Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.651
Filter
1.
Acta Neuropathol Commun ; 12(1): 88, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840253

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganization, cavities and abnormally large matrix granules.


Subject(s)
Disease Models, Animal , Huntington Disease , Imaging, Three-Dimensional , Mitochondria , Animals , Huntington Disease/pathology , Huntington Disease/genetics , Huntington Disease/metabolism , Mitochondria/ultrastructure , Mitochondria/pathology , Mitochondria/metabolism , Imaging, Three-Dimensional/methods , Mice , Mice, Transgenic , Brain/pathology , Brain/ultrastructure , Brain/metabolism , Microscopy, Electron/methods , Male , Neurons/pathology , Neurons/ultrastructure , Neurons/metabolism
2.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729112

ABSTRACT

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Subject(s)
Drosophila melanogaster , Microscopy, Electron , Neurotransmitter Agents , Synapses , Animals , Brain/ultrastructure , Brain/metabolism , Connectome , Drosophila melanogaster/ultrastructure , Drosophila melanogaster/metabolism , gamma-Aminobutyric Acid/metabolism , Microscopy, Electron/methods , Neural Networks, Computer , Neurons/metabolism , Neurons/ultrastructure , Neurotransmitter Agents/metabolism , Synapses/ultrastructure , Synapses/metabolism
3.
Nature ; 629(8013): 893-900, 2024 May.
Article in English | MEDLINE | ID: mdl-38632402

ABSTRACT

The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.


Subject(s)
Blood-Brain Barrier , Brain , Endothelial Cells , Gasdermins , Inflammation , Animals , Female , Humans , Male , Mice , Basement Membrane/metabolism , Basement Membrane/ultrastructure , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/ultrastructure , Blood-Brain Barrier/virology , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Caspases, Initiator/metabolism , Dependovirus , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Gasdermins/antagonists & inhibitors , Gasdermins/metabolism , Inflammation/pathology , Inflammation/metabolism , Klebsiella pneumoniae/physiology , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/blood , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Pyroptosis , Sepsis/metabolism , Sepsis/pathology , Sepsis/microbiology , Single-Cell Analysis , Tight Junctions/metabolism , Tight Junctions/ultrastructure
4.
Nat Commun ; 15(1): 2755, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553438

ABSTRACT

Projection imaging accelerates volumetric interrogation in fluorescence microscopy, but for multi-cellular samples, the resulting images may lack contrast, as many structures and haze are summed up. Here, we demonstrate rapid projective light-sheet imaging with parameter selection (props) of imaging depth, position and viewing angle. This allows us to selectively image different sub-volumes of a sample, rapidly switch between them and exclude background fluorescence. Here we demonstrate the power of props by functional imaging within distinct regions of the zebrafish brain, monitoring calcium firing inside muscle cells of moving Drosophila larvae, super-resolution imaging of selected cell layers, and by optically unwrapping the curved surface of a Drosophila embryo. We anticipate that props will accelerate volumetric interrogation, ranging from subcellular to mesoscopic scales.


Subject(s)
Drosophila , Zebrafish , Animals , Microscopy, Fluorescence/methods , Brain/ultrastructure , Larva
5.
Cell Rep Methods ; 3(7): 100520, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37533653

ABSTRACT

Analysis of brain structure, connectivity, and molecular diversity relies on effective tissue fixation. Conventional tissue fixation causes extracellular space (ECS) loss, complicating the segmentation of cellular objects from electron microscopy datasets. Previous techniques for preserving ECS in mammalian brains utilizing high-pressure perfusion can give inconsistent results owing to variations in the hydrostatic pressure within the vasculature. A more reliable fixation protocol that uniformly preserves the ECS throughout whole brains would greatly benefit a wide range of neuroscience studies. Here, we report a straightforward transcardial perfusion strategy that preserves ECS throughout the whole rodent brain. No special setup is needed besides sequential solution changes, and the protocol offers excellent reproducibility. In addition to better capturing tissue ultrastructure, preservation of ECS has many downstream advantages such as accelerating heavy-metal staining for electron microscopy, improving detergent-free immunohistochemistry for correlated light and electron microscopy, and facilitating lipid removal for tissue clearing.


Subject(s)
Brain , Extracellular Space , Animals , Reproducibility of Results , Brain/ultrastructure , Microscopy, Electron , Tissue Fixation/methods , Mammals
6.
Hum Brain Mapp ; 44(13): 4722-4737, 2023 09.
Article in English | MEDLINE | ID: mdl-37401639

ABSTRACT

Given the anatomical and functional similarities between the retina and the brain, the retina could be a "window" for viewing brain structures. We investigated the association between retinal nerve fiber layers (peripapillary retinal nerve fiber layer, ppRNFL; macular ganglion cell-inner plexiform layer, GC-IPL; and macular ganglion cell complex, GCC), and brain magnetic resonance imaging (MRI) parameters in young health adults. We included 857 students (mean age: 23.3 years, 71.3% women) from the i-Share study. We used multivariate linear models to study the cross-sectional association of each retinal nerve layer thickness assessed by spectral-domain optical coherence tomography (SD-OCT) with structural (volumes and cortical thickness), and microstructural brain markers, assessed on MRI globally and regionally. Microstructural MRI parameters included diffusion tensor imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI). On global brain analysis, thicker ppRNFL, GC-IPL and GCC were all significantly associated with patterns of diffusion metrics consistent with higher WM microstructural integrity. In regional analyses, after multiple testing corrections, our results suggested significant associations of some retinal nerve layers with brain regional gray matter occipital volumes and with diffusion MRI parameters in a region involved in the visual pathway and in regions containing associative tracts. No associations were found with global volumes or with global or regional cortical thicknesses. Results of this study suggest that some retinal nerve layers may reflect brain structures. Further studies are needed to confirm these results in young subjects.


Subject(s)
Brain , Neuroimaging , Retinal Ganglion Cells , Humans , Male , Female , Young Adult , Magnetic Resonance Imaging , Brain/ultrastructure , Retinal Ganglion Cells/ultrastructure
7.
Science ; 379(6636): eadd9330, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893230

ABSTRACT

Brains contain networks of interconnected neurons and so knowing the network architecture is essential for understanding brain function. We therefore mapped the synaptic-resolution connectome of an entire insect brain (Drosophila larva) with rich behavior, including learning, value computation, and action selection, comprising 3016 neurons and 548,000 synapses. We characterized neuron types, hubs, feedforward and feedback pathways, as well as cross-hemisphere and brain-nerve cord interactions. We found pervasive multisensory and interhemispheric integration, highly recurrent architecture, abundant feedback from descending neurons, and multiple novel circuit motifs. The brain's most recurrent circuits comprised the input and output neurons of the learning center. Some structural features, including multilayer shortcuts and nested recurrent loops, resembled state-of-the-art deep learning architectures. The identified brain architecture provides a basis for future experimental and theoretical studies of neural circuits.


Subject(s)
Brain , Connectome , Drosophila melanogaster , Nerve Net , Animals , Brain/ultrastructure , Neurons/ultrastructure , Synapses/ultrastructure , Drosophila melanogaster/ultrastructure , Nerve Net/ultrastructure
8.
Cereb Cortex ; 33(10): 6320-6334, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36573438

ABSTRACT

Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.


Subject(s)
Attention , Autism Spectrum Disorder , Brain , Connectome , Humans , Adolescent , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Datasets as Topic , Male , Female , Brain/physiopathology , Brain/ultrastructure
9.
Science ; 378(6619): 486-487, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36378965
10.
Science ; 378(6619): 488-492, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36378966

ABSTRACT

Detailed knowledge about the neural connections among regions of the brain is key for advancing our understanding of normal brain function and changes that occur with aging and disease. Researchers use a range of experimental techniques to map connections at different levels of granularity in rodent animal models, but the results are often challenging to compare and integrate. Three-dimensional reference atlases of the brain provide new opportunities for cumulating, integrating, and reinterpreting research findings across studies. Here, we review approaches for integrating data describing neural connections and other modalities in rodent brain atlases and discuss how atlas-based workflows can facilitate brainwide analyses of neural network organization in relation to other facets of neuroarchitecture.


Subject(s)
Atlases as Topic , Brain Mapping , Brain , Animals , Aging , Brain/ultrastructure
11.
Science ; 378(6619): 500-504, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36378967

ABSTRACT

A comprehensive description of how neurons and entire brain regions are interconnected is fundamental for a mechanistic understanding of brain function and dysfunction. Neuroimaging has shaped the way to approaching the human brain's connectivity on the basis of diffusion magnetic resonance imaging and tractography. At the same time, polarization, fluorescence, and electron microscopy became available, which pushed spatial resolution and sensitivity to the axonal or even to the synaptic level. New methods are mandatory to inform and constrain whole-brain tractography by regional, high-resolution connectivity data and local fiber geometry. Machine learning and simulation can provide predictions where experimental data are missing. Future interoperable atlases require new concepts, including high-resolution templates and directionality, to represent variants of tractography solutions and estimates of their accuracy.


Subject(s)
Brain , Connectome , Neuroimaging , Humans , Brain/ultrastructure , Connectome/methods , Diffusion Magnetic Resonance Imaging , Neuroimaging/methods , Neurons
12.
Science ; 378(6619): 505-510, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36378968

ABSTRACT

There is more to brain connections than the mere transfer of signals between brain regions. Behavior and cognition emerge through cortical area interaction. This requires integration between local and distant areas orchestrated by densely connected networks. Brain connections determine the brain's functional organization. The imaging of connections in the living brain has provided an opportunity to identify the driving factors behind the neurobiology of cognition. Connectivity differences between species and among humans have furthered the understanding of brain evolution and of diverging cognitive profiles. Brain pathologies amplify this variability through disconnections and, consequently, the disintegration of cognitive functions. The prediction of long-term symptoms is now preferentially based on brain disconnections. This paradigm shift will reshape our brain maps and challenge current brain models.


Subject(s)
Brain , Cognition , Connectome , Nerve Net , Humans , Brain/physiology , Brain/ultrastructure , Magnetic Resonance Imaging/methods , Nerve Net/ultrastructure
13.
Nat Methods ; 19(11): 1357-1366, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36280717

ABSTRACT

Dense reconstruction of synaptic connectivity requires high-resolution electron microscopy images of entire brains and tools to efficiently trace neuronal wires across the volume. To generate such a resource, we sectioned and imaged a larval zebrafish brain by serial block-face electron microscopy at a voxel size of 14 × 14 × 25 nm3. We segmented the resulting dataset with the flood-filling network algorithm, automated the detection of chemical synapses and validated the results by comparisons to transmission electron microscopic images and light-microscopic reconstructions. Neurons and their connections are stored in the form of a queryable and expandable digital address book. We reconstructed a network of 208 neurons involved in visual motion processing, most of them located in the pretectum, which had been functionally characterized in the same specimen by two-photon calcium imaging. Moreover, we mapped all 407 presynaptic and postsynaptic partners of two superficial interneurons in the tectum. The resource developed here serves as a foundation for synaptic-resolution circuit analyses in the zebrafish nervous system.


Subject(s)
Synapses , Zebrafish , Animals , Larva , Synapses/ultrastructure , Brain/ultrastructure , Microscopy, Electron
14.
Nature ; 610(7933): 791-795, 2022 10.
Article in English | MEDLINE | ID: mdl-36108674

ABSTRACT

Parkinson's disease (PD) is the most common movement disorder, with resting tremor, rigidity, bradykinesia and postural instability being major symptoms1. Neuropathologically, it is characterized by the presence of abundant filamentous inclusions of α-synuclein in the form of Lewy bodies and Lewy neurites in some brain cells, including dopaminergic nerve cells of the substantia nigra2. PD is increasingly recognised as a multisystem disorder, with cognitive decline being one of its most common non-motor symptoms. Many patients with PD develop dementia more than 10 years after diagnosis3. PD dementia (PDD) is clinically and neuropathologically similar to dementia with Lewy bodies (DLB), which is diagnosed when cognitive impairment precedes parkinsonian motor signs or begins within one year from their onset4. In PDD, cognitive impairment develops in the setting of well-established PD. Besides PD and DLB, multiple system atrophy (MSA) is the third major synucleinopathy5. It is characterized by the presence of abundant filamentous α-synuclein inclusions in brain cells, especially oligodendrocytes (Papp-Lantos bodies). We previously reported the electron cryo-microscopy structures of two types of α-synuclein filament extracted from the brains of individuals with MSA6. Each filament type is made of two different protofilaments. Here we report that the cryo-electron microscopy structures of α-synuclein filaments from the brains of individuals with PD, PDD and DLB are made of a single protofilament (Lewy fold) that is markedly different from the protofilaments of MSA. These findings establish the existence of distinct molecular conformers of assembled α-synuclein in neurodegenerative disease.


Subject(s)
Brain Chemistry , Brain , Cryoelectron Microscopy , Lewy Body Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , alpha-Synuclein/ultrastructure , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Lewy Body Disease/pathology , Parkinson Disease/complications , Parkinson Disease/pathology , Dementia/complications , Dementia/pathology
15.
Proc Natl Acad Sci U S A ; 119(40): e2200638119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161899

ABSTRACT

Alterations in brain size and organization represent some of the most distinctive changes in the emergence of our species. Yet, there is limited understanding of how genetic factors contributed to altered neuroanatomy during human evolution. Here, we analyze neuroimaging and genetic data from up to 30,000 people in the UK Biobank and integrate with genomic annotations for different aspects of human evolution, including those based on ancient DNA and comparative genomics. We show that previously reported signals of recent polygenic selection for cortical anatomy are not replicable in a more ancestrally homogeneous sample. We then investigate relationships between evolutionary annotations and common genetic variants shaping cortical surface area and white-matter connectivity for each hemisphere. Our analyses identify single-nucleotide polymorphism heritability enrichment in human-gained regulatory elements that are active in early brain development, affecting surface areas of several parts of the cortex, including left-hemispheric speech-associated regions. We also detect heritability depletion in genomic regions with Neanderthal ancestry for connectivity of the uncinate fasciculus; this is a white-matter tract involved in memory, language, and socioemotional processing with relevance to neuropsychiatric disorders. Finally, we show that common genetic loci associated with left-hemispheric pars triangularis surface area overlap with a human-gained enhancer and affect regulation of ZIC4, a gene implicated in neurogenesis. This work demonstrates how genomic investigations of present-day neuroanatomical variation can help shed light on the complexities of our evolutionary past.


Subject(s)
Biological Evolution , Brain , Genomics , Neuroimaging , Polymorphism, Single Nucleotide , Brain/growth & development , Brain/ultrastructure , DNA, Ancient , Genomics/methods , Humans , Neuroimaging/methods
16.
Proc Natl Acad Sci U S A ; 119(27): e2116673119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35776541

ABSTRACT

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.


Subject(s)
Adolescent Development , Brain , Connectome , Adolescent , Brain/physiology , Brain/ultrastructure , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging , Nerve Net/physiology , Nerve Net/ultrastructure
17.
Sci Rep ; 12(1): 10468, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729283

ABSTRACT

Biological tissues and their networks frequently change dynamically across large volumes. Understanding network operations requires monitoring their activities in three dimensions (3D) with single-cell resolution. Several researchers have proposed various volumetric imaging technologies. However, most technologies require large-scale and complicated optical setups, as well as deep expertise for microscopic technologies, resulting in a high threshold for biologists. In this study, we propose an easy-to-use light-needle creating device for conventional two-photon microscopy systems. By only installing the device in one position for a filter cube that conventional fluorescent microscopes have, single scanning of the excitation laser light beam excited fluorophores throughout over 200 µm thickness specimens simultaneously. Furthermore, the developed microscopy system successfully demonstrated single-scan visualization of the 3D structure of transparent YFP-expressing brain slices. Finally, in acute mouse cortical slices with a thickness of approximately 250 µm, we detected calcium activities with 7.5 Hz temporal resolution in the neuronal population.


Subject(s)
Neurons , Touch , Animals , Brain/diagnostic imaging , Brain/ultrastructure , Mice , Microscopy, Fluorescence/methods , Neurons/physiology , Photons
18.
Nat Commun ; 13(1): 2923, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614048

ABSTRACT

Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues.


Subject(s)
Imaging, Three-Dimensional , Synchrotrons , Animals , Brain/diagnostic imaging , Brain/ultrastructure , Diffusion Magnetic Resonance Imaging , Mice , Microscopy, Electron , Microscopy, Electron, Scanning , X-Ray Microtomography/methods
19.
Sci Rep ; 12(1): 1685, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102230

ABSTRACT

Repeat-associated non-AUG (RAN) translation of mRNAs/transcripts responsible for polyglutamine (polyQ) diseases may generate peptides containing different mono amino acid tracts such as polyserine (polyS) and polyleucine (polyL). The propagation of aggregated polyQ from one cell to another is also an intriguing feature of polyQ proteins. However, whether the RAN translation-related polyS and polyL have the ability to propagate remains unclear, and if they do, whether the exogenous polyS and polyL exert toxicity on the recipient cells is also not known yet. In the present study, we found that aggregated polyS and polyL peptides spontaneously enter neuron-like cells and astrocytes in vitro. Aggregated polyS led to the degeneration of the differentiated neuron-like cultured cells. Likewise, the two types of aggregates taken up by astrocytes induced aberrant differentiation and cell death in vitro. Furthermore, injection of each of the two types of aggregates into the ventricles of adult mice resulted in their behavioral changes. The polyS-injected mice showed extensive vacuolar degeneration in the brain. Thus, the RAN translation-related proteins containing polyS and polyL have the potential to propagate and the proteins generated by all polyQ diseases might exert universal toxicity in the recipient cells.


Subject(s)
Astrocytes/drug effects , Brain/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Peptides/toxicity , Animals , Astrocytes/metabolism , Astrocytes/ultrastructure , Behavior, Animal/drug effects , Brain/metabolism , Brain/ultrastructure , Cell Death/drug effects , Elevated Plus Maze Test , Locomotion/drug effects , Mice, Inbred ICR , Neurons/metabolism , Neurons/ultrastructure , PC12 Cells , Peptides/metabolism , Rats , Swimming
20.
Microscopy (Oxf) ; 71(2): 124-131, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35157050

ABSTRACT

Precise immunolocalization of molecules in relation to ultrastructural features is challenging, especially when the target is small and not frequent enough to be included in tiny ultrathin sections randomly selected for electron microscopy (EM). Glucose transporter 1 (GLUT1) is in charge of transporting glucose across brain capillary endothelial cells (BCECs). Paraformaldehyde-fixed floating sections (50 µm thick) of mouse brain were immunolabeled with anti-GLUT1 antibody and visualized with fluoronanogold. Fluorescent images encompassing the entire hemisphere were tiled to enable selection of GLUT1-positive BCECs suitable for subsequent EM and landmark placement with laser microdissection to guide trimming. Sections were then fixed with glutaraldehyde, gold enhanced to intensify the labeling and fixed with osmium tetroxide to facilitate ultrastructural recognition. Even though a region that contained target BCECs was successfully trimmed in the resin block, it was only after observation of serial ultrathin sections that GLUT1 signals in coated vesicles on the same cross section corresponding to the cross section preidentified by confocal laser microscope. This is the first ultrastructural demonstration of GLUT1 molecules in coated vesicles, which may well explain its functional relevance to transport glucose across BCECs. Successful ultrastructural localization of molecules in relation to well-preserved target structure in native tissue samples, as achieved in this study, will pave the way to understand the functional relevance of molecules and their relation to ultrastructural details.


Subject(s)
Brain , Endothelial Cells , Animals , Brain/ultrastructure , Glucose Transporter Type 1 , Mice , Microscopy, Electron , Osmium Tetroxide
SELECTION OF CITATIONS
SEARCH DETAIL
...