Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.369
Filter
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 304-309, 2024 Jun 07.
Article in Chinese | MEDLINE | ID: mdl-38952318

ABSTRACT

OBJECTIVE: To investigate the development and dynamic changes of cysts in the brain of mice following infection with different forms of Toxoplasma gondii, so as to provide insights into for toxoplasmosis prevention and control. METHODS: ICR mice at ages of 6 to 8 weeks, each weighing 20 to 25 g, were intraperitoneally injected with tachyzoites of the T. gondii PRU strain at a dose of 1 × 105 tachyzoites per mouse, orally administered with cysts at a dose of 20 oocysts per mouse or oocysts at a dose of 200 oocysts per mouse for modeling chronic T. gondii infection in mice, and the clinical symptoms and survival of mice were observed post-infection. Mice were orally infected with T. gondii cysts at doses of 10 (low-dose group), 20 (medium-dose group), 40 cysts per mouse (high-dose group), and the effect of different doses of T. gondii infections on the number of cysts was examined in the mouse brain. Mice were orally administered with T. gondii cysts at a dose of 20 cysts per mouse, and grouped according to gender (female and male) and time points of infections (20, 30, 60, 90, 120, 150, 180 days post-infection), and the effects of gender and time points of infections on the number of cysts was examined in the mouse brain. In addition, mice were divided into the tachyzoite group (Group T), the first-generation cyst group (Group C1), the second-generation cyst group (Group C2), the third-generation cyst (Group C3) and the fourth-generation cyst group (Group C4). Mice in the Group T were intraperitoneally injected with T. gondii tachyzoites at a dose of 1 × 105 tachyzoites per mouse, and the cysts were collected from the mouse brain tissues 30 days post-infection, while mice in the Group C1 were orally infected with the collected cysts at a dose of 30 cysts per mouse. Continuous passage was performed by oral administration with cysts produced by the previous generation in mice, and the effect of continuous passage on the number of cysts was examined in the mouse brain. RESULTS: Following infection with T. gondii tachyzoites, cysts and oocysts in mice, obvious clinical symptoms were observed on days 6 to 13 and mice frequently died on days 7 to 12. The survival rates of mice were 67.0%, 87.0% and 53.0%, and the mean numbers of cysts were (516.0 ± 257.2), (1 203.0 ± 502.0) and (581.0 ± 183.1) in the mouse brain (F = 11.94, P < 0.01) on day 30 post-infection with T. gondii tachyzoites, cysts and oocysts, respectively, and the numbers of cysts in the brain tissues were significantly lower in mice infected with T. gondii tachyzoites and oocysts than in those infected with cysts (all P values < 0.01). The survival rates of mice were 87.0%, 87.0% and 60.0%, and the mean numbers of cysts were (953.0 ± 355.5), (1 084.0 ± 474.3) and (1 113.0 ± 546.0) in the mouse brain in the low-, medium- and high-dose groups on day 30 post-infection, respectively (F = 0.42, P > 0.05). The survival rates of male and female mice were 73.0% and 80.0%, and the mean numbers of cysts were (946.4 ± 411.4) and (932.1 ± 322.4) in the brain tissues of male and female mice, respectively (F = 1.63, P > 0.05). Following continuous passage, the mean numbers of cysts were (516.0 ± 257.2), (1 203.0 ± 502.0), (896.8 ± 332.3), (782.5 ± 423.9) and (829.2 ± 306.0) in the brain tissues of mice in the T, C1, C2, C3 and C4 groups, respectively (F = 4.82, P < 0.01), and the number of cysts was higher in the mouse brain in Group 1 than in Group T (P < 0.01). Following oral administration of 20 T. gondii cysts in mice, cysts were found in the moues brain for the first time on day 20 post-infection, and the number of cysts gradually increased over time, peaked on days 30 and 90 post-infection and then gradually decreased; however, the cysts were still found in the mouse brain on day 180 post-infection. CONCLUSIONS: There is a higher possibility of developing chronic T. gondii infection in mice following infection with cysts than with oocysts or tachyzoites and the most severe chronic infection is seen following infection with cysts. The number of cysts does not correlate with the severity of chronic T. gondii infection, and the number of cysts peaks in the mouse brain on days 30 and 90 post-infection.


Subject(s)
Brain , Mice, Inbred ICR , Toxoplasma , Toxoplasmosis, Animal , Animals , Mice , Female , Male , Brain/parasitology , Chronic Disease , Toxoplasmosis, Animal/parasitology , Toxoplasma/physiology , Toxoplasmosis/parasitology , Disease Models, Animal
2.
Diagn Pathol ; 19(1): 90, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956596

ABSTRACT

BACKGROUND: Cerebral echinococcosis is relatively rare, and it is important to distinguish cerebral cystic echinococcosis (CCE) from cerebral alveolar echinococcosis (CAE) in terms of pathological diagnosis. We aim to describe the different clinicopathological features among patients with CCE and CAE. METHODS: We collected 27 cases of cerebral echinococcosis which were diagnosed in the Department of Pathology of the First Affiliated Hospital of Xinjiang Medical University from January 1, 2012, to June 30, 2023. We compared the patients' clinical characteristics, MRI features, and pathologic manifestations of CCE and CAE. RESULTS: Among 27 cases of cerebral echinococcosis, 23 cases were CAE and 4 cases were CCE. The clinical manifestations of both CCE and CAE patients mainly included headache (21 patients, 77.78%), limb movement disorders (6 patients, 22.22%), epileptic seizures (4 patients, 14.81%) and visual disturbances (2 patients, 7.41%). The average onset age of CAE cases was 34.96 ± 11.11 years, which was 9.00 ± 7.26 years in CCE cases. All CAE patients presented with multiple involvements in the brain and extracranial organs while all CCE patients observed a solitary lesion in the brain and 3 CCE cases had no extracranial involvement. Lesions of CCE in MRI showed a single isolated circular, which was well demarcated from the surrounding tissues and with no obvious edema around the lesions, whereas CAE lesions presented as multiple intracranial lesions, with blurred edges and edema around the lesions, and multiple small vesicles could be observed in the lesions. The edge of CAE lesions could be enhanced, while CCE lesions have no obvious enhancement. CCE foci were clear cysts with a wall of about 0.1 cm. Microscopically, the walls of the cysts were characterized by an eosinophilic keratin layer, which was flanked on one side by basophilic germinal lamina cells, which were sometimes visible as protocephalic nodes. While the CAE lesion was a nodular structure with a rough and uneven nodule surface, and the cut section was cystic and solid; microscopically, the CAE lesion had areas of coagulative necrosis, and the proto-cephalic nodes were barely visible. Inflammatory cell areas consisting of macrophages, lymphocytes, epithelioid cells, plasma cells, eosinophils, and fibroblasts can be seen around the lesion. Brain tissues in the vicinity of the inflammatory cell areas may show apoptosis, degeneration, necrosis, and cellular edema, while brain tissues a little farther away from the lesion show a normal morphology. CONCLUSIONS: With the low incidence of brain echinococcosis, the diagnosis of echinococcosis and the differential diagnosis of CAE and CCE are challenging for pathologists. Grasping the different clinical pathology characteristics of CAE and CCE is helpful for pathologists to make accurate diagnoses.


Subject(s)
Echinococcosis , Humans , Adult , Male , Female , Middle Aged , China/epidemiology , Echinococcosis/pathology , Young Adult , Magnetic Resonance Imaging , Diagnosis, Differential , Brain Diseases/parasitology , Brain Diseases/pathology , Adolescent , Brain/pathology , Brain/parasitology
3.
Parasit Vectors ; 17(1): 247, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835064

ABSTRACT

BACKGROUND: The interplay between Toxoplasma gondii infection and tumor development is intriguing and not yet fully understood. Some studies showed that T. gondii reversed tumor immune suppression, while some reported the opposite, stating that T. gondii infection promoted tumor growth. METHODS: We created three mouse models to investigate the interplay between T. gondii and tumor. Model I aimed to study the effect of tumor growth on T. gondii infection by measuring cyst number and size. Models II and III were used to investigate the effect of different stages of T. gondii infection on tumor development via flow cytometry and bioluminescent imaging. Mouse strains (Kunming, BALB/c, and C57BL/6J) with varying susceptibilities to tumors were used in the study. RESULTS: The size and number of brain cysts in the tumor-infected group were significantly higher, indicating that tumor presence promotes T. gondii growth in the brain. Acute T. gondii infection, before or after tumor cell introduction, decreased tumor growth manifested by reduced bioluminescent signal and tumor size and weight. In the tumor microenvironment, CD4+ and CD8+ T cell number, including their subpopulations (cytotoxic CD8+ T cells and Th1 cells) had a time-dependent increase in the group with acute T. gondii infection compared with the group without infection. However, in the peripheral blood, the increase of T cells, including cytotoxic CD8+ T cells and Th1 cells, persisted 25 days after Lewis lung carcinoma (LLC) cell injection in the group with acute T. gondii. Chronic T. gondii infection enhanced tumor growth as reflected by increase in tumor size and weight. The LLC group with chronic T. gondii infection exhibited decreased percentages of cytotoxic CD8+ T cells and Th1 cells 25 days post-LLC injection as compared with the LLC group without T. gondii infection. At week 4 post-LLC injection, chronic T. gondii infection increased tumor formation rate [odds ratio (OR) 1.71] in both KM and BALB/c mice. CONCLUSIONS: Our research elucidates the dynamics between T. gondii infection and tumorigenesis. Tumor-induced immune suppression promoted T. gondii replication in the brain. Acute and chronic T. gondii infection had opposing effects on tumor development.


Subject(s)
Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Toxoplasma , Animals , Mice , Toxoplasma/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Female , CD8-Positive T-Lymphocytes/immunology , Brain/parasitology , Brain/pathology , Chronic Disease , Tumor Microenvironment , Neoplasms/parasitology , Acute Disease
4.
Parasites Hosts Dis ; 62(2): 169-179, 2024 May.
Article in English | MEDLINE | ID: mdl-38835258

ABSTRACT

Naegleria fowleri invades the brain and causes a fatal primary amoebic meningoencephalitis (PAM). Despite its high mortality rate of approximately 97%, an effective therapeutic drug for PAM has not been developed. Approaches with miltefosine, amphotericin B, and other antimicrobials have been clinically attempted to treat PAM, but their therapeutic efficacy remains unclear. The development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated the anti-amoebic activity of Pinus densiflora leaf extract (PLE) against N. fowleri. PLE induced significant morphological changes in N. fowleri trophozoites, resulting in the death of the amoeba. The IC50 of PLE on N. fowleri was 62.3±0.95 µg/ml. Alternatively, PLE did not significantly affect the viability of the rat glial cell line C6. Transcriptome analysis revealed differentially expressed genes (DEGs) between PLE-treated and non-treated amoebae. A total of 5,846 DEGs were identified, of which 2,189 were upregulated, and 3,657 were downregulated in the PLE-treated amoebae. The DEGs were categorized into biological process (1,742 genes), cellular component (1,237 genes), and molecular function (846 genes) based on the gene ontology analysis, indicating that PLE may have dramatically altered the biological and cellular functions of the amoeba and contributed to their death. These results suggest that PLE has anti-N. fowleri activity and may be considered as a potential candidate for the development of therapeutic drugs for PAM. It may also be used as a supplement compound to enhance the therapeutic efficacy of drugs currently used to treat PAM.


Subject(s)
Naegleria fowleri , Pinus , Plant Extracts , Plant Leaves , Naegleria fowleri/drug effects , Naegleria fowleri/genetics , Plant Extracts/pharmacology , Pinus/chemistry , Plant Leaves/chemistry , Animals , Rats , Antiprotozoal Agents/pharmacology , Cell Line , Trophozoites/drug effects , Brain/drug effects , Brain/parasitology , Brain/metabolism , Brain/pathology , Gene Expression Profiling , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Inhibitory Concentration 50 , Cell Survival/drug effects
5.
Parasites Hosts Dis ; 62(2): 243-250, 2024 May.
Article in English | MEDLINE | ID: mdl-38835265

ABSTRACT

We investigated organ specific Toxocara canis larval migration in mice infected with T. canis larvae. We observed the worm burden and systemic immune responses. Three groups of BALB/c mice (n=5 each) were orally administered 1,000 T. canis 2nd stage larvae to induce larva migrans. Mice were sacrificed at 1, 3, and 5 weeks post-infection. Liver, lung, brain, and eye tissues were collected. Tissue from 2 mice per group was digested for larval count, while the remaining 3 mice underwent histological analysis. Blood hematology and serology were evaluated and compared to that in a control uninfected group (n=5) to assess the immune response. Cytokine levels in bronchoalveolar lavage (BAL) fluid were also analyzed. We found that, 1 week post-infection, the mean parasite load in the liver (72±7.1), brain (31±4.2), lungs (20±5.7), and eyes (2±0) peaked and stayed constant until the 3 weeks. By 5-week post-infection, the worm burden in the liver and lungs significantly decreased to 10±4.2 and 9±5.7, respectively, while they remained relatively stable in the brain and eyes (18±4.2 and 1±0, respectively). Interestingly, ocular larvae resided in all retinal layers, without notable inflammation in outer retina. Mice infected with T. canis exhibited elevated levels of neutrophils, monocytes, eosinophils, and immunoglobulin E. At 5 weeks post-infection, interleukin (IL)-5 and IL-13 levels were elevated in BAL fluid. Whereas IL-4, IL-10, IL-17, and interferon-γ levels in BAL fluid were similar to that in controls. Our findings demonstrate that a small portion of T. canis larvae migrate to the eyes and brain within the first week of infection. Minimal tissue inflammation was observed, probably due to increase of anti-inflammatory cytokines. This study contributes to our understanding of the histological and immunological responses to T. canis infection in mice, which may have implications to further understand human toxocariasis.


Subject(s)
Brain , Cytokines , Larva , Liver , Lung , Mice, Inbred BALB C , Toxocara canis , Toxocariasis , Animals , Toxocara canis/immunology , Toxocariasis/immunology , Toxocariasis/pathology , Toxocariasis/parasitology , Larva/immunology , Mice , Cytokines/metabolism , Lung/parasitology , Lung/immunology , Lung/pathology , Liver/parasitology , Liver/pathology , Liver/immunology , Brain/parasitology , Brain/immunology , Brain/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/parasitology , Female , Parasite Load , Eye/parasitology , Eye/immunology , Eye/pathology , Disease Models, Animal
6.
Parasit Vectors ; 17(1): 256, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867315

ABSTRACT

BACKGROUND: Human toxocariasis is a neglected parasitic disease characterised by the syndromes visceral, cerebral, and ocular larva migrans. This disease is caused by the migrating larvae of Toxocara roundworms from dogs and cats, affecting 1.4 billion people globally. Via extracellular vesicles (EVs), microRNAs have been demonstrated to play roles in host-parasite interactions and proposed as circulating biomarkers for the diagnosis and follow-up of parasitic diseases. METHODS: Small RNA-seq was conducted to identify miRNAs in the infective larvae of T. canis and plasma EV-containing preparations of infected BALB/c mice. Differential expression analysis and target prediction were performed to indicate miRNAs involved in host-parasite interactions and miRNAs associated with visceral and/or cerebral larva migrans in the infected mice. Quantitative real-time polymerase chain reaction (PCR) was used to amplify circulating miRNAs from the infected mice. RESULTS: This study reports host and parasite miRNAs in the plasma of BALB/c mice with visceral and cerebral larva migrans and demonstrates the alterations of these miRNAs during the migration of larvae from the livers through the lungs and to the brains of infected mice. After filtering unspecific changes in an irrelevant control, T. canis-derived miRNAs and T. canis infection-induced differential miRNAs are predicted to modulate genes consistently involved in mitogen-activated protein kinase (MAPK) signalling and pathways regulating axon guidance and pluripotency of stem in the infected mice with visceral and cerebral larva migrans. For these plasma circulating miRNAs predicted to be involved in host-parasite crosstalk, two murine miRNAs (miR-26b-5p and miR-122-5p) are experimentally verified to be responsive to larva migrans and represent circulating biomarker candidates for visceral and cerebral toxocariasis in BALB/c mice. CONCLUSIONS: Our findings provide novel insights into the crosstalk of T. canis and the mammalian host via plasma circulating miRNAs, and prime agents and indicators for visceral and cerebral larva migrans. A deep understanding of these aspects will underpin the diagnosis and control of toxocariasis in humans and animals.


Subject(s)
Circulating MicroRNA , Mice, Inbred BALB C , Toxocara canis , Toxocariasis , Animals , Toxocara canis/genetics , Toxocara canis/physiology , Mice , Toxocariasis/parasitology , Toxocariasis/blood , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Host-Parasite Interactions , Larva Migrans, Visceral/parasitology , Larva Migrans, Visceral/blood , Female , Larva Migrans/parasitology , Larva Migrans/blood , Larva/genetics , Dogs , MicroRNAs/blood , MicroRNAs/genetics , Biomarkers/blood , Brain/parasitology
7.
Front Cell Infect Microbiol ; 14: 1414067, 2024.
Article in English | MEDLINE | ID: mdl-38912206

ABSTRACT

Introduction: Toxoplasma gondii is an intracellular parasite of importance to human and veterinary health. The structure and diversity of the genotype population of T. gondii varies considerably with respect to geography, but three lineages, type I, II and III, are distributed globally. Lineage III genotypes are the least well characterized in terms of biology, host immunity and virulence. Once a host is infected with T.gondii, innate immune mechanisms are engaged to reduce the parasite burden in tissues and create a pro-inflammatory environment in which the TH1 response develops to ensure survival. This study investigated the early cellular immune response of Swiss-Webster mice post intraperitoneal infection with 10 tachyzoites of four distinct non-clonal genotypes of lineage III and a local isolate of ToxoDB#1. The virulence phenotype, cumulative mortality (CM) and allele profiles of ROP5, ROP16, ROP18 and GRA15 were published previously. Methods: Parasite dissemination in different tissues was analyzed by real-time PCR and relative expression levels of IFNγ, IL12-p40, IL-10 and TBX21 in the cervical lymph nodes (CLN), brain and spleen were calculated using the ΔΔCt method. Stage conversion was determined by detection of the BAG1 transcript in the brain. Results: Tissue dissemination depends on the virulence phenotype but not CM, while the TBX21 and cytokine levels and kinetics correlate better with CM than virulence phenotype. The earliest detection of BAG1 was seven days post infection. Only infection with the genotype of high CM (69.4%) was associated with high T-bet levels in the CLN 24 h and high systemic IFNγ expression which was sustained over the first week, while infection with genotypes of lower CM (38.8%, 10.7% and 6.8%) is characterized by down-regulation and/or low systemic levels of IFNγ. The response intensity, as assessed by cytokine levels, to the genotype of high CM wanes over time, while it increases gradually to genotypes of lower CM. Discussion: The results point to the conclusion that the immune response is not correlated with the virulence phenotype and/or allele profile, but an early onset, intense pro-inflammatory response is characteristic of genotypes with high CM. Additionally, high IFNγ level in the brain may hamper stage conversion.


Subject(s)
Cytokines , Genotype , Toxoplasma , Toxoplasmosis, Animal , Toxoplasma/pathogenicity , Toxoplasma/genetics , Toxoplasma/immunology , Animals , Mice , Virulence , Cytokines/metabolism , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/parasitology , Phenotype , Female , Spleen/immunology , Spleen/parasitology , Spleen/pathology , Brain/parasitology , Brain/pathology , Brain/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Disease Models, Animal , Lymph Nodes/parasitology , Interferon-gamma/metabolism , Interferon-gamma/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Immunity, Cellular
8.
Proc Natl Acad Sci U S A ; 121(24): e2403054121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838017

ABSTRACT

Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.


Subject(s)
Brain , CD8-Positive T-Lymphocytes , Cell Differentiation , Toxoplasma , Toxoplasmosis , Animals , CD8-Positive T-Lymphocytes/immunology , Toxoplasma/immunology , Mice , Brain/immunology , Brain/parasitology , Cell Differentiation/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Latent Infection/immunology , Latent Infection/parasitology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , Mice, Inbred C57BL , Female
9.
Microbiol Spectr ; 12(7): e0072724, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864616

ABSTRACT

A hallmark of cerebral malaria (CM) is sequestration of Plasmodium falciparum-infected erythrocytes (IE) within the brain microvasculature. Binding of IE to endothelium reduces microvascular flow and, combined with an inflammatory response, perturbs endothelial barrier function, resulting in breakdown of the blood-brain barrier (BBB). Cytoadherence leads to activation of the endothelium and alters a range of cell processes affecting signaling pathways, receptor expression, coagulation, and disruption of BBB integrity. Here, we investigated whether CM-derived parasites elicit differential effects on human brain microvascular endothelial cells (HBMECs), as compared to uncomplicated malaria (UM)-derived parasites. Patient-derived IE from UM and CM clinical cases, as well as non-binding skeleton-binding protein 1 knockout parasites, were overlaid onto tumour necrosis factor (TNF)-activated HBMECs. Gene expression analysis of endothelial responses was performed using probe-based assays of a panel of genes involved in inflammation, apoptosis, endothelial barrier function, and prostacyclin synthesis pathway. We observed a significant effect on endothelial transcriptional responses in the presence of IE, yet there was no significant correlation between HBMEC responses and type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and level of IE binding to HBMECs, as we detected the same change in endothelial responses when employing both binding and non-binding parasites. Our results suggest that interaction of IE with endothelial cells in this co-culture model induces some endothelial responses that are independent of clinical origin and independent of the expression of the major variant antigen Plasmodium falciparum erythrocyte membrane protein 1 on the IE surface. IMPORTANCE: Cerebral malaria (CM) is the most prevalent and deadly complication of severe Plasmodium falciparum infection. A hallmark of this disease is sequestration of P. falciparum-infected erythrocytes (IE) in brain microvasculature that ultimately results in breakdown of the blood-brain barrier. Here, we compared the effect of P. falciparum parasites derived from uncomplicated malaria (UM) and CM cases on the relative gene expression of human brain microvascular endothelial cells (HBMECs) for a panel of genes. We observed a significant effect on the endothelial transcriptional response in the presence of IE, yet there is no significant correlation between HBMEC responses and the type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and the level of IE binding to HBMECs. Our results suggest that interaction of IE with endothelial cells induces endothelial responses that are independent of clinical origin and not entirely driven by surface Plasmodium falciparum erythrocyte membrane protein 1 expression.


Subject(s)
Blood-Brain Barrier , Brain , Endothelial Cells , Erythrocytes , Malaria, Cerebral , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Humans , Endothelial Cells/parasitology , Endothelial Cells/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , Malaria, Cerebral/parasitology , Malaria, Cerebral/metabolism , Brain/parasitology , Brain/metabolism , Blood-Brain Barrier/parasitology , Blood-Brain Barrier/metabolism , Erythrocytes/parasitology , Erythrocytes/metabolism
10.
PLoS Biol ; 22(6): e3002690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857298

ABSTRACT

As Toxoplasma gondii disseminates through its host, the parasite must sense and adapt to its environment and scavenge nutrients. Oxygen (O2) is one such environmental factor and cytoplasmic prolyl 4-hydroxylases (PHDs) are evolutionarily conserved O2 cellular sensing proteins that regulate responses to changes in O2 availability. Toxoplasma expresses 2 PHDs. One of them, TgPHYa hydroxylates SKP1, a subunit of the SCF-E3 ubiquitin ligase complex. In vitro, TgPHYa is important for growth at low O2 levels. However, studies have yet to examine the role that TgPHYa or any other pathogen-encoded PHD plays in virulence and disease. Using a type II ME49 Toxoplasma TgPHYa knockout, we report that TgPHYa is important for Toxoplasma virulence and brain cyst formation in mice. We further find that while TgPHYa mutant parasites can establish an infection in the gut, they are unable to efficiently disseminate to peripheral tissues because the mutant parasites are unable to survive within recruited immune cells. Since this phenotype was abrogated in IFNγ knockout mice, we studied how TgPHYa mediates survival in IFNγ-treated cells. We find that TgPHYa is not required for release of parasite-encoded effectors into host cells that neutralize anti-parasitic processes induced by IFNγ. In contrast, we find that TgPHYa is required for the parasite to scavenge tryptophan, which is an amino acid whose levels are decreased after IFNγ up-regulates the tryptophan-catabolizing enzyme, indoleamine dioxygenase (IDO). We further find, relative to wild-type mice, that IDO knockout mice display increased morbidity when infected with TgPHYa knockout parasites. Together, these data identify the first parasite mechanism for evading IFNγ-induced nutritional immunity and highlight a novel role that oxygen-sensing proteins play in pathogen growth and virulence.


Subject(s)
Interferon-gamma , Oxygen , Protozoan Proteins , Toxoplasma , Animals , Toxoplasma/pathogenicity , Interferon-gamma/metabolism , Mice , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Oxygen/metabolism , Mice, Inbred C57BL , Virulence , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Female , Brain/parasitology , Brain/metabolism , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/metabolism , Toxoplasmosis, Animal/parasitology , Toxoplasmosis/immunology , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology
11.
Genes (Basel) ; 15(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927699

ABSTRACT

The grooming behavior of honeybees serves as a crucial auto-protective mechanism against Varroa mite infestations. Compared to Apis mellifera, Apis cerana demonstrates more effective grooming behavior in removing Varroa mites from the bodies of infested bees. However, the underlying mechanisms regulating grooming behavior remain elusive. In this study, we evaluated the efficacy of the auto-grooming behavior between A. cerana and A. mellifera and employed RNA-sequencing technology to identify differentially expressed genes (DEGs) in bee brains with varying degrees of grooming behavior intensity. We observed that A. cerana exhibited a higher frequency of mite removal between day 5 and day 15 compared to A. mellifera, with day-9 bees showing the highest frequency of mite removal in A. cerana. RNA-sequencing results revealed the differential expression of the HTR2A and SLC17A8 genes in A. cerana and the CCKAR and TpnC47D genes in A. mellifera. Subsequent homology analysis identified the HTR2A gene and SLC17A8 gene of A. cerana as homologous to the HTR2A gene and SLC17A7 gene of A. mellifera. These DEGs are annotated in the neuroactive ligand-receptor interaction pathway, the glutamatergic synaptic pathway, and the calcium signaling pathway. Moreover, CCKAR, TpnC47D, HTR2A, and SLC17A7 may be closely related to the auto-grooming behavior of A. mellifera, conferring resistance against Varroa infestation. Our results further explain the relationship between honeybee grooming behavior and brain function at the molecular level and provide a reference basis for further studies of the mechanism of honeybee grooming behavior.


Subject(s)
Brain , Grooming , Transcriptome , Varroidae , Animals , Bees/parasitology , Bees/genetics , Varroidae/genetics , Brain/parasitology , Brain/metabolism , Mite Infestations/genetics , Mite Infestations/veterinary , Mite Infestations/parasitology , Gene Expression Profiling/methods
12.
PLoS Negl Trop Dis ; 18(6): e0012274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900784

ABSTRACT

The lack of disease models adequately resembling human tissue has hindered our understanding of amoebic brain infection. Three-dimensional structured organoids provide a microenvironment similar to human tissue. This study demonstrates the use of cerebral organoids to model a rare brain infection caused by the highly lethal amoeba Balamuthia mandrillaris. Cerebral organoids were generated from human pluripotent stem cells and infected with clinically isolated B. mandrillaris trophozoites. Histological examination showed amoebic invasion and neuron damage following coculture with the trophozoites. The transcript profile suggested an alteration in neuron growth and a proinflammatory response. The release of intracellular proteins specific to neuronal bodies and astrocytes was detected at higher levels postinfection. The amoebicidal effect of the repurposed drug nitroxoline was examined using the human cerebral organoids. Overall, the use of human cerebral organoids was important for understanding the mechanism of amoeba pathogenicity, identify biomarkers for brain injury, and in the testing of a potential amoebicidal drug in a context similar to the human brain.


Subject(s)
Amebiasis , Balamuthia mandrillaris , Brain , Organoids , Humans , Organoids/parasitology , Balamuthia mandrillaris/drug effects , Brain/parasitology , Brain/pathology , Amebiasis/parasitology , Amebiasis/drug therapy , Trophozoites/drug effects , Neurons/parasitology , Pluripotent Stem Cells
13.
Vet Parasitol Reg Stud Reports ; 52: 101038, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880563

ABSTRACT

Toxoplasmosis is a foodborne disease caused by the protozoan Toxoplasma gondii, and transmitted to humans by eating raw or undercooked meat, mainly. Poultry, beef, and pork are the main meats consumed in Peru; despite this, guinea pig meat is also widely consumed. For this reason, the objective of this study was to molecularly detect T. gondii in domestic and wild guinea pigs from the Marangani district in Cuzco, Peru, and identify some risk factors associated with this pathogen. DNA was extracted from the brain tissue samples of guinea pigs (30 domestic and 30 wild), and PCR protocols were used to amplify the internal transcribed spacer (ITS-1) region and a 529 bp fragment from the T. gondii genome. T. gondii DNA was detected in 14 (23.3%) guinea pigs. T. gondii frequency was 33.3% in domestic guinea pigs and 13.3% in wild guinea pigs. Our results demonstrated that guinea pigs represent an important source for T. gondii infection in human populations in this locality.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Animals , Guinea Pigs , Toxoplasma/isolation & purification , Toxoplasma/genetics , Peru/epidemiology , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/epidemiology , DNA, Protozoan/genetics , DNA, Protozoan/analysis , Animals, Wild/parasitology , Female , Male , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Polymerase Chain Reaction/veterinary , Animals, Domestic/parasitology , Risk Factors , Prevalence , Brain/parasitology
14.
Syst Parasitol ; 101(3): 39, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733439

ABSTRACT

Myxosporean infection in marine water fishes has drawn less attention than in freshwater fishes, which resulted in a higher taxonomic variety in freshwater in Malaysia. This study aimed to address the gap by conducting a myxosporean survey on two commercially significant marine fish species, Nemipterus furcosus (Valenciennes) (Eupercaria incertae sedis: Nemipteridae) and Selar crumenophthalmus (Bloch) (Carangiformes: Carangidae), collected from the northeastern part of peninsular Malaysia. During the examination of the organs, two distinct Myxobolus Bütschli, 1882 species were discovered in the brain tissue of these fishes, despite the absence of any observable pathological signs. The two Myxobolus species were characterized through morphometry, morphology, and analysis of partial small subunit ribosomal RNA (18S rDNA) gene. As a result, Myxobolus acanthogobii Hoshina, 1952, which infects 2.3% of N. furcosus, is synonymous with a myxobolid species commonly found in Japanese waters, based on its morphological traits, tissue tropism, and molecular diagnostics. Furthermore, a novel species, Myxobolus selari n. sp., was described, infecting the brain of one (11%) individual S. crumenophthalmus. This unique species displayed distinctive features, placing it within a well-supported subclade primarily comprising brain-infecting myxobolids. Maximum likelihood analysis further revealed the close relationships among these brain-infecting myxobolids, underscoring the significance of tissue tropism and host taxonomy for myxobolids. This study represents the initial documentation of Myxobolus species within the southern South China Sea, shedding light on the potential diversity of marine myxosporean in this region. This article was registered in the Official Register of Zoological Nomenclature (ZooBank) as urn:lsid:zoobank.org:pub:7C400E35-7CB8-4DEE-92B7-F75FF3926441.


Subject(s)
Brain , Myxobolus , Phylogeny , Species Specificity , Animals , Myxobolus/classification , Myxobolus/genetics , Myxobolus/anatomy & histology , Malaysia , Brain/parasitology , Fishes/parasitology , RNA, Ribosomal, 18S/genetics , Fish Diseases/parasitology
15.
PLoS Negl Trop Dis ; 18(5): e0012199, 2024 May.
Article in English | MEDLINE | ID: mdl-38776344

ABSTRACT

BACKGROUND: In Chagas disease (CD), a neglected tropical disease caused by the parasite Trypanosoma cruzi, the development of mental disorders such as anxiety, depression, and memory loss may be underpinned by social, psychological, and biological stressors. Here, we investigated biological factors underlying behavioral changes in a preclinical model of CD. METHODOLOGY/PRINCIPAL FINDINGS: In T. cruzi-infected C57BL/6 mice, a kinetic study (5 to 150 days postinfection, dpi) using standardized methods revealed a sequential onset of behavioral changes: reduced innate compulsive behavior, followed by anxiety and depressive-like behavior, ending with progressive memory impairments. Hence, T. cruzi-infected mice were treated (120 to 150 dpi) with 10 mg/Kg/day of the selective serotonin reuptake inhibitor fluoxetine (Fx), an antidepressant that favors neuroplasticity. Fx therapy reversed the innate compulsive behavior loss, anxiety, and depressive-like behavior while preventing or reversing memory deficits. Biochemical, histological, and parasitological analyses of the brain tissue showed increased levels of the neurotransmitters GABA/glutamate and lipid peroxidation products and decreased expression of brain-derived neurotrophic factor in the absence of neuroinflammation at 150 dpi. Fx therapy ameliorated the neurochemical changes and reduced parasite load in the brain tissue. Next, using the human U-87 MG astroglioma cell line, we found no direct effect of Fx on parasite load. Crucially, serotonin/5-HT (Ser/5-HT) promoted parasite uptake, an effect increased by prior stimulation with IFNγ and TNF but abrogated by Fx. Also, Fx blocked the cytokine-driven Ser/5-HT-promoted increase of nitric oxide and glutamate levels in infected cells. CONCLUSION/SIGNIFICANCE: We bring the first evidence of a sequential onset of behavioral changes in T. cruzi-infected mice. Fx therapy improves behavioral and biological changes and parasite control in the brain tissue. Moreover, in the central nervous system, cytokine-driven Ser/5-HT consumption may favor parasite persistence, disrupting neurotransmitter balance and promoting a neurotoxic environment likely contributing to behavioral and cognitive disorders.


Subject(s)
Astrocytes , Chagas Disease , Fluoxetine , Mice, Inbred C57BL , Serotonin , Trypanosoma cruzi , Animals , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/psychology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/physiology , Serotonin/metabolism , Mice , Astrocytes/drug effects , Disease Models, Animal , Brain/drug effects , Brain/parasitology , Brain/metabolism , Behavior, Animal/drug effects , Male , Humans , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Cognition/drug effects , Depression/drug therapy , Parasite Load , Anxiety/drug therapy
16.
PLoS Negl Trop Dis ; 18(5): e0012188, 2024 May.
Article in English | MEDLINE | ID: mdl-38805557

ABSTRACT

BACKGROUND: Angiostrongylus cantonensis is a parasite that mainly infects the heart and pulmonary arteries of rats and causes human eosinophilic meningitis or meningoencephalitis in certain geographical areas. Current diagnostic methods include detection of the parasite in cerebrospinal fluid (CSF) and eosinophilic immune examination after lumbar puncture, which may be risky and produce false-positive results. 18F- Fluorodeoxyglucose (FDG), a Positron emission tomography (PET) tracer, has been used to assess different pathological or inflammatory changes in the brains of patients. In this study, we hypothesized that A. cantonensis infection-induced inflammatory and immunomodulatory factors of eosinophils result in localized pathological changes in the brains of non-permissive hosts, which could be analyzed using in vivo 18F-FDG PET imaging. METHODOLOGY/FINDINGS: Non-permissive host ICR mice and permissive host SD rats were infected with A. cantonensis, and the effects of the resulting inflammation on 18F-FDG uptake were characterized using PET imaging. We also quantitatively measured the distributed uptake values of different brain regions to build an evaluated imaging model of localized neuropathological damage caused by eosinophilic inflammation. Our results showed that the uptake of 18F-FDG increased in the cerebellum, brainstem, and limbic system of mice at three weeks post-infection, whereas the uptake in the rat brain was not significant. Immunohistochemical staining and western blotting revealed that Iba-1, a microglia-specific marker, significantly increased in the hippocampus and its surrounding area in mice after three weeks of infection, and then became pronounced after four weeks of infection; while YM-1, an eosinophilic chemotactic factor, in the hippocampus and midbrain, increased significantly from two weeks post-infection, sharply escalated after three weeks of infection, and peaked after four weeks of infection. Cytometric bead array (CBA) analysis revealed that the expression of TNF in the serum of mice increased concomitantly with the prolongation of infection duration. Furthermore, IFN-γ and IL-4 in rat serum were significantly higher than in mouse serum at two weeks post-infection, indicating significantly different immune responses in the brains of rats and mice. We suggest that 18F-FDG uptake in the host brain may be attributed to the accumulation of large numbers of immune cells, especially the metabolic burst of activated eosinophils, which are attracted to and induced by activated microglia in the brain. CONCLUSIONS: An in vivo 18F-FDG/PET imaging model can be used to evaluate live neuroinflammatory pathological changes in the brains of A. cantonensis-infected mice and rats.


Subject(s)
Angiostrongylus cantonensis , Brain , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Rats, Sprague-Dawley , Strongylida Infections , Animals , Angiostrongylus cantonensis/immunology , Strongylida Infections/immunology , Strongylida Infections/parasitology , Strongylida Infections/diagnostic imaging , Strongylida Infections/pathology , Brain/parasitology , Brain/diagnostic imaging , Brain/pathology , Brain/immunology , Mice , Rats , Eosinophils/immunology , Inflammation/immunology , Male , Disease Models, Animal , Lectins/metabolism , Female , beta-N-Acetylhexosaminidases
17.
ACS Infect Dis ; 10(6): 2212-2221, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38743643

ABSTRACT

Previous studies have shown that bicyclic azetidines are potent and selective inhibitors of apicomplexan phenylalanine tRNA synthetase (PheRS), leading to parasite growth inhibition in vitro and in vivo, including in models of Toxoplasma infection. Despite these useful properties, additional optimization is required for the development of efficacious treatments of toxoplasmosis from this inhibitor series, in particular, to achieve optimal exposure in the brain. Here, we describe a series of PheRS inhibitors built on a new bicyclic pyrrolidine core scaffold designed to retain the exit-vector geometry of the isomeric bicyclic azetidine core scaffold while offering avenues to sample diverse chemical space. Relative to the parent series, bicyclic pyrrolidines retain reasonable potency and target selectivity for parasite PheRS vs host. Further structure-activity relationship studies revealed that the introduction of aliphatic groups improved potency and ADME and PK properties, including brain exposure. The identification of this new scaffold provides potential opportunities to extend the analogue series to further improve selectivity and potency and ultimately deliver a novel, efficacious treatment of toxoplasmosis.


Subject(s)
Brain , Phenylalanine-tRNA Ligase , Pyrrolidines , Toxoplasma , Toxoplasma/drug effects , Toxoplasma/enzymology , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Animals , Brain/parasitology , Structure-Activity Relationship , Phenylalanine-tRNA Ligase/antagonists & inhibitors , Phenylalanine-tRNA Ligase/chemistry , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Mice , Toxoplasmosis/drug therapy , Humans , Azetidines/pharmacology , Azetidines/chemistry
18.
Sci Rep ; 14(1): 10433, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714696

ABSTRACT

Toxoplasma gondii (T. gondii) is a protozoan parasite that infects approximately one-third of the global human population, often leading to chronic infection. While acute T. gondii infection can cause neural damage in the central nervous system and result in toxoplasmic encephalitis, the consequences of T. gondii chronic infection (TCI) are generally asymptomatic. However, emerging evidence suggests that TCI may be linked to behavioral changes or mental disorders in hosts. Astrocyte polarization, particularly the A1 subtype associated with neuronal apoptosis, has been identified in various neurodegenerative diseases. Nevertheless, the role of astrocyte polarization in TCI still needs to be better understood. This study aimed to establish a mouse model of chronic TCI and examine the transcription and expression levels of glial fibrillary acidic protein (GFAP), C3, C1q, IL-1α, and TNF-α in the brain tissues of the mice. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay, and Western blotting were employed to assess these levels. Additionally, the expression level of the A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA). In mice with TCI, the transcriptional and expression levels of the inflammatory factors C1q, IL-1α, and TNF-α followed an up-down-up pattern, although they remained elevated compared to the control group. These findings suggest a potential association between astrocyte polarization towards the A1 subtype and synchronized changes in these three inflammatory mediators. Furthermore, immunofluorescence assay (IFA) revealed a significant increase in the A1 astrocytes (GFAP+C3+) proportion in TCI mice. This study provides evidence that TCI can induce astrocyte polarization, a biological process that may be influenced by changes in the levels of three inflammatory factors: C1q, IL-1α, and TNF-α. Additionally, the release of neurotoxic substances by A1 astrocytes may be associated with the development of TCI.


Subject(s)
Astrocytes , Brain , Toxoplasma , Animals , Astrocytes/metabolism , Astrocytes/parasitology , Astrocytes/pathology , Mice , Toxoplasma/pathogenicity , Toxoplasma/physiology , Brain/parasitology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Chronic Disease , Cell Polarity , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Toxoplasmosis/pathology , Tumor Necrosis Factor-alpha/metabolism , Toxoplasmosis, Cerebral/parasitology , Toxoplasmosis, Cerebral/pathology , Toxoplasmosis, Cerebral/metabolism
19.
Parasit Vectors ; 17(1): 205, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715092

ABSTRACT

BACKGROUND: Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS: In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS: The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS: This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.


Subject(s)
Angiostrongylus cantonensis , Brain , Mice, Inbred BALB C , RNA, Long Noncoding , Strongylida Infections , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Angiostrongylus cantonensis/genetics , Strongylida Infections/parasitology , Strongylida Infections/genetics , Brain/parasitology , Brain/metabolism , Brain/pathology , Mice , Larva/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Cell Rep ; 43(5): 114217, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38728141

ABSTRACT

While brain swelling, associated with fluid accumulation, is a known feature of pediatric cerebral malaria (CM), how fluid and macromolecules are drained from the brain during recovery from CM is unknown. Using the experimental CM (ECM) model, we show that fluid accumulation in the brain during CM is driven by vasogenic edema and not by perivascular cerebrospinal fluid (CSF) influx. We identify that fluid and molecules are removed from the brain extremely quickly in mice with ECM to the deep cervical lymph nodes (dcLNs), predominantly through basal routes and across the cribriform plate and the nasal lymphatics. In agreement, we demonstrate that ligation of the afferent lymphatic vessels draining to the dcLNs significantly impairs fluid drainage from the brain and lowers anti-malarial drug recovery from the ECM syndrome. Collectively, our results provide insight into the pathways that coordinate recovery from CM.


Subject(s)
Brain Edema , Malaria, Cerebral , Animals , Malaria, Cerebral/pathology , Mice , Disease Models, Animal , Lymphatic Vessels/metabolism , Mice, Inbred C57BL , Brain/pathology , Brain/parasitology , Brain/metabolism , Lymph Nodes/pathology , Plasmodium berghei , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...