19T elicits nitrogen-fixing nodules on stems and roots of A. indica plants but not on soybeans or Macroptilium atropurpureum. Based on the data presented, a new species named Bradyrhizobium ontarionense sp. nov. is proposed with strain A19T (= LMG 32638T = HAMBI 3761T) as the type strain.


Subject(s)
Bradyrhizobium , Genome, Bacterial , Nitrogen Fixation , Oxidoreductases , Photosynthesis , Phylogeny , Symbiosis , Bradyrhizobium/genetics , Bradyrhizobium/classification , Bradyrhizobium/metabolism , Bradyrhizobium/isolation & purification , Oxidoreductases/genetics , Oxidoreductases/metabolism , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology
7.
BMC Microbiol ; 24(1): 129, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643099

ABSTRACT

The α-Proteobacteria belonging to Bradyrhizobium genus are microorganisms of extreme slow growth. Despite their extended use as inoculants in soybean production, their physiology remains poorly characterized. In this work, we produced quantitative data on four different isolates: B. diazoefficens USDA110, B. diazoefficiens USDA122, B. japonicum E109 and B. japonicum USDA6 which are representative of specific genomic profiles. Notably, we found conserved physiological traits conserved in all the studied isolates: (i) the lag and initial exponential growth phases display cell aggregation; (ii) the increase in specific nutrient concentration such as yeast extract and gluconate hinders growth; (iii) cell size does not correlate with culture age; and (iv) cell cycle presents polar growth. Meanwhile, fitness, cell size and in vitro growth widely vary across isolates correlating to ribosomal RNA operon number. In summary, this study provides novel empirical data that enriches the comprehension of the Bradyrhizobium (slow) growth dynamics and cell cycle.


Subject(s)
Bradyrhizobium , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Glycine max , Cell Physiological Phenomena , Phenotype , Symbiosis
8.
mBio ; 15(4): e0247823, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38445860

ABSTRACT

The symbioses between leguminous plants and nitrogen-fixing bacteria known as rhizobia are well known for promoting plant growth and sustainably increasing soil nitrogen. Recent evidence indicates that hopanoids, a family of steroid-like lipids, promote Bradyrhizobium symbioses with tropical legumes. To characterize hopanoids in Bradyrhizobium symbiosis with soybean, we validated a recently published cumate-inducible hopanoid mutant of Bradyrhizobium diazoefficiens USDA110, Pcu-shc::∆shc. GC-MS analysis showed that this strain does not produce hopanoids without cumate induction, and under this condition, is impaired in growth in rich medium and under osmotic, temperature, and pH stress. In planta, Pcu-shc::∆shc is an inefficient soybean symbiont with significantly lower rates of nitrogen fixation and low survival within the host tissue. RNA-seq revealed that hopanoid loss reduces the expression of flagellar motility and chemotaxis-related genes, further confirmed by swim plate assays, and enhances the expression of genes related to nitrogen metabolism and protein secretion. These results suggest that hopanoids provide a significant fitness advantage to B. diazoefficiens in legume hosts and provide a foundation for future mechanistic studies of hopanoid function in protein secretion and motility.A major problem for global sustainability is feeding our exponentially growing human population while available arable land decreases. Harnessing the power of plant-beneficial microbes is a potential solution, including increasing our reliance on the symbioses of leguminous plants and nitrogen-fixing rhizobia. This study examines the role of hopanoid lipids in the symbiosis between Bradyrhizobium diazoefficiens USDA110, an important commercial inoculant strain, and its economically significant host soybean. Our research extends our knowledge of the functions of bacterial lipids in symbiosis to an agricultural context, which may one day help improve the practical applications of plant-beneficial microbes in agriculture.


Subject(s)
Bradyrhizobium , Fabaceae , Rhizobium , Humans , Glycine max , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Symbiosis , Root Nodules, Plant/microbiology , Fabaceae/microbiology , Nitrogen Fixation , Vegetables , Rhizobium/genetics , Rhizobium/metabolism , Nitrogen/metabolism , Lipids
9.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396833

ABSTRACT

Bradyrhizobium diazoefficiens can live inside soybean root nodules and in free-living conditions. In both states, when oxygen levels decrease, cells adjust their protein pools by gene transcription modulation. PhaR is a transcription factor involved in polyhydroxyalkanoate (PHA) metabolism but also plays a role in the microaerobic network of this bacterium. To deeply uncover the function of PhaR, we applied a multipronged approach, including the expression profile of a phaR mutant at the transcriptional and protein levels under microaerobic conditions, and the identification of direct targets and of proteins associated with PHA granules. Our results confirmed a pleiotropic function of PhaR, affecting several phenotypes, in addition to PHA cycle control. These include growth deficiency, regulation of carbon and nitrogen allocation, and bacterial motility. Interestingly, PhaR may also modulate the microoxic-responsive regulatory network by activating the expression of fixK2 and repressing nifA, both encoding two transcription factors relevant for microaerobic regulation. At the molecular level, two PhaR-binding motifs were predicted and direct control mediated by PhaR determined by protein-interaction assays revealed seven new direct targets for PhaR. Finally, among the proteins associated with PHA granules, we found PhaR, phasins, and other proteins, confirming a dual function of PhaR in microoxia.


Subject(s)
Bradyrhizobium , Polyhydroxyalkanoates , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Polyhydroxyalkanoates/metabolism , Gene Expression Regulation, Bacterial
10.
Appl Environ Microbiol ; 90(2): e0137423, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38251894

ABSTRACT

The acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR quorum sensing (QS) system orchestrates diverse bacterial behaviors in response to changes in population density. The role of the BjaI/BjaR1 QS system in Bradyrhizobium diazoefficiens USDA 110, which shares homology with LuxI/LuxR, remains elusive during symbiotic interaction with soybean. Here this genetic system in wild-type (WT) bacteria residing inside nodules exhibited significantly reduced activity compared to free-living cells, potentially attributed to soybean-mediated suppression. The deletion mutant strain ΔbjaR1 showed significantly enhanced nodulation induction and nitrogen fixation ability. Nevertheless, its ultimate symbiotic outcome (plant dry weight) in soybeans was compromised. Furthermore, comparative analysis of the transcriptome, proteome, and promoter activity revealed that the inactivation of BjaR1 systematically activated and inhibited genomic modules associated with nodulation and nitrogen metabolism. The former appeared to be linked to a significant decrease in the expression of NodD2, a key cell-density-dependent repressor of nodulation genes, while the latter conferred bacterial growth and nitrogen fixation insensitivity to environmental nitrogen. In addition, BjaR1 exerted a positive influence on the transcription of multiple genes involved in a so-called central intermediate metabolism within the nodule. In conclusion, our findings highlight the crucial role of the BjaI/BjaR1 QS circuit in positively regulating bacterial nitrogen metabolism and emphasize the significance of the soybean-mediated suppression of this genetic system for promoting efficient symbiotic nitrogen fixation by B. diazoefficiens.IMPORTANCEThe present study demonstrates, for the first time, that the BjaI/BjaR1 QS system of Bradyrhizobium diazoefficiens has a significant impact on its nodulation and nitrogen fixation capability in soybean by positively regulating NodD2 expression and bacterial nitrogen metabolism. Moreover, it provides novel insights into the importance of suppressing the activity of this QS circuit by the soybean host plant in establishing an efficient mutual relationship between the two symbiotic partners. This research expands our understanding of legumes' role in modulating symbiotic nitrogen fixation through rhizobial QS-mediated metabolic functioning, thereby deepening our comprehension of symbiotic coevolution theory. In addition, these findings may hold great promise for developing quorum quenching technology in agriculture.


Subject(s)
Bradyrhizobium , Glycine max , Quorum Sensing/physiology , Nitrogen Fixation , Symbiosis/physiology , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Trans-Activators/metabolism , Nitrogen/metabolism
11.
Mol Microbiol ; 121(1): 85-97, 2024 01.
Article in English | MEDLINE | ID: mdl-38038163

ABSTRACT

Bacterial iron export mitigates high iron stress, but a role for it under lower iron conditions has not been established. MbfA is the high iron stress exporter in Bradyrhizobium japonicum. Here, we identify the ihpABC genes in a selection for secondary site mutations that suppress the poor growth phenotype of feoAB mutants defective in iron acquisition. IhpABC belongs to the RND tripartite efflux pump family. High iron conditions that derepress the mbfA gene partially rescued the growth of an ihpC mutant but reverted the feoB ihpC mutant to the feoB growth phenotype. The ihpA mutant grown under low iron conditions accumulated higher levels of iron compared to the wild type, and it displayed aberrant iron-responsive gene expression. The mbfA mutant was more sensitive than the wild type to H2 O2 , but the ihpA mutant was not sensitive. The ihpA mutant accumulated more Zn, Co and Cd than was found in the wild type, and growth of the mutant was more sensitive to inhibition by ZnCl2 , CoCl2 and CdCl2 . The findings suggest that IhpABC is a divalent metal ion exporter that helps maintain iron homeostasis under low to moderate environmental iron levels. Thus, iron export is not limited to managing high iron stress.


Subject(s)
Bradyrhizobium , Iron , Iron/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Homeostasis , Gene Expression Regulation, Bacterial/genetics
12.
Sci Rep ; 13(1): 18862, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914789

ABSTRACT

N2O is an important greenhouse gas influencing global warming, and agricultural land is the predominant (anthropogenic) source of N2O emissions. Here, we report the high N2O-reducing activity of Bradyrhizobium ottawaense, suggesting the potential for efficiently mitigating N2O emission from agricultural lands. Among the 15 B. ottawaense isolates examined, the N2O-reducing activities of most (13) strains were approximately five-fold higher than that of Bradyrhizobium diazoefficiens USDA110T under anaerobic conditions. This robust N2O-reducing activity of B. ottawaense was confirmed by N2O reductase (NosZ) protein levels and by mitigation of N2O emitted by nodule decomposition in laboratory system. While the NosZ of B. ottawaense and B. diazoefficiens showed high homology, nosZ gene expression in B. ottawaense was over 150-fold higher than that in B. diazoefficiens USDA110T, suggesting the high N2O-reducing activity of B. ottawaense is achieved by high nos expression. Furthermore, we examined the nos operon transcription start sites and found that, unlike B. diazoefficiens, B. ottawaense has two transcription start sites under N2O-respiring conditions, which may contribute to the high nosZ expression. Our study indicates the potential of B. ottawaense for effective N2O reduction and unique regulation of nos gene expression towards the high performance of N2O mitigation in the soil.


Subject(s)
Bradyrhizobium , Nitrous Oxide , Nitrous Oxide/analysis , Oxidoreductases/genetics , Oxidoreductases/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Soil , Gene Expression , Soil Microbiology , Denitrification
13.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37573143

ABSTRACT

The soybean endosymbiont Bradyrhizobium diazoefficiens harbours the complete denitrification pathway that is catalysed by a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a nitrous oxide reductase (Nos), encoded by the napEDABC, nirK, norCBQD, and nosRZDFYLX genes, respectively. Induction of denitrification genes requires low oxygen and nitric oxide, both signals integrated into a complex regulatory network comprised by two interconnected cascades, FixLJ-FixK2-NnrR and RegSR-NifA. Copper is a cofactor of NirK and Nos, but it has also a role in denitrification gene expression and protein synthesis. In fact, Cu limitation triggers a substantial down-regulation of nirK, norCBQD, and nosRZDFYLX gene expression under denitrifying conditions. Bradyrhizobium diazoefficiens genome possesses a gene predicted to encode a Cu-responsive repressor of the CsoR family, which is located adjacent to copA, a gene encoding a putative Cu+-ATPase transporter. To investigate the role of CsoR in the control of denitrification gene expression in response to Cu, a csoR deletion mutant was constructed in this work. Mutation of csoR did not affect the capacity of B. diazoefficiens to grow under denitrifying conditions. However, by using qRT-PCR analyses, we showed that nirK and norCBQD expression was much lower in the csoR mutant compared to wild-type levels under Cu-limiting denitrifying conditions. On the contrary, copA expression was significantly increased in the csoR mutant. The results obtained suggest that CsoR acts as a repressor of copA. Under Cu limitation, CsoR has also an indirect role in the expression of nirK and norCBQD genes.


Subject(s)
Bradyrhizobium , Copper , Copper/metabolism , Denitrification , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Nitrates/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
14.
Acta Crystallogr D Struct Biol ; 79(Pt 7): 632-640, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37326584

ABSTRACT

5-Nitrosalicylate 1,2-dioxygenase (5NSDO) is an iron(II)-dependent dioxygenase involved in the aerobic degradation of 5-nitroanthranilic acid by the bacterium Bradyrhizobium sp. It catalyzes the opening of the 5-nitrosalicylate aromatic ring, a key step in the degradation pathway. Besides 5-nitrosalicylate, the enzyme is also active towards 5-chlorosalicylate. The X-ray crystallographic structure of the enzyme was solved at 2.1 Šresolution by molecular replacement using a model from the AI program AlphaFold. The enzyme crystallized in the monoclinic space group P21, with unit-cell parameters a = 50.42, b = 143.17, c = 60.07 Å, ß = 107.3°. 5NSDO belongs to the third class of ring-cleaving dioxygenases. Members of this family convert para-diols or hydroxylated aromatic carboxylic acids and belong to the cupin superfamily, which is one of the most functionally diverse protein classes and is named on the basis of a conserved ß-barrel fold. 5NSDO is a tetramer composed of four identical subunits, each folded as a monocupin domain. The iron(II) ion in the enzyme active site is coordinated by His96, His98 and His136 and three water molecules with a distorted octahedral geometry. The residues in the active site are poorly conserved compared with other dioxygenases of the third class, such as gentisate 1,2-dioxygenase and salicylate 1,2-dioxygenase. Comparison with these other representatives of the same class and docking of the substrate into the active site of 5NSDO allowed the identification of residues which are crucial for the catalytic mechanism and enzyme selectivity.


Subject(s)
Bradyrhizobium , Dioxygenases , Dioxygenases/chemistry , Amino Acid Sequence , Bradyrhizobium/metabolism , Iron/chemistry , Ferrous Compounds , Crystallography, X-Ray , Substrate Specificity
15.
World J Microbiol Biotechnol ; 39(8): 219, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37269424

ABSTRACT

Compared to the well-studied model legumes, where symbiosis is established via root hair entry, the peanut is infected by Bradyrhizobium through the crack entry, which is less common and not fully understood. Crack entry is, however, considered a primitive symbiotic infection pathway, which could be potentially utilized for engineering non-legume species with nitrogen fixation ability. We utilized a fluorescence-labeled Bradyrhizobium strain to help in understanding the crack entry process at the cellular level. A modified plasmid pRJPaph-bjGFP, harboring the codon-optimized GFP gene and tetracycline resistance gene, was created and conjugated into Bradyrhizobium strain Lb8, an isolate from peanut nodules, through tri-parental mating. Microscopic observation and peanut inoculation assays confirmed the successful GFP tagging of Lb8, which is capable of generating root nodules. A marking system for peanut root potential infection sites and an optimized sample preparation protocol for cryostat sectioning was developed. The feasibility of using the GFP-tagged Lb8 for observing crack entry was examined. GFP signal was detected at the nodule primordial stage and the following nodule developmental stages with robust GFP signals observed in infected cells in the mature nodules. Spherical bacteroids in the root tissue were visualized at the nodules' inner cortex under higher magnification, reflecting the trace along the rhizobial infection path. The GFP labeled Lb8 can serve as an essential tool for plant-microbe studies between the cultivated peanut and Bradyrhizobium, which could facilitate further study of the crack entry process during the legume-rhizobia symbiosis.


Subject(s)
Bradyrhizobium , Fabaceae , Arachis , Symbiosis , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Nitrogen Fixation , Vegetables , Root Nodules, Plant/genetics
16.
Microbiol Res ; 265: 127188, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152611

ABSTRACT

Type I peanut bradyrhizobial strains can establish efficient symbiosis in contrast to symbiotic incompatibility induced by type II strains with mung bean. The notable distinction in the two kinds of key symbiosis-related regulators nolA and nodD close to the nodABCSUIJ operon region between these two types of peanut bradyrhizobia was found. Therefore, we determined whether NolA and NodD proteins regulate the symbiotic adaptations of type I strains to different hosts. We found that NodD1-NolA synergistically regulated the symbiosis between the type I strain Bradyrhizobium zhanjiangense CCBAU51778 and mung bean, and NodD1-NodD2 jointly regulated nodulation ability. In contrast, NodD1-NolA coordinately regulated nodulation ability in the CCBAU51778-peanut symbiosis. Meanwhile, NodD1 and NolA collectively contributes to competitive nodule colonization of CCBAU51778 on both hosts. The Fucosylated Nod factors and intact type 3 secretion system (T3SS), rather than extra nodD2 and full-length nolA, were critical for effective symbiosis with mung bean. Unexpectedly, T3SS-related genes were activated by NodD2 but not NodD1. Compared to NodD1 and NodD2, NolA predominantly inhibits exopolysaccharide production by promoting exoR expression. Importantly, this is the first report that NolA regulates rhizobial T3SS-related genes. The coordinated regulation and integration of different gene networks to fine-tune the expression of symbiosis-related genes and other accessory genes by NodD1-NolA might be required for CCBAU51778 to efficiently nodulate peanut. This study shed new light on our understanding of the regulatory roles of NolA and NodD proteins in symbiotic adaptation, highlighting the sophisticated gene networks dominated by NodD1-NolA.


Subject(s)
Bradyrhizobium , Fabaceae , Arachis/genetics , Arachis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Symbiosis/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
17.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563511

ABSTRACT

FixK2 is a CRP/FNR-type transcription factor that plays a central role in a sophisticated regulatory network for the anoxic, microoxic and symbiotic lifestyles of the soybean endosymbiont Bradyrhizobium diazoefficiens. Aside from the balanced expression of the fixK2 gene under microoxic conditions (induced by the two-component regulatory system FixLJ and negatively auto-repressed), FixK2 activity is posttranslationally controlled by proteolysis, and by the oxidation of a singular cysteine residue (C183) near its DNA-binding domain. To simulate the permanent oxidation of FixK2, we replaced C183 for aspartic acid. Purified C183D FixK2 protein showed both low DNA binding and in vitro transcriptional activation from the promoter of the fixNOQP operon, required for respiration under symbiosis. However, in a B. diazoefficiens strain coding for C183D FixK2, expression of a fixNOQP'-'lacZ fusion was similar to that in the wild type, when both strains were grown microoxically. The C183D FixK2 encoding strain also showed a wild-type phenotype in symbiosis with soybeans, and increased fixK2 gene expression levels and FixK2 protein abundance in cells. These two latter observations, together with the global transcriptional profile of the microoxically cultured C183D FixK2 encoding strain, suggest the existence of a finely tuned regulatory strategy to counterbalance the oxidation-mediated inactivation of FixK2 in vivo.


Subject(s)
Bradyrhizobium , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/metabolism , DNA/metabolism , Glycine max/genetics , Glycine max/metabolism , Symbiosis , Transcription Factors/genetics , Transcription Factors/metabolism
18.
BMC Microbiol ; 22(1): 122, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513812

ABSTRACT

BACKGROUND: Bradyrhizobium japonicum strain SEMIA 5079 (= CPAC 15) is a nitrogen-fixing symbiont of soybean broadly used in commercial inoculants in Brazil. Its genome has about 50% of hypothetical (HP) protein-coding genes, many in the symbiosis island, raising questions about their putative role on the biological nitrogen fixation (BNF) process. This study aimed to infer functional roles to 15 HP genes localized in the symbiosis island of SEMIA 5079, and to analyze their expression in the presence of a nod-gene inducer. RESULTS: A workflow of bioinformatics tools/databases was established and allowed the functional annotation of the HP genes. Most were enzymes, including transferases in the biosynthetic pathways of cobalamin, amino acids and secondary metabolites that may help in saprophytic ability and stress tolerance, and hydrolases, that may be important for competitiveness, plant infection, and stress tolerance. Putative roles for other enzymes and transporters identified are discussed. Some HP proteins were specific to the genus Bradyrhizobium, others to specific host legumes, and the analysis of orthologues helped to predict roles in BNF. CONCLUSIONS: All 15 HP genes were induced by genistein and high induction was confirmed in five of them, suggesting major roles in the BNF process.


Subject(s)
Bradyrhizobium , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Genistein/metabolism , Genistein/pharmacology , Genomic Islands , Nitrogen Fixation/genetics , Glycine max/genetics , Symbiosis/genetics
19.
Res Microbiol ; 173(6-7): 103952, 2022.
Article in English | MEDLINE | ID: mdl-35436545

ABSTRACT

The genome resequencing of spontaneous glyphosate-resistant mutants derived from the soybean inoculant E109 allowed identifying genes most likely associated with the uptake (gltL and cya) and metabolism (zigA and betA) of glyphosate, as well as with nitrogen fixation (nifH). Mutations in these genes reduce the lag phase and improve nodulation under glyphosate stress. In addition to providing glyphosate resistance, the amino acid exchange Ser90Ala in NifH increased the citrate synthase activity, growth rate and plant growth-promoting efficiency of E109 in the absence of glyphosate stress, suggesting roles for this site during both the free-living and symbiotic growth stages.


Subject(s)
Bradyrhizobium , Rhizobium , Alanine/metabolism , Bradyrhizobium/metabolism , Glycine/analogs & derivatives , Mutation , Nitrogen Fixation , Nitrogenase/genetics , Rhizobium/genetics , Rhizobium/metabolism , Serine/metabolism , Symbiosis , Glyphosate
20.
mBio ; 13(3): e0007422, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35416699

ABSTRACT

Root nodulating rhizobia are nearly ubiquitous in soils and provide the critical service of nitrogen fixation to thousands of legume species, including staple crops. However, the magnitude of fixed nitrogen provided to hosts varies markedly among rhizobia strains, despite host legumes having mechanisms to selectively reward beneficial strains and to punish ones that do not fix sufficient nitrogen. Variation in the services of microbial mutualists is considered paradoxical given host mechanisms to select beneficial genotypes. Moreover, the recurrent evolution of non-fixing symbiont genotypes is predicted to destabilize symbiosis, but breakdown has rarely been observed. Here, we deconstructed hundreds of genome sequences from genotypically and phenotypically diverse Bradyrhizobium strains and revealed mechanisms that generate variation in symbiotic nitrogen fixation. We show that this trait is conferred by a modular system consisting of many extremely large integrative conjugative elements and few conjugative plasmids. Their transmissibility and propensity to reshuffle genes generate new combinations that lead to uncooperative genotypes and make individual partnerships unstable. We also demonstrate that these same properties extend beneficial associations to diverse host species and transfer symbiotic capacity among diverse strains. Hence, symbiotic nitrogen fixation is underpinned by modularity, which engenders flexibility, a feature that reconciles evolutionary robustness and instability. These results provide new insights into mechanisms driving the evolution of mobile genetic elements. Moreover, they yield a new predictive model on the evolution of rhizobial symbioses, one that informs on the health of organisms and ecosystems that are hosts to symbionts and that helps resolve the long-standing paradox. IMPORTANCE Genetic variation is fundamental to evolution yet is paradoxical in symbiosis. Symbionts exhibit extensive variation in the magnitude of services they provide despite hosts having mechanisms to select and increase the abundance of beneficial genotypes. Additionally, evolution of uncooperative symbiont genotypes is predicted to destabilize symbiosis, but breakdown has rarely been observed. We analyzed genome sequences of Bradyrhizobium, bacteria that in symbioses with legume hosts, fix nitrogen, a nutrient essential for ecosystems. We show that genes for symbiotic nitrogen fixation are within elements that can move between bacteria and reshuffle gene combinations that change host range and quality of symbiosis services. Consequently, nitrogen fixation is evolutionarily unstable for individual partnerships, but is evolutionarily stable for legume-Bradyrhizobium symbioses in general. We developed a holistic model of symbiosis evolution that reconciles robustness and instability of symbiosis and informs on applications of rhizobia in agricultural settings.


Subject(s)
Bradyrhizobium , Fabaceae , Rhizobium , Bacteria/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Ecosystem , Fabaceae/microbiology , Nitrogen/metabolism , Nitrogen Fixation , Rhizobium/genetics , Rhizobium/metabolism , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...