Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.944
Filter
1.
Int J Oncol ; 65(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38994761

ABSTRACT

Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. The current standard of care includes surgery, radiation therapy, temozolomide; and tumor­treating fields leads to dismal overall survival. There are far limited treatments upon recurrence. Therapies to date are ineffective as a result of several factors, including the presence of the blood­brain barrier, blood tumor barrier, glioma stem­like cells and genetic heterogeneity in GBM. In the present review, the potential mechanisms that lead to treatment resistance in GBM and the measures which have been taken so far to attempt to overcome the resistance were discussed. The complex biology of GBM and lack of comprehensive understanding of the development of therapeutic resistance in GBM demands discovery of novel antigens that are targetable and provide effective therapeutic strategies.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Drug Resistance, Neoplasm , Glioblastoma , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Blood-Brain Barrier/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Molecular Targeted Therapy/methods
2.
Cancer Immunol Immunother ; 73(9): 178, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954031

ABSTRACT

Intracranial tumors present a significant therapeutic challenge due to their physiological location. Immunotherapy presents an attractive method for targeting these intracranial tumors due to relatively low toxicity and tumor specificity. Here we show that SCIB1, a TRP-2 and gp100 directed ImmunoBody® DNA vaccine, generates a strong TRP-2 specific immune response, as demonstrated by the high number of TRP2-specific IFNγ spots produced and the detection of a significant number of pentamer positive T cells in the spleen of vaccinated mice. Furthermore, vaccine-induced T cells were able to recognize and kill B16HHDII/DR1 cells after a short in vitro culture. Having found that glioblastoma multiforme (GBM) expresses significant levels of PD-L1 and IDO1, with PD-L1 correlating with poorer survival in patients with the mesenchymal subtype of GBM, we decided to combine SCIB1 ImmunoBody® with PD-1 immune checkpoint blockade to treat mice harboring intracranial tumors expressing TRP-2 and gp100. Time-to-death was significantly prolonged, and this correlated with increased CD4+ and CD8+ T cell infiltration in the tissue microenvironment (TME). However, in addition to PD-L1 and IDO, the GBM TME was found to contain a significant number of immunoregulatory T (Treg) cell-associated transcripts, and the presence of such cells is likely to significantly affect clinical outcome unless also tackled.


Subject(s)
Brain Neoplasms , Cancer Vaccines , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Vaccines, DNA , Animals , Female , Humans , Mice , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/drug therapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Intramolecular Oxidoreductases , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use , Male , Child , Middle Aged
3.
Front Immunol ; 15: 1384249, 2024.
Article in English | MEDLINE | ID: mdl-38994360

ABSTRACT

Glioblastoma (GBM) tumors are the most aggressive primary brain tumors in adults that, despite maximum treatment, carry a dismal prognosis. GBM tumors exhibit tissue hypoxia, which promotes tumor aggressiveness and maintenance of glioma stem cells and creates an overall immunosuppressive landscape. This article reviews how hypoxic conditions overlap with inflammatory responses, favoring the proliferation of immunosuppressive cells and inhibiting cytotoxic T cell development. Immunotherapies, including vaccines, immune checkpoint inhibitors, and CAR-T cell therapy, represent promising avenues for GBM treatment. However, challenges such as tumor heterogeneity, immunosuppressive TME, and BBB restrictiveness hinder their effectiveness. Strategies to address these challenges, including combination therapies and targeting hypoxia, are actively being explored to improve outcomes for GBM patients. Targeting hypoxia in combination with immunotherapy represents a potential strategy to enhance treatment efficacy.


Subject(s)
Brain Neoplasms , Glioblastoma , Tumor Microenvironment , Humans , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/pathology , Tumor Microenvironment/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Animals , Immunotherapy/methods , Tumor Hypoxia
5.
Neurosurg Rev ; 47(1): 321, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002027

ABSTRACT

Gliomas are a kind of brain cancer that develops from glial cells. Glial cells provide nourishment and energy to nerve cells, and they also preserve the blood-brain barrier. A primary cancer of the central nervous system (CNS) is oligodendroglioma. This suggests that it originates in the brain or spinal cord. While oligodendrogliomas can strike anyone at any age, the age range of 35 to 44 is when they most commonly occur. Oligodendrogliomas are rare in young people and more common in men than women. Based on anecdotal data, patients with oligodendroglioma may present management challenges in Africa. There are delays in diagnosis and referrals due to the scarcity of neuroimaging facilities. A wide range of strategies have been put forth to improve pathology services in low- and middle-income nations. Adequate mentorship, short-term visitor programs, overcoming supply chain constraints, establishing training standards, and establishing the role of pathologists in cancer screening and early diagnosis have all been proposed as solutions to this problem. To sum up, oligodendroglioma is one of the low-grade gliomas this study looked at. Brain cancer is a serious public health concern in Africa. Improved options for screening and therapy are required to better address this problem.


Subject(s)
Brain Neoplasms , Oligodendroglioma , Humans , Oligodendroglioma/diagnosis , Brain Neoplasms/therapy , Brain Neoplasms/diagnosis , Africa South of the Sahara/epidemiology , Female , Male , Adult
6.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994929

ABSTRACT

Standard-of-care treatment for Glioblastoma Multiforme (GBM) is comprised of surgery and adjuvant chemoradiation. Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated disease-modifying activity in GBM and holds great promise. Radiation, a standard-of-care treatment for GBM, has well-known immunomodulatory properties and may overcome the immunosuppressive tumor microenvironment (TME); however, radiation dose optimization and integration with CAR T cell therapy is not well defined. Murine immunocompetent models of GBM were treated with titrated doses of stereotactic radiosurgery (SRS) of 5, 10, and 20 Gray (Gy), and the TME was analyzed using Nanostring. A conditioning dose of 10 Gy was determined based on tumor growth kinetics and gene expression changes in the TME. We demonstrate that a conditioning dose of 10 Gy activates innate and adaptive immune cells in the TME. Mice treated with 10 Gy in combination with mCAR T cells demonstrated enhanced antitumor activity and superior memory responses to rechallenge with IL13Rα2-positive tumors. Furthermore, 10 Gy plus mCAR T cells also protected against IL13Rα2-negative tumors through a mechanism that was, in part, c-GAS-STING pathway-dependent. Together, these findings support combination conditioning with low-dose 10 Gy radiation in combination with mCAR T cells as a therapeutic strategy for GBM.


Subject(s)
Glioblastoma , Receptors, Chimeric Antigen , Tumor Microenvironment , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/radiotherapy , Glioblastoma/pathology , Animals , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Mice , Tumor Microenvironment/immunology , Humans , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , T-Lymphocytes/immunology , Mice, Inbred C57BL , Immunomodulation , Female
7.
Neurology ; 103(3): e209688, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39008801

ABSTRACT

The discovery in 2008 that many adult gliomas harbor a hitherto unknown mutation in the metabolic gene isocitrate dehydrogenase (IDH) initiated revolutionary advances in our understanding of the biology, and correspondingly our classification, of gliomas. IDH mutations are found in most nonglioblastoma adult gliomas and portend a better prognosis. Massive efforts have unraveled many of the pleiotropic cellular effects of these mutations and spawned several lines of investigation to target the effect to therapeutic benefit. In this article are reviewed the implications of the IDH mutation in gliomas, in particular focusing on recent studies that have culminated in a rare positive phase 3 trial in these generally refractory tumors.


Subject(s)
Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , Mutation , Humans , Glioma/genetics , Glioma/therapy , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Molecular Targeted Therapy
9.
Nat Commun ; 15(1): 5871, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997283

ABSTRACT

There are numerous mechanisms by which glioblastoma cells evade immunological detection, underscoring the need for strategic combinatorial treatments to achieve appreciable therapeutic effects. However, developing combination therapies is difficult due to dose-limiting toxicities, blood-brain-barrier, and suppressive tumor microenvironment. Glioblastoma is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment and activation. Herein, we develop a recombinant adeno-associated virus (AAV) gene therapy that enables focal and stable reconstitution of the tumor microenvironment with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for lymphocytes. By manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by cytotoxic lymphocytes, sensitizing glioblastoma to anti-PD-1 immune checkpoint blockade in female preclinical tumor models. These effects are accompanied by immunologic signatures evocative of an inflamed tumor microenvironment. These findings support AAV gene therapy as an adjuvant for reconditioning glioblastoma immunogenicity given its safety profile, tropism, modularity, and off-the-shelf capability.


Subject(s)
Chemokine CXCL9 , Dependovirus , Genetic Therapy , Glioblastoma , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Glioblastoma/therapy , Glioblastoma/immunology , Dependovirus/genetics , Tumor Microenvironment/immunology , Animals , Humans , Immune Checkpoint Inhibitors/therapeutic use , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Mice , Genetic Therapy/methods , Female , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Genetic Vectors/administration & dosage , Genetic Vectors/genetics
10.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000281

ABSTRACT

The most common primary brain tumor is glioblastoma (GBM), yet the current therapeutic options for this disease are not promising. Although immunotherapeutic techniques have shown poor success in GBM thus far despite efforts, new developments provide optimism. One of these developments is chimeric antigen receptor (CAR)-T cell treatment, which includes removing and genetically modifying autologous T cells to produce a receptor that targets a GBM antigen before reintroducing the cells into the patient's body. A number of preclinical studies have produced encouraging results, which have led to the start of clinical trials assessing these CAR-T cell treatments for GBM and other brain tumors. Although results in tumors such as diffuse intrinsic pontine gliomas and lymphomas have been promising, preliminary findings in GBM have not produced any clinical benefits. The paucity of particular antigens in GBM, their inconsistent expression patterns, and the possible immunoediting-induced loss of these antigens after antigen-targeted therapy are some possible causes for this discrepancy. The goal of this systematic literature review is to assess potential approaches for creating CAR-T cells that are more effective for this indication, as well as the clinical experiences that are already being had with CAR-T cell therapy in GBM. Up until 9 May 2024, a thorough search was carried out across the three main medical databases: PubMed, Web of Science, and Scopus. Relevant Medical Subject Heading (MeSH) terms and keywords associated with "glioblastoma", "CAR-T", "T cell therapy", "overall survival", and "progression free survival" were employed in the search approach. Preclinical and clinical research on the application of CAR-T cells as a therapeutic approach for GBM are included in the review. A total of 838 papers were identified. Of these, 379 articles were assessed for eligibility, resulting in 8 articles meeting the inclusion criteria. The included studies were conducted between 2015 and 2023, with a total of 151 patients enrolled. The studies varied in CAR-T cell types. EGFRvIII CAR-T cells were the most frequently investigated, used in three studies (37.5%). Intravenous delivery was the most common method of delivery (62.5%). Median OS ranged from 5.5 to 11.1 months across the studies. PFS was reported in only two studies, with values of 7.5 months and 1.3 months. This systematic review highlights the evolving research on CAR-T cell therapy for GBM, emphasizing its potential despite challenges. Targeting antigens like EGFRvIII and IL13Rα2 shows promise in treating recurrent GBM. However, issues such as antigen escape, tumor heterogeneity, and immunosuppression require further optimization. Innovative delivery methods, combination therapies, and personalized approaches are crucial for enhancing CAR-T cell efficacy. Ongoing research is essential to refine these therapies and improve outcomes for GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/immunology , Immunotherapy, Adoptive/methods , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals
11.
Neurosurg Rev ; 47(1): 323, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002028

ABSTRACT

Recurrent glioblastoma (rGBM) is a brain tumor that is resistant to standard treatments. Although stereotactic radiosurgery (SRS) is a non-invasive radiation technique, it cannot fully prevent tumor recurrence and progression. Bevacizumab blocks tumor blood supply and has been approved for rGBM. However, the best way to combine SRS and bevacizumab is still unclear. We did a systematic review and meta-analysis of studies comparing SRS alone and SRS plus bevacizumab for rGBM. We searched three databases for articles published until June 2023. All statistical analysis was performed by STATA v.17. Our meta-analysis included 20 studies with 926 patients. We found that the combination therapy had a significantly lower rate of overall survival (OS) than SRS alone at 6-month 0.77[95%CI:0.74-0.85] for SRS alone and (100%) for SRS plus bevacizumab. At 1-year OS, 0.39 [95%CI: 0.32-0.47] for SRS alone and 0.61 [95%CI:0.44-0.77] for SRS plus bevacizumab (P-value:0.02). However, this advantage was not seen in the long term (18 months and two years). Additionally, the combination therapy had lower chances of progression-free survival (PFS) than SRS alone at the 6-month and 1-year time points, but the differences were insignificant. Our study indicates that incorporating bevacizumab with SRS may lead to a short-term increase in OS for rGBM patients but not long-term. Additionally, the PFS rate did not show significant improvement in the group receiving combination therapy. Further clinical trials are necessary to validate the enhanced overall survival with combination therapy for rGBM.


Subject(s)
Bevacizumab , Brain Neoplasms , Glioblastoma , Neoplasm Recurrence, Local , Radiosurgery , Humans , Antineoplastic Agents, Immunological/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/therapy , Brain Neoplasms/mortality , Combined Modality Therapy , Glioblastoma/therapy , Glioblastoma/drug therapy , Radiosurgery/methods
12.
Cell Death Dis ; 15(7): 503, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003252

ABSTRACT

Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard clinical treatment of GBM includes a maximal surgical resection followed by concomitant radiotherapy (RT) and chemotherapy sessions with Temozolomide (TMZ) in addition to adjuvant TMZ cycles. Despite the severity of this protocol, GBM is highly resistant and recurs in almost all cases while the protocol remains unchanged since 2005. Limited-diffusion or chronic hypoxia has been identified as one of the major key players driving this aggressive phenotype. The presence of hypoxia within the tumor bulk contributes to the activation of hypoxia signaling pathway mediated by the hypoxia-inducing factors (HIFs), which in turn activate biological mechanisms to ensure the adaptation and survival of GBM under limited oxygen and nutrient supply. Activated downstream pathways are involved in maintaining stem cell-like phenotype, inducing mesenchymal shift, invasion, and migration, altering the cellular and oxygen metabolism, and increasing angiogenesis, autophagy, and immunosuppression. Therefore, in this review will discuss the recent preclinical and clinical approaches that aim at targeting tumor hypoxia to enhance the response of GBM to conventional therapies along with their results and limitations upon clinical translation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Animals , Cell Hypoxia , Tumor Hypoxia , Signal Transduction
13.
Medicine (Baltimore) ; 103(27): e38794, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968484

ABSTRACT

BACKGROUND: Extracranial metastases occur in <2% of cases of glioblastoma (GBM). When metastases do occur, bone is the most common destination. Herein, we review clinical characteristics of GBM patients with osseous metastases and evaluate both potential risk factors and prognostic significance. METHODS: Using an institutional database, we identified and retrospectively analyzed 6 patients with both GBM and osseous metastases. We collected data on patient demographics, tumor genetics, clinical courses, and outcomes. Given the rarity of metastatic GBM, we conducted historical comparisons using previously published literature. RESULTS: Five patients with osseous metastases (83%) were male, with a median age of 46 years at GBM diagnosis (range: 20-84). All patients had IDH-wildtype, MGMT promoter unmethylated GBM and 5 (83%) had alterations in TP53. All patients underwent surgical resection for GBM followed by radiation with concurrent and adjuvant temozolomide. Four patients (67%) received bevacizumab prior to bone metastasis diagnosis. Bone metastases were discovered at a median of 12.2 months (range: 5.3-35.2) after GBM diagnosis and 4.8 months after starting bevacizumab (range: 3.5-13.2). Three patients (50%) received immunotherapy. After osseous metastasis diagnosis, the median survival was 25 days (range: 13-225). CONCLUSION: In our cohort, most patients were male and young at the time of GBM diagnosis. All patients had IDH-wildtype, MGMT promoter unmethylated GBM, and most had alterations in TP53, which may be important for osseous metastasis. Most patients received bevacizumab, which has been associated with earlier metastasis. Osseous metastases of GBM occur and portend a dismal prognosis in an already aggressive malignancy.


Subject(s)
Bone Neoplasms , Brain Neoplasms , Glioblastoma , Humans , Male , Glioblastoma/genetics , Glioblastoma/secondary , Glioblastoma/pathology , Glioblastoma/therapy , Middle Aged , Female , Adult , Retrospective Studies , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Aged , Aged, 80 and over , Young Adult , Prognosis , Bevacizumab/therapeutic use , Tumor Suppressor Protein p53/genetics , DNA Repair Enzymes/genetics , DNA Modification Methylases , Tumor Suppressor Proteins
15.
Int J Nanomedicine ; 19: 6999-7014, 2024.
Article in English | MEDLINE | ID: mdl-39011386

ABSTRACT

Introduction: Glioblastoma multiforme (GBM), a highly invasive and prognostically challenging brain cancer, poses a significant hurdle for current treatments due to the existence of the blood-brain barrier (BBB) and the difficulty to maintain an effective drug accumulation in deep GBM lesions. Methods: We present a biomimetic nanoplatform with angiopep-2-modified macrophage membrane, loaded with indocyanine green (ICG) templated self-assembly of SN38 (AM-NP), facilitating active tumor targeting and effective blood-brain barrier penetration through specific ligand-receptor interaction. Results: Upon accumulation at tumor sites, these nanoparticles achieved high drug concentrations. Subsequent combination of laser irradiation and release of chemotherapy agent SN38 induced a synergistic chemo-photothermal therapy. Compared to bare nanoparticles (NPs) lacking cell membrane encapsulation, AM-NPs significantly suppressed tumor growth, markedly enhanced survival rates, and exhibited excellent biocompatibility with minimal side effects. Conclusion: This NIR-activatable biomimetic camouflaging macrophage membrane-based nanoparticles enhanced drug delivery targeting ability through modifications of macrophage membranes and specific ligands. It simultaneously achieved synergistic chemo-photothermal therapy, enhancing treatment effectiveness. Compared to traditional treatment modalities, it provided a precise, efficient, and synergistic method that might have contributed to advancements in glioblastoma therapy.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Drug Liberation , Glioblastoma , Indocyanine Green , Nanoparticles , Photothermal Therapy , Glioblastoma/therapy , Glioblastoma/drug therapy , Glioblastoma/metabolism , Animals , Indocyanine Green/chemistry , Indocyanine Green/pharmacokinetics , Indocyanine Green/pharmacology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Humans , Cell Line, Tumor , Mice , Nanoparticles/chemistry , Photothermal Therapy/methods , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Irinotecan/pharmacokinetics , Irinotecan/chemistry , Irinotecan/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/pharmacokinetics , Infrared Rays , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacokinetics , Biomimetic Materials/pharmacology , Drug Delivery Systems/methods , Macrophages/drug effects , Macrophages/metabolism , Mice, Nude , Combined Modality Therapy/methods
16.
Postepy Biochem ; 69(4): 254-263, 2024 01 30.
Article in Polish | MEDLINE | ID: mdl-39012700

ABSTRACT

Stage IV glioblastoma is the most frequently diagnosed and the worst prognosis tumor of the central nervous system (CNS). Patients suffering from this type of cancer usually survive several months with the use of surgical treatment, radiotherapy and chemotherapy. The development of glioblastoma is determined by a number of mutations, the most common of which are the p16, p19, p53, pRB, PTEN, PDGFR, CDK4 and EGFR protein genes as well as the loss of heterozygosity on chromosomes 10, 17 and 19. The occurrence of mutations within the IDH1 and IDH2 genes and increased methylation of MGMT promoter improves patient survival, but few patients live more than 3 years after diagnosis. The most important cell signaling pathways in glioblastoma are PI3K/Akt/mTOR and Wnt/ß-catenin, which play a key role in tumor cell function. However, these cells are highly resistant to anticancer drugs, including inhibitors of cell signaling pathways. Currently, the potential methods of effectively combating malignant gliomas are alternating electric field therapy and the implementation of new immunotherapeutic strategies.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/genetics , Glioma/metabolism , Glioma/therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Mutation , Signal Transduction/genetics
17.
CNS Neurosci Ther ; 30(7): e14791, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38997808

ABSTRACT

INTRODUCTION: Glioblastoma (GBM) remains a challenging brain tumor to treat, with limited response to PD-1 immunotherapy due to tumor-associated macrophages (TAMs), specifically the M2 phenotype. This study explores the potential of MS4A4A (membrane spanning four domains, subfamily A, member 4A) inhibition in driving M2 macrophage polarization toward the M1 phenotype via the ferroptosis pathway to enhance the effectiveness of immunotherapy in GBM. METHODS: Single-cell RNA sequencing and spatial transcriptomic analyses were employed to characterize M2 macrophages and MS4A4A expression in GBM. In vitro studies utilizing TAM cultures, flow cytometry, and western blot validations were conducted to assess the impact of MS4A4A on the tumor immune microenvironment and M2 macrophage polarization. In vivo models, including subcutaneous and orthotopic transplantation in mice, were utilized to evaluate the effects of MS4A4A knockout and combined immune checkpoint blockade (ICB) therapy on tumor growth and response to PD-1 immunotherapy. RESULTS: Distinct subsets of GBM-associated macrophages were identified, with spatial distribution in tumor tissue elucidated. In vivo experiments demonstrated that inhibiting MS4A4A and combining ICB therapy effectively inhibited tumor growth, reshaped the tumor immune microenvironment by reducing M2 TAM infiltration and enhancing CD8+ T-cell infiltration, ultimately leading to complete tumor eradication. CONCLUSION: MS4A4A inhibition shows promise in converting M2 macrophages to M1 phenotype via ferroptosis, decreasing M2-TAM infiltration, and enhancing GBM response to PD-1 immunotherapy. These findings offer a novel approach to developing more effective immunotherapeutic strategies for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Immunotherapy , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/pathology , Animals , Immunotherapy/methods , Mice , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Humans , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor Microenvironment/physiology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Membrane Proteins/metabolism , Membrane Proteins/genetics
18.
Sci Rep ; 14(1): 15613, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971907

ABSTRACT

Glioblastoma is the most common and aggressive primary malignant brain tumor with poor prognosis. Novel immunotherapeutic approaches are currently under investigation. Even though magnetic resonance imaging (MRI) is the most important imaging tool for treatment monitoring, response assessment is often hampered by therapy-related tissue changes. As tumor and therapy-associated tissue reactions differ structurally, we hypothesize that biomechanics could be a pertinent imaging proxy for differentiation. Longitudinal MRI and magnetic resonance elastography (MRE) were performed to monitor response to immunotherapy with a toll-like receptor 7/8 agonist in orthotopic syngeneic experimental glioma. Imaging results were correlated to histology and light sheet microscopy data. Here, we identify MRE as a promising non-invasive imaging method for immunotherapy-monitoring by quantifying changes in response-related tumor mechanics. Specifically, we show that a relative softening of treated compared to untreated tumors is linked to the inflammatory processes following therapy-induced re-education of tumor-associated myeloid cells. Mechanistically, combined effects of myeloid influx and inflammation including extracellular matrix degradation following immunotherapy form the basis of treated tumors being softer than untreated glioma. This is a very early indicator of therapy response outperforming established imaging metrics such as tumor volume. The overall anti-tumor inflammatory processes likely have similar effects on human brain tissue biomechanics, making MRE a promising tool for gauging response to immunotherapy in glioma patients early, thereby strongly impacting patient pathway.


Subject(s)
Brain Neoplasms , Disease Models, Animal , Glioma , Immunotherapy , Magnetic Resonance Imaging , Animals , Mice , Glioma/diagnostic imaging , Glioma/therapy , Glioma/immunology , Glioma/pathology , Immunotherapy/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Elasticity Imaging Techniques/methods , Cell Line, Tumor , Biomechanical Phenomena , Humans , Mice, Inbred C57BL , Biomarkers, Tumor/metabolism
19.
Sci Rep ; 14(1): 16721, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030304

ABSTRACT

Antigen-specific cytotoxic CD8 T cells are extremely effective in controlling tumor growth and have been the focus of immunotherapy approaches. We leverage in silico tools to investigate whether the occurrence of mutations in proteins previously described as immunogenic and highly expressed by glioblastoma multiforme (GBM), such as Epidermal Growth Factor Receptor (EGFR), Isocitrate Dehydrogenase 1 (IDH1), Phosphatase and Tensin homolog (PTEN) and Tumor Protein 53 (TP53), may be contributing to the differential presentation of immunogenic epitopes. We recovered Class I MHC binding information from wild-type and mutated proteins using the Immune Epitope Database (IEDB). After that, we built peptide-MHC (pMHC-I) models in HLA-arena, followed by hierarchical clustering analysis based on electrostatic surface features from each complex. We identified point mutations that are determinants for the presentation of a set of peptides from TP53 protein. We point to structural features in the pMHC-I complexes of wild-type and mutated peptides, which may play a role in the recognition of CD8 T cells. To further explore these features, we performed 100 ns molecular dynamics simulations for the peptide pairs (wt/mut) selected. In pursuit of novel therapeutic targets for GBM treatment, we selected peptides where our predictive results indicated that mutations would not disrupt epitope presentation, thereby maintaining a specific CD8 T cell immune response. These peptides hold potential for future GBM interventions, including peptide-based or mRNA vaccine development applications.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes , Glioblastoma , Isocitrate Dehydrogenase , Tumor Suppressor Protein p53 , Glioblastoma/immunology , Glioblastoma/genetics , Glioblastoma/therapy , Humans , CD8-Positive T-Lymphocytes/immunology , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Isocitrate Dehydrogenase/chemistry , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology , Antigen Presentation/immunology , Mutation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/immunology , PTEN Phosphohydrolase/chemistry , ErbB Receptors/immunology , ErbB Receptors/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/therapy
20.
ACS Nano ; 18(28): 18712-18728, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38952208

ABSTRACT

Immunotherapy can potentially suppress the highly aggressive glioblastoma (GBM) by promoting T lymphocyte infiltration. Nevertheless, the immune privilege phenomenon, coupled with the generally low immunogenicity of vaccines, frequently hampers the presence of lymphocytes within brain tumors, particularly in brain tumors. In this study, the membrane-disrupted polymer-wrapped CuS nanoflakes that can penetrate delivery to deep brain tumors via releasing the cell-cell interactions, facilitating the near-infrared II (NIR II) photothermal therapy, and detaining dendritic cells for a self-cascading immunotherapy are developed. By convection-enhanced delivery, membrane-disrupted amphiphilic polymer micelles (poly(methoxypoly(ethylene glycol)-benzoic imine-octadecane, mPEG-b-C18) with CuS nanoflakes enhances tumor permeability and resides in deep brain tumors. Under low-power NIR II irradiation (0.8 W/cm2), the intense heat generated by well-distributed CuS nanoflakes actuates the thermolytic efficacy, facilitating cell apoptosis and the subsequent antigen release. Then, the positively charged polymer after hydrolysis of the benzoic-imine bond serves as an antigen depot, detaining autologous tumor-associated antigens and presenting them to dendritic cells, ensuring sustained immune stimulation. This self-cascading penetrative immunotherapy amplifies the immune response to postoperative brain tumors but also enhances survival outcomes through effective brain immunotherapy.


Subject(s)
Brain Neoplasms , Cell Membrane , Dendritic Cells , Immunotherapy , Infrared Rays , Dendritic Cells/immunology , Dendritic Cells/drug effects , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Animals , Mice , Humans , Cell Membrane/chemistry , Cell Line, Tumor , Micelles , Nanoparticles/chemistry , Photothermal Therapy , Polyethylene Glycols/chemistry , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Apoptosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...