Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.126
Filter
1.
BMJ Case Rep ; 17(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38729658

ABSTRACT

Ependymomas are neuroepithelial tumours arising from ependymal cells surrounding the cerebral ventricles that rarely metastasise to extraneural structures. This spread has been reported to occur to the lungs, lymph nodes, liver and bone. We describe the case of a patient with recurrent CNS WHO grade 3 ependymoma with extraneural metastatic disease. He was treated with multiple surgical resections, radiation therapy and salvage chemotherapy for his extraneural metastasis to the lungs, bone, pleural space and lymph nodes.


Subject(s)
Bone Neoplasms , Ependymoma , Lung Neoplasms , Pleural Neoplasms , Humans , Male , Ependymoma/secondary , Ependymoma/pathology , Ependymoma/diagnostic imaging , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Pleural Neoplasms/secondary , Pleural Neoplasms/pathology , Pleural Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Lymphatic Metastasis/diagnostic imaging , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging
2.
Int J Gynecol Cancer ; 34(1): 88-98, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38805344

ABSTRACT

OBJECTIVE: To evaluate disease characteristics and survival according to BRCA status, administration of poly-(ADP-ribose) polymerase inhibitors (PARPi), and surgery in patients with ovarian cancer and brain metastases. METHODS: This is a monocentric retrospective cohort of patients with ovarian cancer and brain metastases treated between 2000 and 2021. Data were collected by a retrospective review of medical records and analyzed according to: (1) BRCA mutation; (2) PARPi before and after brain metastases; (3) surgery for brain metastases. RESULTS: Eighty-five patients with ovarian cancer and brain metastasis and known BRCA status (31 BRCA mutated (BRCAm), 54 BRCA wild-type (BRCAwt)) were analyzed. Twenty-two patients had received PARPi before brain metastases diagnosis (11 BRCAm, 11 BRCAwt) and 12 after (8 BRCAm, 4 BRCAwt). Brain metastases occurred >1 year later in patients who had received previous PARPi. Survival was longer in the BRCAm group (median post-brain metastasis survival: BRCAm 23 months vs BRCAwt 8 months, p=0.0015). No differences were found based on BRCA status analyzing the population who did not receive PARPi after brain metastasis (median post-brain metastasis survival: BRCAm 8 months vs BRCAwt 8 months, p=0.31). In the BRCAm group, survival was worse in patients who had received previous PARPi (median post-brain metastasis survival: PARPi before, 7 months vs no-PARPi before, 24 months, p=0.003). If PARPi was administered after brain metastases, survival of the overall population improved (median post-brain metastasis survival: PARPi after, 46 months vs no-PARPi after, 8 months, p=0.00038).In cases of surgery for brain metastases, the prognosis seemed better (median post-brain metastasis survival: surgery 13 months vs no-surgery 8 months, p=0.036). Three variables were significantly associated with prolonged survival at multivariate analysis: BRCA mutation, multimodal treatment, and ≤1 previous chemotherapy line. CONCLUSIONS: BRCA mutations might impact brain metastasis occurrence and lead to better outcomes. In a multimodal treatment, surgery seems to affect survival even in cases of extracranial disease. PARPi use should be considered as it seems to prolong survival if administered after brain metastasis.


Subject(s)
Brain Neoplasms , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/surgery , Brain Neoplasms/mortality , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Retrospective Studies , Middle Aged , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Ovarian Neoplasms/surgery , Ovarian Neoplasms/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/surgery , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/secondary , Carcinoma, Ovarian Epithelial/pathology , Aged , Adult , BRCA2 Protein/genetics , BRCA1 Protein/genetics
4.
ESMO Open ; 9(5): 102924, 2024 May.
Article in English | MEDLINE | ID: mdl-38796287

ABSTRACT

BACKGROUND: DESTINY-Breast03 is a randomized, multicenter, open-label, phase III study of trastuzumab deruxtecan (T-DXd) versus trastuzumab emtansine (T-DM1) in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) previously treated with trastuzumab and a taxane. A statistically significant improvement in progression-free survival (PFS) versus T-DM1 was reported in the primary analysis. Here, we report exploratory efficacy data in patients with and without brain metastases (BMs) at baseline. PATIENTS AND METHODS: Patients were randomly assigned 1 : 1 to receive T-DXd 5.4 mg/kg or T-DM1 3.6 mg/kg. Patients with clinically inactive/asymptomatic BMs were eligible. Lesions were measured as per modified RECIST, version 1.1. Outcomes included PFS by blinded independent central review (BICR), objective response rate (ORR), and intracranial ORR as per BICR. RESULTS: As of 21 May 2021, 43/261 patients randomized to T-DXd and 39/263 patients randomized to T-DM1 had BMs at baseline, as per investigator assessment. Among patients with baseline BMs, 20/43 in the T-DXd arm and 19/39 in the T-DM1 arm had not received prior local BM treatment. For patients with BMs, median PFS was 15.0 months [95% confidence interval (CI) 12.5-22.2 months] for T-DXd versus 3.0 months (95% CI 2.8-5.8 months) for T-DM1; hazard ratio (HR) 0.25 (95% CI 0.13-0.45). For patients without BMs, median PFS was not reached (95% CI 22.4 months-not estimable) for T-DXd versus 7.1 months (95% CI 5.6-9.7 months) for T-DM1; HR 0.30 (95% CI 0.22-0.40). Confirmed systemic ORR was 67.4% for T-DXd versus 20.5% for T-DM1 and 82.1% for T-DXd versus 36.6% for T-DM1 for patients with and without BMs, respectively. Intracranial ORR was 65.7% with T-DXd versus 34.3% with T-DM1. CONCLUSIONS: Patients with HER2-positive mBC whose disease progressed after trastuzumab and a taxane achieved a substantial benefit from treatment with T-DXd compared with T-DM1, including those with baseline BMs.


Subject(s)
Ado-Trastuzumab Emtansine , Brain Neoplasms , Breast Neoplasms , Receptor, ErbB-2 , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Middle Aged , Ado-Trastuzumab Emtansine/therapeutic use , Ado-Trastuzumab Emtansine/pharmacology , Receptor, ErbB-2/metabolism , Adult , Aged , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Progression-Free Survival
6.
Am Soc Clin Oncol Educ Book ; 44(3): e433694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781565

ABSTRACT

The management of brain metastases, a potentially devastating complication of advanced cancers, has become increasingly complex with advancements in local and systemic therapies. Improved outcomes and extended survival for patients with metastatic solid tumors have led to a surge in the prevalence and possibly incidence of brain metastases, affecting up to 40% of individuals with solid tumors. Enhanced imaging technologies contribute to more accurate and early detection, shaping the understanding of the intricate landscape of this condition. Traditionally, surgery and radiation stood as the mainstays of treatment because of the limited efficacy of systemic therapies within the brain. However, emerging clinical data, particularly in melanoma, lung, and breast cancers, reveal promising results with novel systemic treatments such as immunotherapy and targeted therapies. Despite the historical exclusion of patients with active brain metastases from clinical trials, a shift is occurring toward a more inclusive approach. This chapter delves into the multifaceted challenges associated with managing brain metastases, with a focus on the evolving landscape of systemic approaches as well as the intricacies of shared decision making, providing a comprehensive overview of the current state and future directions in navigating the complexities of brain metastases management.


Subject(s)
Brain Neoplasms , Disease Management , Humans , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Combined Modality Therapy
7.
Int J Oncol ; 65(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785155

ABSTRACT

The prognosis for patients with non­small cell lung cancer (NSCLC), a cancer type which represents 85% of all lung cancers, is poor with a 5­year survival rate of 19%, mainly because NSCLC is diagnosed at an advanced and metastatic stage. Despite recent therapeutic advancements, ~50% of patients with NSCLC will develop brain metastases (BMs). Either surgical BM treatment alone for symptomatic patients and patients with single cerebral metastases, or in combination with stereotactic radiotherapy (RT) for patients who are not suitable for surgery or presenting with fewer than four cerebral lesions with a diameter range of 5­30 mm, or whole­brain RT for numerous or large BMs can be administered. However, radioresistance (RR) invariably prevents the action of RT. Several mechanisms of RR have been described including hypoxia, cellular stress, presence of cancer stem cells, dysregulation of apoptosis and/or autophagy, dysregulation of the cell cycle, changes in cellular metabolism, epithelial­to­mesenchymal transition, overexpression of programmed cell death­ligand 1 and activation several signaling pathways; however, the role of the Hippo signaling pathway in RR is unclear. Dysregulation of the Hippo pathway in NSCLC confers metastatic properties, and inhibitors targeting this pathway are currently in development. It is therefore essential to evaluate the effect of inhibiting the Hippo pathway, particularly the effector yes­associated protein­1, on cerebral metastases originating from lung cancer.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Hippo Signaling Pathway , Lung Neoplasms , Protein Serine-Threonine Kinases , Radiation Tolerance , Signal Transduction , Humans , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/secondary , Protein Serine-Threonine Kinases/metabolism , Radiosurgery/methods , Epithelial-Mesenchymal Transition , Molecular Targeted Therapy
8.
Cancer Control ; 31: 10732748241255212, 2024.
Article in English | MEDLINE | ID: mdl-38769789

ABSTRACT

OBJECTIVE: A high number of Non-Small Cell Lung Cancer (NSCLC) patients with brain metastasis who have not had surgery often have a negative outlook. Radiotherapy remains a most common and effective method. Nomograms were developed to forecast the cancer-specific survival (CSS) and overall survival (OS) in NSCLC individuals with nonoperative brain metastases who underwent radiotherapy. METHODS: Information was gathered from the Surveillance, Epidemiology, and End Results (SEER) database about patients diagnosed with NSCLC who had brain metastases not suitable for surgery. Nomograms were created and tested using multivariate Cox regression models to forecast CSS and OS at intervals of 1, 2, and 3 years. RESULTS: The research involved 3413 individuals diagnosed with NSCLC brain metastases who had undergone radiotherapy but had not experienced surgery. These participants were randomly divided into two categories. The analysis revealed that gender, age, ethnicity, marital status, tumor location, tumor laterality, tumor grade, histology, T stage, N stage, chemotherapy, tumor size, lung metastasis, bone metastasis, and liver metastasis were significant independent predictors for OS and CSS. The C-index for the training set for predicting OS was .709 (95% CI, .697-.721), and for the validation set, it was .705 (95% CI, .686-.723), respectively. The C-index for predicting CSS was .710 (95% CI, .697-.722) in the training set and .703 (95% CI, .684-.722) in the validation set, respectively. The nomograms model, as suggested by the impressive C-index, exhibits outstanding differentiation ability. Moreover, the ROC and calibration curves reveal its commendable precision and distinguishing potential. CONCLUSIONS: For the first time, highly accurate and reliable nomograms were developed to predict OS and CSS in NSCLC patients with non-surgical brain metastases, who have undergone radiotherapy treatment. The nomograms may assist in tailoring counseling strategies and choosing the most effective treatment method.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nomograms , SEER Program , Humans , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Male , Female , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/mortality , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Middle Aged , Aged , Prognosis , Adult
9.
Cancer Imaging ; 24(1): 65, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773634

ABSTRACT

OBJECTIVES: Magnetic resonance (MR)-based radiomics features of brain metastases are utilised to predict epidermal growth factor receptor (EGFR) mutation and human epidermal growth factor receptor 2 (HER2) overexpression in adenocarcinoma, with the aim to identify the most predictive MR sequence. METHODS: A retrospective inclusion of 268 individuals with brain metastases from adenocarcinoma across two institutions was conducted. Utilising T1-weighted imaging (T1 contrast-enhanced [T1-CE]) and T2 fluid-attenuated inversion recovery (T2-FLAIR) sequences, 1,409 radiomics features were extracted. These sequences were randomly divided into training and test sets at a 7:3 ratio. The selection of relevant features was done using the least absolute shrinkage selection operator, and the training cohort's support vector classifier model was employed to generate the predictive model. The performance of the radiomics features was evaluated using a separate test set. RESULTS: For contrast-enhanced T1-CE cohorts, the radiomics features based on 19 selected characteristics exhibited excellent discrimination. No significant differences in age, sex, and time to metastasis were observed between the groups with EGFR mutations or HER2 + and those with wild-type EGFR or HER2 (p > 0.05). Radiomics feature analysis for T1-CE revealed an area under the curve (AUC) of 0.98, classification accuracy of 0.93, sensitivity of 0.92, and specificity of 0.93 in the training cohort. In the test set, the AUC was 0.82. The 19 radiomics features for the T2-FLAIR sequence showed AUCs of 0.86 in the training set and 0.70 in the test set. CONCLUSIONS: This study developed a T1-CE signature that could serve as a non-invasive adjunctive tool to determine the presence of EGFR mutations and HER2 + status in adenocarcinoma, aiding in the direction of treatment plans. CLINICAL RELEVANCE STATEMENT: We propose radiomics features based on T1-CE brain MR sequences that are both evidence-based and non-invasive. These can be employed to guide clinical treatment planning in patients with brain metastases from adenocarcinoma.


Subject(s)
Adenocarcinoma , Brain Neoplasms , ErbB Receptors , Magnetic Resonance Imaging , Mutation , Receptor, ErbB-2 , Humans , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Brain Neoplasms/diagnostic imaging , ErbB Receptors/genetics , Female , Male , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging/methods , Receptor, ErbB-2/genetics , Adenocarcinoma/genetics , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Aged , Adult , Radiomics
10.
Oncoimmunology ; 13(1): 2356942, 2024.
Article in English | MEDLINE | ID: mdl-38778816

ABSTRACT

Brain metastasis is the most devasting form of lung cancer. Recent studies highlight significant differences in the tumor microenvironment (TME) between lung cancer brain metastasis (LCBM) and primary lung cancer, which contribute significantly to tumor progression and drug resistance. Cancer-associated fibroblasts (CAFs) are the major component of pro-tumor TME with high plasticity. However, the lineage composition and function of CAFs in LCBM remain elusive. By reanalyzing single-cell RNA sequencing (scRNA-seq) data (GSE131907) from lung cancer patients with different stages of metastasis comprising primary lesions and brain metastasis, we found that CAFs undergo distinctive lineage transition during LCBM under a hypoxic situation, which is directly driven by hypoxia-induced HIF-2α activation. Transited CAFs enhance angiogenesis through VEGF pathways, trigger metabolic reprogramming, and promote the growth of tumor cells. Bulk RNA sequencing data was utilized as validation cohorts. Multiplex immunohistochemistry (mIHC) assay was performed on four paired samples of brain metastasis and their primary lung cancer counterparts to validate the findings. Our study revealed a novel mechanism of lung cancer brain metastasis featuring HIF-2α-induced lineage transition and functional alteration of CAFs, which offers potential therapeutic targets.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Brain Neoplasms , Cancer-Associated Fibroblasts , Lung Neoplasms , Tumor Microenvironment , Humans , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Mice , Animals , Cell Line, Tumor , Phenotype , Cell Lineage , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Single-Cell Analysis
11.
JCO Precis Oncol ; 8: e2300470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38691815

ABSTRACT

PURPOSE: Small cell lung cancer (SCLC) often metastasizes to the brain and has poor prognosis. SCLC subtypes distinguished by expressing transcriptional factors ASCL1 or NEUROD1 have been identified. This study investigates the impact of transcription factor-defined SCLC subtype on incidence and outcomes of brain metastases (BMs). METHODS: Patients with SCLC with ASCL1 (A) and NEUROD1 (N) immunohistochemical expression status were identified and classified: (1) A+/N-, (2) A+/N+, (3) A-/N+, and (4) A-/N-. Cumulative incidence competing risk analyses were used to assess incidence of CNS progression. Cox proportional hazards models were used for multivariable analyses of overall survival (OS) and CNS progression-free survival (CNS-PFS). RESULTS: Of 164 patients, most were either A+/N- or A+/N+ (n = 62, n = 63, respectively). BMs were present at diagnosis in 24 patients (15%). Among them, the 12-month cumulative incidence of subsequent CNS progression was numerically highest for A+/N- (50% [95% CI, 10.5 to 74.7]; P = .47). Among those BM-free at diagnosis, the 12-month cumulative incidence of CNS progression was numerically the highest for A+/N- (16% [95% CI, 7.5 to 27.9]) and A-/N+ (9.1% [95% CI, 0.0 to 34.8]; P = .20). Both subtypes, A+/N- and A-/N+, had worse OS compared with A+/N+ (A+/N-: hazard ratio [HR], 1.62 [95% CI, 1.01 to 2.51]; P < .05; A-/N+: HR, 3.02 [95% CI, 1.35 to 6.76]; P = .007). Excellent response rates (28, 65% CR/PR) across subtypes were seen in patients who had CNS-directed radiotherapy versus systemic therapy alone (9, 36% CR/PR). CONCLUSION: To our knowledge, this report is the first to investigate CNS-specific outcomes based on transcription factor subtypes in patients with SCLC. BM-free patients at diagnosis with A+/N- or A-/N+ subtypes had worse outcomes compared with those with transcriptional factor coexpression. Further investigation into the mechanisms and implications of SCLC subtyping on CNS-specific outcomes is warranted to ultimately guide personalized care.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/secondary , Male , Female , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Middle Aged , Prognosis , Aged , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Adult , Aged, 80 and over , Central Nervous System Neoplasms/secondary , Central Nervous System Neoplasms/genetics , Retrospective Studies
12.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709930

ABSTRACT

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Breast Neoplasms , Nanoparticles , Oxidative Phosphorylation , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/pathology , Animals , Humans , Female , Nanoparticles/chemistry , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Oxidative Phosphorylation/drug effects , Cell Line, Tumor , Mitochondria/metabolism , Mitochondria/drug effects , Drug Delivery Systems/methods , Glycolysis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use
13.
Sci Rep ; 14(1): 11085, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750084

ABSTRACT

We developed artificial intelligence models to predict the brain metastasis (BM) treatment response after stereotactic radiosurgery (SRS) using longitudinal magnetic resonance imaging (MRI) data and evaluated prediction accuracy changes according to the number of sequential MRI scans. We included four sequential MRI scans for 194 patients with BM and 369 target lesions for the Developmental dataset. The data were randomly split (8:2 ratio) for training and testing. For external validation, 172 MRI scans from 43 patients with BM and 62 target lesions were additionally enrolled. The maximum axial diameter (Dmax), radiomics, and deep learning (DL) models were generated for comparison. We evaluated the simple convolutional neural network (CNN) model and a gated recurrent unit (Conv-GRU)-based CNN model in the DL arm. The Conv-GRU model performed superior to the simple CNN models. For both datasets, the area under the curve (AUC) was significantly higher for the two-dimensional (2D) Conv-GRU model than for the 3D Conv-GRU, Dmax, and radiomics models. The accuracy of the 2D Conv-GRU model increased with the number of follow-up studies. In conclusion, using longitudinal MRI data, the 2D Conv-GRU model outperformed all other models in predicting the treatment response after SRS of BM.


Subject(s)
Brain Neoplasms , Deep Learning , Magnetic Resonance Imaging , Radiosurgery , Humans , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/radiotherapy , Magnetic Resonance Imaging/methods , Radiosurgery/methods , Female , Male , Middle Aged , Aged , Treatment Outcome , Neural Networks, Computer , Longitudinal Studies , Adult , Aged, 80 and over , Radiomics
14.
Front Immunol ; 15: 1388574, 2024.
Article in English | MEDLINE | ID: mdl-38726015

ABSTRACT

Background: Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body: This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion: Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , Tumor Microenvironment , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Brain Neoplasms/secondary , Brain Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Biomarkers, Tumor/metabolism , Blood-Brain Barrier/metabolism
15.
Cell Rep Med ; 5(5): 101533, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38744278

ABSTRACT

Brain metastases (BrMs) are the leading cause of death in patients with solid cancers. BrMs exhibit a highly immunosuppressive milieu and poor response to immunotherapies; however, the underlying mechanism remains largely unclear. Here, we show that upregulation of HSP47 in tumor cells drives metastatic colonization and outgrowth in the brain by creating an immunosuppressive microenvironment. HSP47-mediated collagen deposition in the metastatic niche promotes microglial polarization to the M2 phenotype via the α2ß1 integrin/nuclear factor κB pathway, which upregulates the anti-inflammatory cytokines and represses CD8+ T cell anti-tumor responses. Depletion of microglia reverses HSP47-induced inactivation of CD8+ T cells and abolishes BrM. Col003, an inhibitor disrupting HSP47-collagen association restores an anti-tumor immunity and enhances the efficacy of anti-PD-L1 immunotherapy in BrM-bearing mice. Our study supports that HSP47 is a critical determinant of M2 microglial polarization and immunosuppression and that blocking the HSP47-collagen axis represents a promising therapeutic strategy against brain metastatic tumors.


Subject(s)
Brain Neoplasms , CD8-Positive T-Lymphocytes , Collagen , HSP47 Heat-Shock Proteins , Microglia , Animals , Microglia/metabolism , Microglia/drug effects , Microglia/immunology , Brain Neoplasms/secondary , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Collagen/metabolism , Mice , HSP47 Heat-Shock Proteins/metabolism , HSP47 Heat-Shock Proteins/genetics , Cell Line, Tumor , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Mice, Inbred C57BL , Cell Polarity/drug effects , Female , NF-kappa B/metabolism
16.
Nat Commun ; 15(1): 3728, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697991

ABSTRACT

With improvements in survival for patients with metastatic cancer, long-term local control of brain metastases has become an increasingly important clinical priority. While consensus guidelines recommend surgery followed by stereotactic radiosurgery (SRS) for lesions >3 cm, smaller lesions (≤3 cm) treated with SRS alone elicit variable responses. To determine factors influencing this variable response to SRS, we analyzed outcomes of brain metastases ≤3 cm diameter in patients with no prior systemic therapy treated with frame-based single-fraction SRS. Following SRS, 259 out of 1733 (15%) treated lesions demonstrated MRI findings concerning for local treatment failure (LTF), of which 202 /1733 (12%) demonstrated LTF and 54/1733 (3%) had an adverse radiation effect. Multivariate analysis demonstrated tumor size (>1.5 cm) and melanoma histology were associated with higher LTF rates. Our results demonstrate that brain metastases ≤3 cm are not uniformly responsive to SRS and suggest that prospective studies to evaluate the effect of SRS alone or in combination with surgery on brain metastases ≤3 cm matched by tumor size and histology are warranted. These studies will help establish multi-disciplinary treatment guidelines that improve local control while minimizing radiation necrosis during treatment of brain metastasis ≤3 cm.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Radiosurgery , Radiosurgery/methods , Humans , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Male , Female , Middle Aged , Aged , Melanoma/pathology , Adult , Treatment Outcome , Tumor Burden , Aged, 80 and over , Treatment Failure , Retrospective Studies
17.
J Cancer Res Clin Oncol ; 150(5): 271, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780840

ABSTRACT

OBJECTIVE: Previous research has shown that both temozolomide (TMZ) and PD-1/L1 inhibitors (PD-1/L1) alone exhibit certain potential in the treatment of non-small cell lung cancer (NSCLC) with brain metastases (BM), in this study, we will explore combining the two in order to seek new effective treatment options for NSCLC with BM. MATERIAL AND METHODS: During 2021.1 to 2023.12, we collected the date of these pretreated-NSCLC with BM who accept the treatment of TMZ and PD-1/L1, the objective response ratio (ORR), progression-free survival (PFS) and overall survival (OS) were set as the primary endpoint, meanwhile, the toxicity of such regimen was also recorded. RESULTS: About 42 patients are enrolled, our primary analysis demonstrated that the ORR of such regimen toward NSCLC with BM was 26.19%, with Approximate intracranial and extracranial lesion ORR was 6% and 20% respectively, the DCR was about 64.29%, the mean PFS and OS was about 4 m and 8.5 m. Further analysis indicated that the efficiency correlated with the diagnosis-Specific Graded Prognostic Assessment (ds-GPA) score. Moreover, the toxicity can also be tolerated, indicating the application potential of such regimen against NSCLC with BM. CONCLUSIONS: Our results exhibited that with tolerated toxicity, the combination of TMZ and PD-1/L1 shows promising efficiency against NSCLC with BM, this would be of great significance for the treatment of NSCLC with brain metastasis. However, due to the limitation of sample and retrospective property, the real value of such regimen needed to be further confirmed in the future.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Temozolomide , Humans , Temozolomide/therapeutic use , Temozolomide/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Retrospective Studies , Male , Middle Aged , Female , Aged , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/administration & dosage , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/antagonists & inhibitors
18.
ESMO Open ; 9(5): 103447, 2024 May.
Article in English | MEDLINE | ID: mdl-38703431

ABSTRACT

BACKGROUND: Breast cancer (BC) is the second most common cancer that metastasizes to the brain. Particularly up to half of patients with human epidermal growth factor receptor 2 (HER2)-positive (HER2+) metastatic breast cancer (mBC) may develop brain metastases over the course of the disease. Nevertheless, little is known about the prevalence and the outcome of brain and leptomeningeal metastases (BLMM) in HER2-low BC. We compared the cumulative incidence of BLMM and associated outcomes among patients with HER2-low, HER2-negative (HER2-) and HER2+ mBC. PATIENTS AND METHODS: This cohort study was conducted from the Epidemiological Strategy and Medical Economics (ESME) mBC database and included patients treated for mBC between 2012 and 2020 across 18 French comprehensive cancer centers and with known HER2 and hormone receptor (HR) status. The cumulative incidence of BLMM after metastatic diagnosis was estimated using a competing risk methodology with death defined as a competing event. RESULTS: 19 585 patients were included with 6118 (31.2%), 9943 (50.8%) and 3524 (18.0%) being HER2-low, HER2- and HER2+ mBC, respectively. After a median follow-up of 48.6 months [95% confidence interval (CI) 47.7-49.3 months], BLMM were reported in 4727 patients: 1192 (25.2%) were diagnosed with BLMM at first metastatic diagnosis and 3535 (74.8%) after metastatic diagnosis. Multivariable analysis adjusted for age, histological grade, metastases-free interval and HR status showed that the risk of BLMM at metastatic diagnosis was similar in patients with HER2- compared to HER2-low mBC [odds ratio (OR) (95% CI) 1.00 (0.86-1.17)] and higher in those with HER2+ compared to HER2-low [OR (95% CI) 2.23 (1.87-2.66)]. Similar results were found after metastatic diagnosis; the risk of BLMM was similar in HER2- compared to HER2-low [subdistribution hazard ratio (sHR) (95% CI) 1.07 (0.98-1.16)] and higher in the HER2+ group [sHR (95% CI) 1.56 (1.41-1.73)]. CONCLUSIONS: The prevalence and evolution of BLMM in HER2-low mBC are similar to those in patients with HER2- tumors. In contrast to patients with HER2+ mBC, the prognosis of BLMM remains dismal in this population.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Meningeal Neoplasms , Receptor, ErbB-2 , Humans , Breast Neoplasms/pathology , Female , Middle Aged , France/epidemiology , Brain Neoplasms/secondary , Brain Neoplasms/epidemiology , Incidence , Receptor, ErbB-2/metabolism , Meningeal Neoplasms/secondary , Meningeal Neoplasms/epidemiology , Aged , Cohort Studies , Adult
20.
Sci Rep ; 14(1): 11959, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796495

ABSTRACT

AGuIX, a novel gadolinium-based nanoparticle, has been deployed in a pioneering double-blinded Phase II clinical trial aiming to assess its efficacy in enhancing radiotherapy for tumor treatment. This paper moves towards this goal by analyzing AGuIX uptake patterns in 23 patients. A phantom was designed to establish the relationship between AGuIX concentration and longitudinal ( T 1 ) relaxation. A 3T MRI and MP2RAGE sequence were used to generate patient T 1 maps. AGuIX uptake in tumors was determined based on longitudinal relaxivity. AGuIX (or placebo) was administered to 23 patients intravenously at 100 mg/kg 1-5 hours pre-imaging. Each of 129 brain metastases across 23 patients were captured in T 1 maps and examined for AGuIX uptake and distribution. Inferred AGuIX recipients had average tumor uptakes between 0.012 and 0.17 mg/ml, with a mean of 0.055 mg/ml. Suspected placebo recipients appeared to have no appreciable uptake. Tumors presented with varying spatial AGuIX uptake distributions, suspected to be related to differences in accumulation time and patient-specific bioaccumulation factors. This research demonstrates AGuIX's ability to accumulate in brain metastases, with quantifiable uptake via T 1 mapping. Future analyses will extend these methods to complete clinical trial data (~ 134 patients) to evaluate the potential relationship between nanoparticle uptake and possible tumor response following radiotherapy.Clinical Trial Registration Number: NCT04899908.Clinical Trial Registration Date: 25/05/2021.


Subject(s)
Brain Neoplasms , Gadolinium , Magnetic Resonance Imaging , Humans , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Gadolinium/metabolism , Gadolinium/administration & dosage , Magnetic Resonance Imaging/methods , Female , Middle Aged , Male , Nanoparticles/chemistry , Contrast Media/pharmacokinetics , Phantoms, Imaging , Aged , Adult , Double-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL
...