Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127.480
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 605-609, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825907

ABSTRACT

Objective: To investigate the clinicopathological features of children with metachronous or synchronous primary tumors and to identify related genetic tumor syndromes. Methods: The clinicopathological data of 4 children with multiple primary tumors diagnosed in the Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China from 2011 to 2023 were collected. The histological, immunophenotypic and molecular characteristics were examined using H&E staining, immunohistochemical staining, PCR, Sanger sequencing and next-generation sequencing (NGS). The patients were followed up. Results: Case 1 was an 8-year-old boy with the adrenal cortical carcinoma, and 5 years later a poorly differentiated gastric adenocarcinoma was detected. Case 2 was a 2-year-old boy, presented with a left ventricular choroid plexus carcinoma, and a hepatoblastoma was detected 8 months later. Case 3 was a 9-month-old girl, diagnosed with renal rhabdoid tumor first and intracranial atypical teratoid/rhabdoid tumor (AT/RT) 3 months later. Case 4 was a 7-year-old boy and had a sigmoid colon adenocarcinoma 3 years after the diagnosis of a glioblastoma. The morphology and immunohistochemical features of the metachronous or synchronous primary tumors in the 4 cases were similar to the corresponding symptom-presenting/first-diagnosed tumors. No characteristic germ line mutations were detected in cases 1 and 2 by relevant molecular detection, and the rhabdoid tumor predisposition syndrome was confirmed in case 3 using NGS. Case 4 was clearly related to constitutional mismatch repair deficiency as shown by the molecular testing and clinical features. Conclusions: Childhood multiple primary tumors are a rare disease with histological morphology and immunophenotype similar to the symptom-presenting tumors. They are either sporadic or associated with a genetic (tumor) syndrome. The development of both tumors can occur simultaneously (synchronously) or at different times (metachronously). Early identification of the children associated with genetic tumor syndromes can facilitate routine tumor screening and early treatment.


Subject(s)
Hepatoblastoma , Kidney Neoplasms , Liver Neoplasms , Neoplasms, Multiple Primary , Rhabdoid Tumor , Stomach Neoplasms , Humans , Male , Child , Female , Child, Preschool , Neoplasms, Multiple Primary/genetics , Neoplasms, Multiple Primary/pathology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Infant , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , Hepatoblastoma/genetics , Hepatoblastoma/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/diagnosis , Choroid Plexus Neoplasms/genetics , Choroid Plexus Neoplasms/pathology , Choroid Plexus Neoplasms/diagnosis , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/pathology , Adrenal Cortex Neoplasms/pathology , Adrenal Cortex Neoplasms/genetics , Teratoma/pathology , Teratoma/genetics , Teratoma/surgery , Brain Neoplasms/genetics , Brain Neoplasms/pathology , SMARCB1 Protein/genetics , MutL Protein Homolog 1/genetics , Neoplasms, Second Primary/pathology , Neoplasms, Second Primary/genetics , High-Throughput Nucleotide Sequencing , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/pathology
2.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 585-591, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825904

ABSTRACT

Objective: To investigate the clinical, radiological, and pathological features of anaplastic gangliogliomas (AGGs) and to determine whether these tumors represent a distinct entity. Methods: Consecutive 667 cases of ganglioglioma (GG) diagnosed at the Xuanwu Hospital, Capital Medical University, Beijing, China between January 2015 and July 2023 were screened. Among these cases, 9 pathologically confirmed AGG cases were identified. Their clinical, radiological, treatment, and outcome data were analyzed retrospectively. Most of the tumor samples were subject to next-generation sequencing, while a subset of them were subject to DNA methylation profiling. Results: Among the 9 patients, there were five males and four females, with a median age of 8 years. Epileptic seizures (5/9) were the most frequently presented symptom. Radiological examinations showed three types of radiological manifestations: four cases showed abnormal MRI signals with no significant mass effects and mild enhancement; two cases demonstrated a mixed solid-cystic density lesion with peritumoral edema, which showed significant heterogeneous enhancement and obvious mass effects, and one case displayed cystic cavity formation with nodules on MRI, which showed evident enhancements. All cases exhibited mutations that were predicted to activate the MAP kinase signaling pathway, including seven with BRAF p.V600E mutation and two with NF1 mutation. Five AGGs with mutations involving the MAP kinase signaling pathway also had concurrent mutations, including three with CDKN2A homozygous deletion, one with a TERT promoter mutation, one with a H3F3A mutation, and one with a PTEN mutation. Conclusions: AGG exhibits a distinct spectrum of pathology, genetic mutations and clinical behaviors, differing from GG. Given these characteristics suggest that AGG may be a distinct tumor type, further expansion of the case series is needed. Therefore, a comprehensive integration of clinical, histological, and molecular analyses is required to correctly diagnose AGG. It will also help guide treatments and prognostication.


Subject(s)
Brain Neoplasms , DNA Methylation , Ganglioglioma , Magnetic Resonance Imaging , Mutation , PTEN Phosphohydrolase , Proto-Oncogene Proteins B-raf , Humans , Ganglioglioma/pathology , Ganglioglioma/genetics , Male , Female , Child , Retrospective Studies , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Proto-Oncogene Proteins B-raf/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Telomerase/genetics , Histones/genetics , Histones/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Epilepsy/pathology , Epilepsy/genetics
3.
Cell Mol Life Sci ; 81(1): 247, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829550

ABSTRACT

BACKGROUND: The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive. METHOD: Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS. RESULT: We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model. CONCLUSION: These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.


Subject(s)
Neoplastic Stem Cells , Radiation Tolerance , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Radiation Tolerance/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects , Animals , Mice , Cell Line, Tumor , Glioma/pathology , Glioma/genetics , Glioma/radiotherapy , Glioma/metabolism , Apoptosis/genetics , Apoptosis/radiation effects , Ubiquitination , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Mice, Nude , Phenotype , Gene Expression Regulation, Neoplastic , Prognosis
4.
Oncol Res ; 32(6): 1037-1045, 2024.
Article in English | MEDLINE | ID: mdl-38827324

ABSTRACT

Background: The dysregulation of Isocitrate dehydrogenase (IDH) and the subsequent production of 2-Hydroxyglutrate (2HG) may alter the expression of epigenetic proteins in Grade 4 astrocytoma. The interplay mechanism between IDH, O-6-methylguanine-DNA methyltransferase (MGMT)-promoter methylation, and protein methyltransferase proteins-5 (PRMT5) activity, with tumor progression has never been described. Methods: A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors. Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis. Inter-cohort statistical significance was evaluated. Results: Both IDH-mutant WHO grade 4 astrocytomas (n = 22, 64.7%) and IDH-wildtype glioblastomas (n = 12, 35.3%) had upregulated PRMT5 gene expression except in one case. Out of the 22 IDH-mutant tumors, 10 (45.5%) tumors showed MGMT-promoter methylation and 12 (54.5%) tumors had unmethylated MGMT. All IDH-wildtype tumors had unmethylated MGMT. There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma (p-value = 0.006). Statistically significant differences in progression-free survival (PFS) were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide (TMZ) or TMZ plus other chemotherapies, regardless of their IDH or MGMT-methylation status (p-value=0.0014). Specifically, IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation, who received only TMZ, have exhibited longer PFS. Conclusions: The relationship between PRMT5, MGMT-promoter, and IDH is not tri-directional. However, accumulation of D2-hydroxyglutarate (2-HG), which partially activates 2-OG-dependent deoxygenase, may not affect their activities. In IDH-wildtype glioblastomas, the 2HG-2OG pathway is typically inactive, leading to PRMT5 upregulation. TMZ alone, compared to TMZ-plus, can increase PFS in upregulated PRMT5 tumors. Thus, using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.


Subject(s)
Astrocytoma , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Disease Progression , Isocitrate Dehydrogenase , Mutation , Promoter Regions, Genetic , Protein-Arginine N-Methyltransferases , Tumor Suppressor Proteins , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Isocitrate Dehydrogenase/genetics , Male , Female , Astrocytoma/genetics , Astrocytoma/pathology , Middle Aged , Adult , Retrospective Studies , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Neoplasm Grading , Aged , Temozolomide/therapeutic use , Temozolomide/pharmacology , Gene Expression Regulation, Neoplastic
5.
Cancer Imaging ; 24(1): 69, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831467

ABSTRACT

BACKGROUND: Accurate clinical staging is crucial for selection of optimal oncological treatment strategies in non-small cell lung cancer (NSCLC). Although brain MRI, bone scintigraphy and whole-body PET/CT play important roles in detecting distant metastases, there is a lack of evidence regarding the indication for metastatic staging in early NSCLCs, especially ground-grass nodules (GGNs). Our aim was to determine whether checking for distant metastasis is required in cases of clinical T1N0 GGN. METHODS: This was a retrospective study of initial staging using imaging tests in patients who had undergone complete surgical R0 resection for clinical T1N0 Stage IA NSCLC. RESULTS: A total of 273 patients with cT1N0 GGNs (n = 183) or cT1N0 solid tumors (STs, n = 90) were deemed eligible. No cases of distant metastasis were detected on initial routine imaging evaluations. Among all cT1N0M0 cases, there were 191 incidental findings on various modalities (128 in the GGN). Most frequently detected on brain MRI was cerebral leukoaraiosis, which was found in 98/273 (35.9%) patients, while cerebral infarction was detected in 12/273 (4.4%) patients. Treatable neoplasms, including brain meningioma and thyroid, gastric, renal and colon cancers were also detected on PET/CT (and/or MRI). Among those, 19 patients were diagnosed with a treatable disease, including other-site cancers curable with surgery. CONCLUSIONS: Extensive staging (MRI, scintigraphy, PET/CT etc.) for distant metastasis is not required for patients diagnosed with clinical T1N0 GGNs, though various imaging modalities revealed the presence of adventitious diseases with the potential to increase surgical risks, lead to separate management, and worsen patient outcomes, especially in elderly patients. If clinically feasible, it could be considered to complement staging with whole-body procedures including PET/CT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Magnetic Resonance Imaging , Neoplasm Staging , Positron Emission Tomography Computed Tomography , Humans , Male , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Female , Retrospective Studies , Aged , Middle Aged , Magnetic Resonance Imaging/methods , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/surgery , Positron Emission Tomography Computed Tomography/methods , Adult , Aged, 80 and over , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Neoplasm Metastasis
6.
Continuum (Minneap Minn) ; 30(3): 845-877, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830073

ABSTRACT

OBJECTIVE: Neuro-oncologic emergencies have become more frequent as cancer remains one of the leading causes of death in the United States, second only to heart disease. This article highlights key aspects of epidemiology, diagnosis, and management of acute neurologic complications in primary central nervous system malignancies and systemic cancer, following three thematic classifications: (1) complications that are anatomically or intrinsically tumor-related, (2) complications that are tumor-mediated, and (3) complications that are treatment-related. LATEST DEVELOPMENTS: The main driver of mortality in patients with brain metastasis is systemic disease progression; however, intracranial hypertension, treatment-resistant seizures, and overall decline due to increased intracranial burden of disease are the main factors underlying neurologic-related deaths. Advances in the understanding of tumor-specific characteristics can better inform risk stratification of neurologic complications. Following standardized grading and management algorithms for neurotoxic syndromes related to newer immunologic therapies is paramount to achieving favorable outcomes. ESSENTIAL POINTS: Neuro-oncologic emergencies span the boundaries of subspecialties in neurology and require a broad understanding of neuroimmunology, neuronal hyperexcitability, CSF flow dynamics, intracranial compliance, and neuroanatomy.


Subject(s)
Emergencies , Humans , Male , Brain Neoplasms/therapy , Brain Neoplasms/complications , Female , Central Nervous System Neoplasms/therapy , Central Nervous System Neoplasms/diagnosis , Middle Aged , Nervous System Diseases/therapy , Nervous System Diseases/physiopathology , Nervous System Diseases/diagnosis , Nervous System Diseases/etiology
7.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830885

ABSTRACT

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Subject(s)
Disease Progression , Glioma , Heterogeneous-Nuclear Ribonucleoprotein Group C , Interleukin-1 Receptor-Associated Kinases , MAP Kinase Signaling System , RNA, Messenger , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Cell Line, Tumor , MAP Kinase Signaling System/genetics , Mice , RNA Stability/genetics , Mice, Nude , Animals , Gene Expression Regulation, Neoplastic , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Female , Male , Adenosine/analogs & derivatives , Adenosine/metabolism , Prognosis
8.
Sci Rep ; 14(1): 12736, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830973

ABSTRACT

The purpose of this study was to develop and validate a physiologically based pharmacokinetic (PBPK) model combined with an EGFR occupancy (EO) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and the intracranial time-course of EGFR (T790M and L858R mutants) engagement in patient populations. The PBPK model was also used to investigate the key factors affecting OSI pharmacokinetics (PK) and intracranial EGFR engagement, analyze resistance to the target mutation C797S, and determine optimal dosing regimens when used alone and in drug-drug interactions (DDIs). A population PBPK-EO model of OSI was developed using physicochemical, biochemical, binding kinetic, and physiological properties, and then validated using nine clinical PK studies, observed EO study, and two clinical DDI studies. The PBPK-EO model demonstrated good consistency with observed data, with most prediction-to-observation ratios falling within the range of 0.7 to 1.3 for plasma AUC, Cmax, Ctrough and intracranial free concentration. The simulated time-course of C797S occupancy by the PBPK model was much lower than T790M and L858R occupancy, providing an explanation for OSI on-target resistance to the C797S mutation. The PBPK model identified ABCB1 CLint,u, albumin level, and EGFR expression as key factors affecting plasma Ctrough and intracranial EO for OSI. Additionally, PBPK-EO simulations indicated that the optimal dosing regimen for OSI in patients with brain metastases is either 80 mg once daily (OD) or 160 mg OD, or 40 mg or 80 mg twice daily (BID). When used concomitantly with CYP enzyme perpetrators, the PBPK-EO model suggested appropriate dosing regimens of 80 mg OD with fluvoxamine (FLUV) itraconazole (ITR) or fluvoxamine (FLUC) for co-administration and an increase to 160 mg OD with rifampicin (RIF) or efavirenz (EFA). In conclusion, the PBPK-EO model has been shown to be capable of simulating the pharmacokinetic concentration-time profiles and the time-course of EGFR engagement for OSI, as well as determining the optimum dosing in various clinical situations.


Subject(s)
Acrylamides , Aniline Compounds , Brain Neoplasms , ErbB Receptors , Humans , Aniline Compounds/pharmacokinetics , Aniline Compounds/administration & dosage , Acrylamides/pharmacokinetics , Acrylamides/administration & dosage , ErbB Receptors/genetics , ErbB Receptors/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Models, Biological , Mutation , Female , Male , Drug Interactions , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/blood , Antineoplastic Agents/administration & dosage , Middle Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Indoles , Pyrimidines
9.
Commun Biol ; 7(1): 677, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830977

ABSTRACT

We present a quantitative sandwich immunoassay for CD63 Extracellular Vesicles (EVs) and a constituent surface cargo, EGFR and its activity state, that provides a sensitive, selective, fluorophore-free and rapid alternative to current EV-based diagnostic methods. Our sensing design utilizes a charge-gating strategy, with a hydrophilic anion exchange membrane functionalized with capture antibodies and a charged silica nanoparticle reporter functionalized with detection antibodies. With sensitivity and robustness enhancement by the ion-depletion action of the membrane, this hydrophilic design with charged reporters minimizes interference from dispersed proteins, thus enabling direct plasma analysis without the need for EV isolation or sensor blocking. With a LOD of 30 EVs/µL and a high relative sensitivity of 0.01% for targeted proteomic subfractions, our assay enables accurate quantification of the EV marker, CD63, with colocalized EGFR by an operator/sample insensitive universal normalized calibration. We analysed untreated clinical samples of Glioblastoma to demonstrate this new platform. Notably, we target both total and "active" EGFR on EVs; with a monoclonal antibody mAb806 that recognizes a normally hidden epitope on overexpressed or mutant variant III EGFR. Analysis of samples yielded an area-under-the-curve (AUC) value of 0.99 and a low p-value of 0.000033, surpassing the performance of existing assays and markers.


Subject(s)
ErbB Receptors , Extracellular Vesicles , Glioblastoma , Tetraspanin 30 , Humans , Glioblastoma/blood , Glioblastoma/diagnosis , Glioblastoma/metabolism , Tetraspanin 30/metabolism , ErbB Receptors/metabolism , Extracellular Vesicles/metabolism , Immunoassay/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Brain Neoplasms/blood , Brain Neoplasms/metabolism , Brain Neoplasms/diagnosis
10.
Acta Neurochir (Wien) ; 166(1): 244, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822919

ABSTRACT

BACKGROUND: Surgical resection of insular gliomas is a challenge. TO resection is considered more versatile and has lower risk of vascular damage. In this study, we aimed to understand the factors that affect resection rates, ischemic changes and neurological outcomes and studied the utility of IONM in patients who underwent TO resection for IGs. METHODS: Retrospective analysis of 66 patients with IG who underwent TO resection was performed. RESULTS: Radical resection was possible in 39% patients. Involvement of zone II and the absence of contrast enhancement predicted lower resection rate. Persistent deficit rate was 10.9%. Although dominant lobe tumors increased immediate deficit and fronto-orbital operculum involvement reduced prolonged deficit rate, no tumor related factor showed significant association with persistent deficits. 45% of patients developed a postoperative infarct, 53% of whom developed deficits. Most affected vascular territory was lenticulostriate (39%). MEP changes were observed in 9/57 patients. 67% of stable TcMEPs and 74.5% of stable strip MEPs did not develop any postoperative motor deficits. Long-term deficits were seen in 3 and 6% patients with stable TcMEP and strip MEPs respectively. In contrast, 25% and 50% of patients with reversible strip MEP and Tc MEP changes respectively had persistent motor deficits. DWI changes were clinically more relevant when accompanied by MEP changes intraoperatively, with persistent deficit rates three times greater when MEP changes occurred than when MEPs were stable. CONCLUSION: Radical resection can be achieved in large, multizone IGs, with reasonable outcomes using TO approach and multimodal intraoperative strategy with IONM.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/surgery , Glioma/pathology , Male , Female , Middle Aged , Adult , Brain Neoplasms/surgery , Retrospective Studies , Treatment Outcome , Aged , Insular Cortex/surgery , Neurosurgical Procedures/methods , Postoperative Complications/etiology , Young Adult
11.
Sci Rep ; 14(1): 12602, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824202

ABSTRACT

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/genetics , Glioma/pathology , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , RNA Processing, Post-Transcriptional , Neoplasm Grading , Mitochondria/genetics , Mitochondria/metabolism , Biomarkers, Tumor/genetics , Gene Expression Profiling , Multiomics
12.
Mol Biol Rep ; 51(1): 723, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833199

ABSTRACT

BACKGROUND: Glioblastoma multiforme, a deadly form of brain tumor, is characterized by aggressive growth and poor prognosis. Oxidative stress, a disruption in the balance between antioxidants and oxidants, is a crucial factor in its pathogenesis. Silymarin, a flavonoid extracted from milk thistle, has shown therapeutic potential in inhibiting cancer cell growth, promoting apoptosis, and reducing inflammation. It also regulates oxidative stress. This study aims to investigate the regulatory effects of silymarin on oxidative stress parameters, especially the transcription factor Nrf2 and its related enzymes in GBM cancer cells, to develop a new anti-cancer compound with low toxicity. METHODS AND RESULTS: First, the cytotoxicity of silymarin on U-87 MG cells was investigated by MTT and the results showed an IC50 of 264.6 µM. Then, some parameters of the redox system were measured with commercial kits, and the obtained results showed that silymarin increased the activity of catalase and superoxide dismutase enzymes, as well as the total antioxidant capacity levels; while the malondialdehyde level that is an indicator of lipid peroxidation was decreased by this compound. The expression level of Nrf2 and HO-1 and glutaredoxin and thioredoxin enzymes were checked by real-time PCR method, and the expression level increased significantly after treatment. CONCLUSIONS: Our findings suggest that silymarin may exert its cytotoxic and anticancer effects by enhancing the Nrf2/HO-1 pathway through antioxidant mechanisms in U-87 MG cells.


Subject(s)
Antioxidants , Glioblastoma , NF-E2-Related Factor 2 , Oxidation-Reduction , Oxidative Stress , Silymarin , Silymarin/pharmacology , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cell Line, Tumor , Oxidation-Reduction/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Lipid Peroxidation/drug effects , Cell Survival/drug effects , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Catalase/metabolism , Catalase/genetics
13.
Front Immunol ; 15: 1369972, 2024.
Article in English | MEDLINE | ID: mdl-38690285

ABSTRACT

Background: Temozolomide (TMZ) is a key component in the treatment of gliomas. Hypermutation induced by TMZ can be encountered in routine clinical practice, and its significance is progressively gaining recognition. However, the relationship between TMZ-induced hypermutation and the immunologic response remains controversial. Case presentation: We present the case of a 38-year-old male patient who underwent five surgeries for glioma. Initially diagnosed with IDH-mutant astrocytoma (WHO grade 2) during the first two surgeries, the disease progressed to grade 4 in subsequent interventions. Prior to the fourth surgery, the patient received 3 cycles of standard TMZ chemotherapy and 9 cycles of dose-dense TMZ regimens. Genomic and immunologic analyses of the tumor tissue obtained during the fourth surgery revealed a relatively favorable immune microenvironment, as indicated by an immunophenoscore of 5, suggesting potential benefits from immunotherapy. Consequently, the patient underwent low-dose irradiation combined with immunoadjuvant treatment. After completing 4 cycles of immunotherapy, the tumor significantly shrank, resulting in a partial response. However, after a 6-month duration of response, the patient experienced disease progression. Subsequent analysis of the tumor tissue obtained during the fifth surgery revealed the occurrence of hypermutation, with mutation signature analysis attributing TMZ treatment as the primary cause. Unfortunately, the patient succumbed shortly thereafter, with a survival period of 126 months. Conclusion: Patients subjected to a prolonged regimen of TMZ treatment may exhibit heightened vulnerability to hypermutation. This hypermutation induced by TMZ holds the potential to function as an indicator associated with unfavorable response to immunotherapy in gliomas.


Subject(s)
Antineoplastic Agents, Alkylating , Brain Neoplasms , Glioma , Mutation , Temozolomide , Humans , Temozolomide/therapeutic use , Male , Adult , Brain Neoplasms/therapy , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Glioma/genetics , Glioma/therapy , Glioma/drug therapy , Antineoplastic Agents, Alkylating/therapeutic use , Immunotherapy/methods , Fatal Outcome , Tumor Microenvironment/immunology
14.
Neurol India ; 72(2): 297-303, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38691473

ABSTRACT

BACKGROUND: Immune microenvironment is involved in tumor initiation and progression, and its effect on glioblastoma (GBM) is still unknown. OBJECT: We sought to investigate the association between immune status and GBM. METHODS: Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, and we identified two immune subtypes based on 29 immune-associated gene sets. RESULTS: Through single-sample gene set enrichment analysis (ssGSEA), we found that the high-immunity subtype had the most tumor-infiltrating immune cells and immune checkpoint molecules in GBM patients. Furthermore, we could more effectively identify immune signature pathways in GBM. CONCLUSION: After validation with the GEO dataset, we conclude that the identified GBM high-immune subtypes may be amenable to the application of novel immune therapy for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Tumor Microenvironment , Humans , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/pathology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Gene Expression Profiling , Transcriptome , Immune Checkpoint Proteins/genetics , Gene Expression Regulation, Neoplastic
17.
JCO Precis Oncol ; 8: e2300470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38691815

ABSTRACT

PURPOSE: Small cell lung cancer (SCLC) often metastasizes to the brain and has poor prognosis. SCLC subtypes distinguished by expressing transcriptional factors ASCL1 or NEUROD1 have been identified. This study investigates the impact of transcription factor-defined SCLC subtype on incidence and outcomes of brain metastases (BMs). METHODS: Patients with SCLC with ASCL1 (A) and NEUROD1 (N) immunohistochemical expression status were identified and classified: (1) A+/N-, (2) A+/N+, (3) A-/N+, and (4) A-/N-. Cumulative incidence competing risk analyses were used to assess incidence of CNS progression. Cox proportional hazards models were used for multivariable analyses of overall survival (OS) and CNS progression-free survival (CNS-PFS). RESULTS: Of 164 patients, most were either A+/N- or A+/N+ (n = 62, n = 63, respectively). BMs were present at diagnosis in 24 patients (15%). Among them, the 12-month cumulative incidence of subsequent CNS progression was numerically highest for A+/N- (50% [95% CI, 10.5 to 74.7]; P = .47). Among those BM-free at diagnosis, the 12-month cumulative incidence of CNS progression was numerically the highest for A+/N- (16% [95% CI, 7.5 to 27.9]) and A-/N+ (9.1% [95% CI, 0.0 to 34.8]; P = .20). Both subtypes, A+/N- and A-/N+, had worse OS compared with A+/N+ (A+/N-: hazard ratio [HR], 1.62 [95% CI, 1.01 to 2.51]; P < .05; A-/N+: HR, 3.02 [95% CI, 1.35 to 6.76]; P = .007). Excellent response rates (28, 65% CR/PR) across subtypes were seen in patients who had CNS-directed radiotherapy versus systemic therapy alone (9, 36% CR/PR). CONCLUSION: To our knowledge, this report is the first to investigate CNS-specific outcomes based on transcription factor subtypes in patients with SCLC. BM-free patients at diagnosis with A+/N- or A-/N+ subtypes had worse outcomes compared with those with transcriptional factor coexpression. Further investigation into the mechanisms and implications of SCLC subtyping on CNS-specific outcomes is warranted to ultimately guide personalized care.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/secondary , Male , Female , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Middle Aged , Prognosis , Aged , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Adult , Aged, 80 and over , Central Nervous System Neoplasms/secondary , Central Nervous System Neoplasms/genetics , Retrospective Studies
18.
Adv Tech Stand Neurosurg ; 49: 181-200, 2024.
Article in English | MEDLINE | ID: mdl-38700685

ABSTRACT

BACKGROUND: The role of surgery in the management of malignant gliomas has been feverishly deliberated after the publication of the first expansive case series, the last two decades reinvigorating the discussion regarding the value of total removal in improving survivability. Despite numerous technologies being implemented to increase the resection rates of malignant gliomas, the role of surgical experience has been largely overlooked. This article aims to discuss the importance of a single surgeon's experience in treating high-grade gliomas over a period of 20 years. MATERIAL AND METHODS: In order to demonstrate the role of surgical experience, we divided the patients operated by a single neurosurgeon into two distinct intervals: between 2000 and 2009 and between 2012 and 2020, respectively. Only cases with subsequent adjuvant radio-chemotherapy were included. For objective reasons, no technologies that could assist the extent of resection (EOR) such as intraoperative MRI (iMRI) or 5-ALA could be used in the country of our study. Gross total resection was the main goal whenever possible, whereas subtotal removal was defined as a clear remnant on contrasted MRI or CT performed 24-48 h postoperatively. Using the Kaplan-Meier method, we analyzed the survival and disease-free interval of our patients according to age, pathology, and degree of resection. RESULTS: In the 20-year interval of our retrospective study, the main author (ISF) operated 1591 cases of gliomas in a total of 1878 surgeries, including recurrences. The number of high-grade glioma (HGG) patients was 909 (57.10%), 495 of which were male (54.5%) and 414 (45.5%) female. The mean age of the HGG population was 51.9 years. The most common type of HGG subtype were glioblastomas with a total number 620 cases (68.2%). Regarding overall survival (OS), average survival at 12 months was better by 1.6%, and 12.1% improved at 18 months and 17.8% longer at 24 months in the 2012-2020 interval. The mean OS in the earlier interval was 11.00 months compared to the second when it reached 13.441 months (CI, 12.642-14.24). CONCLUSION: Surgical treatment represents a critical step in the multimodal treatment of malignant gliomas. According to our results, surgical experience improves not only overall survival in a manner equivalent to adjuvant chemotherapy but also the quality of life. As such, a special qualification in neurooncology may prove necessary in offering these patients a second chance at life.


Subject(s)
Brain Neoplasms , Glioma , Neurosurgical Procedures , Humans , Glioma/surgery , Glioma/mortality , Glioma/pathology , Brain Neoplasms/surgery , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Middle Aged , Male , Female , Adult , Neurosurgical Procedures/methods , Aged , Retrospective Studies , Young Adult
19.
Front Immunol ; 15: 1342977, 2024.
Article in English | MEDLINE | ID: mdl-38698847

ABSTRACT

Introduction: Aberrant reactive oxygen species (ROS) production is one of the hallmarks of cancer. During their growth and dissemination, cancer cells control redox signaling to support protumorigenic pathways. As a consequence, cancer cells become reliant on major antioxidant systems to maintain a balanced redox tone, while avoiding excessive oxidative stress and cell death. This concept appears especially relevant in the context of glioblastoma multiforme (GBM), the most aggressive form of brain tumor characterized by significant heterogeneity, which contributes to treatment resistance and tumor recurrence. From this viewpoint, this study aims to investigate whether gene regulatory networks can effectively capture the diverse redox states associated with the primary phenotypes of GBM. Methods: In this study, we utilized publicly available GBM datasets along with proprietary bulk sequencing data. Employing computational analysis and bioinformatics tools, we stratified GBM based on their antioxidant capacities and evaluated the distinctive functionalities and prognostic values of distinct transcriptional networks in silico. Results: We established three distinct transcriptional co-expression networks and signatures (termed clusters C1, C2, and C3) with distinct antioxidant potential in GBM cancer cells. Functional analysis of each cluster revealed that C1 exhibits strong antioxidant properties, C2 is marked with a discrepant inflammatory trait and C3 was identified as the cluster with the weakest antioxidant capacity. Intriguingly, C2 exhibited a strong correlation with the highly aggressive mesenchymal subtype of GBM. Furthermore, this cluster holds substantial prognostic importance: patients with higher gene set variation analysis (GSVA) scores of the C2 signature exhibited adverse outcomes in overall and progression-free survival. Conclusion: In summary, we provide a set of transcriptional signatures that unveil the antioxidant potential of GBM, offering a promising prognostic application and a guide for therapeutic strategies in GBM therapy.


Subject(s)
Antioxidants , Brain Neoplasms , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma , Oxidation-Reduction , Phenotype , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Antioxidants/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Reactive Oxygen Species/metabolism , Oxidative Stress , Computational Biology/methods , Prognosis , Gene Expression Profiling , Transcriptome
20.
Nat Commun ; 15(1): 3728, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697991

ABSTRACT

With improvements in survival for patients with metastatic cancer, long-term local control of brain metastases has become an increasingly important clinical priority. While consensus guidelines recommend surgery followed by stereotactic radiosurgery (SRS) for lesions >3 cm, smaller lesions (≤3 cm) treated with SRS alone elicit variable responses. To determine factors influencing this variable response to SRS, we analyzed outcomes of brain metastases ≤3 cm diameter in patients with no prior systemic therapy treated with frame-based single-fraction SRS. Following SRS, 259 out of 1733 (15%) treated lesions demonstrated MRI findings concerning for local treatment failure (LTF), of which 202 /1733 (12%) demonstrated LTF and 54/1733 (3%) had an adverse radiation effect. Multivariate analysis demonstrated tumor size (>1.5 cm) and melanoma histology were associated with higher LTF rates. Our results demonstrate that brain metastases ≤3 cm are not uniformly responsive to SRS and suggest that prospective studies to evaluate the effect of SRS alone or in combination with surgery on brain metastases ≤3 cm matched by tumor size and histology are warranted. These studies will help establish multi-disciplinary treatment guidelines that improve local control while minimizing radiation necrosis during treatment of brain metastasis ≤3 cm.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Radiosurgery , Radiosurgery/methods , Humans , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Male , Female , Middle Aged , Aged , Melanoma/pathology , Adult , Treatment Outcome , Tumor Burden , Aged, 80 and over , Treatment Failure , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...