Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 826
Filter
1.
Gut Microbes ; 16(1): 2363011, 2024.
Article in English | MEDLINE | ID: mdl-38835220

ABSTRACT

The Mediterranean diet (MD) and its bioactive constituents have been advocated for their neuroprotective properties along with their capacity to affect gut microbiota speciation and metabolism. Mediated through the gut brain axis, this modulation of the microbiota may partly contribute to the neuroprotective properties of the MD. To explore this potential interaction, we evaluated the neuroprotective properties of a novel bioactive blend (Neurosyn240) resembling the Mediterranean diet in a rodent model of chronic low-grade inflammation. Behavioral tests of cognition, brain proteomic analysis, 16S rRNA sequencing, and 1H NMR metabolomic analyses were employed to develop an understanding of the gut-brain axis interactions involved. Recognition memory, as assessed by the novel object recognition task (NOR), decreased in response to LPS insult and was restored with Neurosyn240 supplementation. Although the open field task performance did not reach significance, it correlated with NOR performance indicating an element of anxiety related to this cognitive change. Behavioral changes associated with Neurosyn240 were accompanied by a shift in the microbiota composition which included the restoration of the Firmicutes: Bacteroidota ratio and an increase in Muribaculum, Rikenellaceae Alloprevotella, and most notably Akkermansia which significantly correlated with NOR performance. Akkermansia also correlated with the metabolites 5-aminovalerate, threonine, valine, uridine monophosphate, and adenosine monophosphate, which in turn significantly correlated with NOR performance. The proteomic profile within the brain was dramatically influenced by both interventions, with KEGG analysis highlighting oxidative phosphorylation and neurodegenerative disease-related pathways to be modulated. Intriguingly, a subset of these proteomic changes simultaneously correlated with Akkermansia abundance and predominantly related to oxidative phosphorylation, perhaps alluding to a protective gut-brain axis interaction. Collectively, our results suggest that the bioactive blend Neurosyn240 conferred cognitive and microbiota resilience in response to the deleterious effects of low-grade inflammation.


Subject(s)
Cognition , Diet, Mediterranean , Dietary Supplements , Disease Models, Animal , Gastrointestinal Microbiome , Inflammation , Animals , Gastrointestinal Microbiome/drug effects , Mice , Male , Cognition/drug effects , Inflammation/metabolism , Inflammation/diet therapy , Dietary Supplements/analysis , Mice, Inbred C57BL , Brain-Gut Axis/physiology , Brain/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 876-884, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862445

ABSTRACT

OBJECTIVE: To investigate the mechanisms that mediate the neuroprotective effect of the intestinal microbial metabolite sodium butyrate (NaB) in a mouse model of Parkinson's disease (PD) via the gut-brain axis. METHODS: Thirty-nine 7-week-old male C57BL/6J mice were randomized equally into control group, PD model group, and NaB treatment group. In the latter two groups, PD models were established by intraperitoneal injection of 30 mg/kg 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) once daily for 5 consecutive days, and normal saline was injected in the control group. After modeling, the mice received daily gavage of NaB (300 mg/kg) or an equal volume of saline for 14 days. Behavioral tests were carried out to assess the changes in motor function of the mice, and Western blotting was performed to detect the expressions of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the striatum and nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and the tight junction proteins ZO-1, Occludin, and Claudinin the colon. HE staining was used to observe inflammatory cell infiltration in the colon of the mice. RNA sequencing analysis was performed to identify the differentially expressed genes in mouse colon tissues, and their expressions were verified using qRT-PCR and Western blotting. RESULTS: The mouse models of PD with NaB treatment showed significantly increased movement speed and pulling strength of the limbs with obviously upregulated expressions of TH, Occludin, and Claudin and downregulated expressions of α-syn, NF-κB, TNF-α, and IL-6 (all P < 0.05). HE staining showed that NaB treatment significantly ameliorated inflammatory cell infiltration in the colon of the PD mice. RNA sequencing suggested that Bmal1 gene probably mediated the neuroprotective effect of NaB in PD mice (P < 0.05). CONCLUSION: NaB can improve motor dysfunction, reduce dopaminergic neuron loss in the striatum, and ameliorate colonic inflammation in PD mice possibly through a mechanism involving Bmal1.


Subject(s)
Butyric Acid , Disease Models, Animal , Mice, Inbred C57BL , Neuroprotective Agents , Parkinson Disease , Animals , Mice , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B/metabolism , Interleukin-6/metabolism , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Corpus Striatum/metabolism , Occludin/metabolism , Occludin/genetics , Brain-Gut Axis
3.
Biol Res ; 57(1): 23, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705984

ABSTRACT

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Subject(s)
Anxiety , Brain-Gut Axis , Diet, High-Fat , Gastrointestinal Microbiome , Animals , Male , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Anxiety/microbiology , Brain-Gut Axis/physiology , Rats , Rats, Sprague-Dawley , Obesity/microbiology , Obesity/psychology , Obesity/metabolism , Signal Transduction/physiology , Behavior, Animal/physiology
4.
Sci Rep ; 14(1): 10555, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719902

ABSTRACT

Heat stress exposure in intermittent heat waves and subsequent exposure during war theaters pose a clinical challenge that can lead to multi-organ dysfunction and long-term complications in the elderly. Using an aged mouse model and high-throughput sequencing, this study investigated the molecular dynamics of the liver-brain connection during heat stress exposure. Distinctive gene expression patterns induced by periodic heat stress emerged in both brain and liver tissues. An altered transcriptome profile showed heat stress-induced altered acute phase response pathways, causing neural, hepatic, and systemic inflammation and impaired synaptic plasticity. Results also demonstrated that proinflammatory molecules such as S100B, IL-17, IL-33, and neurological disease signaling pathways were upregulated, while protective pathways like aryl hydrocarbon receptor signaling were downregulated. In parallel, Rantes, IRF7, NOD1/2, TREM1, and hepatic injury signaling pathways were upregulated. Furthermore, current research identified Orosomucoid 2 (ORM2) in the liver as one of the mediators of the liver-brain axis due to heat exposure. In conclusion, the transcriptome profiling in elderly heat-stressed mice revealed a coordinated network of liver-brain axis pathways with increased hepatic ORM2 secretion, possibly due to gut inflammation and dysbiosis. The above secretion of ORM2 may impact the brain through a leaky blood-brain barrier, thus emphasizing intricate multi-organ crosstalk.


Subject(s)
Brain , Gene Expression Profiling , Liver , Animals , Mice , Liver/metabolism , Brain/metabolism , Male , Transcriptome , Brain-Gut Axis , Heat-Shock Response/genetics , Mice, Inbred C57BL , Signal Transduction , Aging/genetics , Aging/metabolism
5.
Front Immunol ; 15: 1365871, 2024.
Article in English | MEDLINE | ID: mdl-38756771

ABSTRACT

More than 20% of American adults live with a mental disorder, many of whom are treatment resistant or continue to experience symptoms. Other approaches are needed to improve mental health care, including prevention. The role of the microbiome has emerged as a central tenet in mental and physical health and their interconnectedness (well-being). Under normal conditions, a healthy microbiome promotes homeostasis within the host by maintaining intestinal and brain barrier integrity, thereby facilitating host well-being. Owing to the multidirectional crosstalk between the microbiome and neuro-endocrine-immune systems, dysbiosis within the microbiome is a main driver of immune-mediated systemic and neural inflammation that can promote disease progression and is detrimental to well-being broadly and mental health in particular. In predisposed individuals, immune dysregulation can shift to autoimmunity, especially in the presence of physical or psychological triggers. The chronic stress response involves the immune system, which is intimately involved with the gut microbiome, particularly in the process of immune education. This interconnection forms the microbiota-gut-immune-brain axis and promotes mental health or disorders. In this brief review, we aim to highlight the relationships between stress, mental health, and the gut microbiome, along with the ways in which dysbiosis and a dysregulated immune system can shift to an autoimmune response with concomitant neuropsychological consequences in the context of the microbiota-gut-immune-brain axis. Finally, we aim to review evidenced-based prevention strategies and potential therapeutic targets.


Subject(s)
Brain-Gut Axis , Brain , Dysbiosis , Gastrointestinal Microbiome , Mental Disorders , Mental Health , Stress, Psychological , Humans , Gastrointestinal Microbiome/immunology , Brain-Gut Axis/immunology , Stress, Psychological/immunology , Stress, Psychological/microbiology , Dysbiosis/immunology , Mental Disorders/immunology , Mental Disorders/microbiology , Brain/immunology , Animals , Neuroimmunomodulation
6.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727306

ABSTRACT

Parkinson's disease (PD) is recognized as the second most prevalent primary chronic neurodegenerative disorder of the central nervous system. Clinically, PD is characterized as a movement disorder, exhibiting an incidence and mortality rate that is increasing faster than any other neurological condition. In recent years, there has been a growing interest concerning the role of the gut microbiota in the etiology and pathophysiology of PD. The establishment of a brain-gut microbiota axis is now real, with evidence denoting a bidirectional communication between the brain and the gut microbiota through metabolic, immune, neuronal, and endocrine mechanisms and pathways. Among these, the vagus nerve represents the most direct form of communication between the brain and the gut. Given the potential interactions between bacteria and drugs, it has been observed that the therapies for PD can have an impact on the composition of the microbiota. Therefore, in the scope of the present review, we will discuss the current understanding of gut microbiota on PD and whether this may be a new paradigm for treating this devastating disease.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/microbiology , Parkinson Disease/therapy , Brain/microbiology , Brain/pathology , Brain-Gut Axis/physiology , Animals
7.
Food Res Int ; 186: 114404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729686

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.


Subject(s)
Autism Spectrum Disorder , Brain-Gut Axis , Flavonoids , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Humans , Autism Spectrum Disorder/microbiology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/diet therapy , Flavonoids/pharmacology , Diet , Dysbiosis , Brain/metabolism , Animals , Antioxidants/pharmacology
8.
J Neuroinflammation ; 21(1): 124, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730498

ABSTRACT

Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.


Subject(s)
Anti-Inflammatory Agents , Brain Injuries, Traumatic , Brain-Gut Axis , Humans , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Brain-Gut Axis/physiology , Brain-Gut Axis/drug effects , Animals , Anti-Inflammatory Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology
9.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732599

ABSTRACT

In this study, a systematic review of randomized clinical trials conducted from January 2000 to December 2023 was performed to examine the efficacy of psychobiotics-probiotics beneficial to mental health via the gut-brain axis-in adults with psychiatric and cognitive disorders. Out of the 51 studies involving 3353 patients where half received psychobiotics, there was a notably high measurement of effectiveness specifically in the treatment of depression symptoms. Most participants were older and female, with treatments commonly utilizing strains of Lactobacillus and Bifidobacteria over periods ranging from 4 to 24 weeks. Although there was a general agreement on the effectiveness of psychobiotics, the variability in treatment approaches and clinical presentations limits the comparability and generalization of the findings. This underscores the need for more personalized treatment optimization and a deeper investigation into the mechanisms through which psychobiotics act. The research corroborates the therapeutic potential of psychobiotics and represents progress in the management of psychiatric and cognitive disorders.


Subject(s)
Mental Disorders , Probiotics , Randomized Controlled Trials as Topic , Humans , Probiotics/therapeutic use , Female , Mental Disorders/drug therapy , Mental Disorders/therapy , Cognition Disorders/drug therapy , Male , Treatment Outcome , Adult , Brain-Gut Axis/drug effects , Middle Aged , Gastrointestinal Microbiome/drug effects , Lactobacillus , Aged , Bifidobacterium
10.
Adv Protein Chem Struct Biol ; 140: 199-248, 2024.
Article in English | MEDLINE | ID: mdl-38762270

ABSTRACT

The human gut microbiota is a complex and dynamic community of microorganisms, that influence metabolic, neurodevelopmental, and immune pathways. Microbial dysbiosis, characterized by changes in microbial diversity and relative abundances, is implicated in the development of various chronic neurological and neurodegenerative disorders. These disorders are marked by the accumulation of pathological protein aggregates, leading to the progressive loss of neurons and behavioural functions. Dysregulations in protein-protein interaction networks and signalling complexes, critical for normal brain function, are common in neurological disorders but challenging to unravel, particularly at the neuron and synapse-specific levels. To advance therapeutic strategies, a deeper understanding of neuropathogenesis, especially during the progressive disease phase, is needed. Biomarkers play a crucial role in identifying disease pathophysiology and monitoring disease progression. Proteomics, a powerful technology, shows promise in accelerating biomarker discovery and aiding in the development of novel treatments. In this chapter, we provide an in-depth overview of how proteomic techniques, utilizing various biofluid samples from patients with neurological conditions and diverse animal models, have contributed valuable insights into the pathogenesis of numerous neurological disorders. We also discuss the current state of research, potential challenges, and future directions in proteomic approaches to unravel neuro-pathological conditions.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Proteomics , Humans , Dysbiosis/metabolism , Dysbiosis/microbiology , Nervous System Diseases/metabolism , Nervous System Diseases/microbiology , Animals , Brain-Gut Axis , Biomarkers/metabolism
11.
Biosens Bioelectron ; 258: 116298, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38701537

ABSTRACT

Wireless activation of the enteric nervous system (ENS) in freely moving animals with implantable optogenetic devices offers a unique and exciting opportunity to selectively control gastrointestinal (GI) transit in vivo, including the gut-brain axis. Programmed delivery of light to targeted locations in the GI-tract, however, poses many challenges not encountered within the central nervous system (CNS). We report here the development of a fully implantable, battery-free wireless device specifically designed for optogenetic control of the GI-tract, capable of generating sufficient light over large areas to robustly activate the ENS, potently inducing colonic motility ex vivo and increased propulsion in vivo. Use in in vivo studies reveals unique stimulation patterns that increase expulsion of colonic content, likely mediated in part by activation of an extrinsic brain-gut motor pathway, via pelvic nerves. This technology overcomes major limitations of conventional wireless optogenetic hardware designed for the CNS, providing targeted control of specific neurochemical classes of neurons in the ENS and brain-gut axis, for direct modulation of GI-transit and associated behaviours in freely moving animals.


Subject(s)
Enteric Nervous System , Optogenetics , Wireless Technology , Animals , Optogenetics/instrumentation , Enteric Nervous System/physiology , Mice , Wireless Technology/instrumentation , Brain-Gut Axis/physiology , Biosensing Techniques/instrumentation , Equipment Design , Brain/physiology , Mice, Inbred C57BL
12.
Gut Microbes ; 16(1): 2357177, 2024.
Article in English | MEDLINE | ID: mdl-38781112

ABSTRACT

The prevalence of eating disorders has been increasing over the last 50 years. Binge eating disorder (BED) and bulimia nervosa (BN) are two typical disabling, costly and life-threatening eating disorders that substantially compromise the physical well-being of individuals while undermining their psychological functioning. The distressing and recurrent episodes of binge eating are commonly observed in both BED and BN; however, they diverge as BN often involves the adoption of inappropriate compensatory behaviors aimed at averting weight gain. Normal eating behavior is coordinated by a well-regulated trade-off between intestinal and central ingestive mechanism. Conversely, despite the fact that the etiology of BED and BN remains incompletely resolved, emerging evidence corroborates the notion that dysbiosis of gastrointestinal microbiome and its metabolites, alteration of gut-brain axis, as well as malfunctioning central circuitry regulating motivation, execution and reward all contribute to the pathology of binge eating. In this review, we aim to outline the current state of knowledge pertaining to the potential mechanisms through which each component of the gut-brain axis participates in binge eating behaviors, and provide insight for the development of microbiome-based therapeutic interventions that hold promise in ameliorating patients afflicted with binge eating disorders.


Subject(s)
Binge-Eating Disorder , Brain-Gut Axis , Brain , Dysbiosis , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Humans , Binge-Eating Disorder/microbiology , Binge-Eating Disorder/physiopathology , Binge-Eating Disorder/metabolism , Brain-Gut Axis/physiology , Brain/microbiology , Brain/physiopathology , Animals , Dysbiosis/microbiology , Feeding Behavior
13.
Gut ; 73(7): 1199-1211, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38697774

ABSTRACT

Postprandial, or meal-related, symptoms, such as abdominal pain, early satiation, fullness or bloating, are often reported by patients with disorders of gut-brain interaction, including functional dyspepsia (FD) or irritable bowel syndrome (IBS). We propose that postprandial symptoms arise via a distinct pathophysiological process. A physiological or psychological insult, for example, acute enteric infection, leads to loss of tolerance to a previously tolerated oral food antigen. This enables interaction of both the microbiota and the food antigen itself with the immune system, causing a localised immunological response, with activation of eosinophils and mast cells, and release of inflammatory mediators, including histamine and cytokines. These have more widespread systemic effects, including triggering nociceptive nerves and altering mood. Dietary interventions, including a diet low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols, elimination of potential food antigens or gluten, IgG food sensitivity diets or salicylate restriction may benefit some patients with IBS or FD. This could be because the restriction of these foods or dietary components modulates this pathophysiological process. Similarly, drugs including proton pump inhibitors, histamine-receptor antagonists, mast cell stabilisers or even tricyclic or tetracyclic antidepressants, which have anti-histaminergic actions, all of which are potential treatments for FD and IBS, act on one or more of these mechanisms. It seems unlikely that food antigens driving intestinal immune activation are the entire explanation for postprandial symptoms in FD and IBS. In others, fermentation of intestinal carbohydrates, with gas release altering reflex responses, adverse reactions to food chemicals, central mechanisms or nocebo effects may dominate. However, if the concept that postprandial symptoms arise from food antigens driving an immune response in the gastrointestinal tract in a subset of patients is correct, it is paradigm-shifting, because if the choice of treatment were based on one or more of these therapeutic targets, patient outcomes may be improved.


Subject(s)
Brain-Gut Axis , Postprandial Period , Humans , Postprandial Period/physiology , Brain-Gut Axis/physiology , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/physiopathology , Irritable Bowel Syndrome/immunology , Irritable Bowel Syndrome/diet therapy , Dyspepsia/therapy , Dyspepsia/etiology , Dyspepsia/physiopathology , Dyspepsia/immunology , Abdominal Pain/etiology , Abdominal Pain/immunology , Abdominal Pain/therapy , Abdominal Pain/physiopathology , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/immunology
14.
Gut Microbes ; 16(1): 2351520, 2024.
Article in English | MEDLINE | ID: mdl-38717832

ABSTRACT

Links between the gut microbiota and human health have been supported throughout numerous studies, such as the development of neurological disease disorders. This link is referred to as the "microbiota-gut-brain axis" and is the focus of an emerging field of research. Microbial-derived metabolites and gut and neuro-immunological metabolites regulate this axis in health and many diseases. Indeed, assessing these signals, whether induced by microbial metabolites or neuro-immune mediators, could significantly increase our knowledge of the microbiota-gut-brain axis. However, this will require the development of appropriate techniques and potential models. Methods for studying the induced signals originating from the microbiota remain crucial in this field. This review discusses the methods and techniques available for studies of microbiota-gut-brain interactions. We highlight several much-debated elements of these methodologies, including the widely used in vivo and in vitro models, their implications, and perspectives in the field based on a systematic review of PubMed. Applications of various animal models (zebrafish, mouse, canine, rat, rabbit) to microbiota-gut-brain axis research with practical examples of in vitro methods and innovative approaches to studying gut-brain communications are highlighted. In particular, we extensively discuss the potential of "organ-on-a-chip" devices and their applications in this field. Overall, this review sheds light on the most widely used models and methods, guiding researchers in the rational choice of strategies for studies of microbiota-gut-brain interactions.


Subject(s)
Brain-Gut Axis , Gastrointestinal Microbiome , Host Microbial Interactions , Animals , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Humans , Brain/microbiology , Brain/metabolism , Brain/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Models, Animal , Mice
15.
Front Immunol ; 15: 1365673, 2024.
Article in English | MEDLINE | ID: mdl-38817603

ABSTRACT

Importance: Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations: Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance: While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Neuroinflammatory Diseases , Humans , Gastrointestinal Microbiome/immunology , Animals , Brain-Gut Axis/immunology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/microbiology , Neuroinflammatory Diseases/etiology , Brain/immunology , Brain/microbiology
16.
J Integr Neurosci ; 23(5): 92, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38812393

ABSTRACT

The evidence of brain-gut interconnections in Alzheimer's disease (AD) opens novel avenues for the treatment of a pathology for which no definitive treatment exists. Gut microbiota and bacterial translocation may produce peripheral inflammation and immune modulation, contributing to brain amyloidosis, neurodegeneration, and cognitive deficits in AD. The gut microbiota can be used as a potential therapeutic target in AD. In particular, photobiomodulation (PBM) can affect the interaction between the microbiota and the immune system, providing a potential explanation for its restorative properties in AD-associated dysbiosis. PBM is a safe, non-invasive, non-ionizing, and non-thermal therapy that uses red or near-infrared light to stimulate the cytochrome c oxidase (CCO, complex IV), the terminal enzyme of the mitochondrial electron transport chain, resulting in adenosine triphosphate synthesis. The association of the direct application of PBM to the head with an abscopal and a systemic treatment through simultaneous application to the abdomen provides an innovative therapeutic approach to AD by targeting various components of this highly complex pathology. As a hypothesis, PBM might have a significant role in the therapeutic options available for the treatment of AD.


Subject(s)
Alzheimer Disease , Brain-Gut Axis , Gastrointestinal Microbiome , Low-Level Light Therapy , Alzheimer Disease/radiotherapy , Alzheimer Disease/metabolism , Humans , Low-Level Light Therapy/methods , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/radiation effects , Brain-Gut Axis/physiology , Animals , Brain/metabolism , Brain/radiation effects
17.
Phytomedicine ; 129: 155510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696921

ABSTRACT

BACKGROUND: Gut microbiota plays a critical role in the pathogenesis of depression and are a therapeutic target via maintaining the homeostasis of the host through the gut microbiota-brain axis (GMBA). A co-decoction of Lilii bulbus and Radix Rehmannia Recens (LBRD), in which verbascoside is the key active ingredient, improves brain and gastrointestinal function in patients with depression. However, in depression treatment using verbascoside or LBRD, mechanisms underlying the bidirectional communication between the intestine and brain via the GMBA are still unclear. PURPOSE: This study aimed to examine the role of verbascoside in alleviating depression via gut-brain bidirectional communication and to study the possible pathways involved in the GMBA. METHODS: Key molecules and compounds involved in antidepressant action were identified using HPLC and transcriptomic analyses. The antidepressant effects of LBRD and verbascoside were observed in chronic stress induced depression model by behavioural test, neuronal morphology, and synaptic dendrite ultrastructure, and their neuroprotective function was measured in corticosterone (CORT)-stimulated nerve cell injury model. The causal link between the gut microbiota and the LBRD and verbascoside antidepressant efficacy was evaluate via gut microbiota composition analysis and faecal microbiota transplantation (FMT). RESULTS: LBRD and Verbascoside administration ameliorated depression-like behaviours and synaptic damage by reversing gut microbiota disturbance and inhibiting inflammatory responses as the result of impaired intestinal permeability or blood-brain barrier leakiness. Furthermore, verbascoside exerted neuroprotective effects against CORT-induced cytotoxicity in an in vitro depression model. FMT therapy indicated that verbascoside treatment attenuated gut inflammation and central nervous system inflammatory responses, as well as eliminated neurotransmitter and brain-gut peptide deficiencies in the prefrontal cortex by modulating the composition of gut microbiota. Lactobacillus, Parabacteroides, Bifidobacterium, and Ruminococcus might play key roles in the antidepressant effects of LBRD via the GMBA. CONCLUSION: The current study elucidates the multi-component, multi-target, and multi-pathway therapeutic effects of LBRD on depression by remodeling GMBA homeostasis and further verifies the causality between gut microbiota and the antidepressant effects of verbascoside and LBRD.


Subject(s)
Antidepressive Agents , Brain-Gut Axis , Depression , Gastrointestinal Microbiome , Glucosides , Neuroinflammatory Diseases , Phenols , Rehmannia , Gastrointestinal Microbiome/drug effects , Animals , Rehmannia/chemistry , Glucosides/pharmacology , Brain-Gut Axis/drug effects , Depression/drug therapy , Male , Neuroinflammatory Diseases/drug therapy , Antidepressive Agents/pharmacology , Phenols/pharmacology , Mice , Stress, Psychological/drug therapy , Disease Models, Animal , Permeability , Rats , Brain/drug effects , Mice, Inbred C57BL , Intestinal Barrier Function , Polyphenols
18.
J Hazard Mater ; 472: 134444, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701724

ABSTRACT

The effects of antipsychotic drugs on aquatic organisms have received widespread attention owing to their widespread use and continued release in aquatic environments. The toxicological effects of antipsychotics on aquatic organisms, particularly fish, are unexplored, and the underlying mechanisms remain unelucidated. This study aimed to use common carp to explore the effects of antipsychotics (olanzapine [OLA] and risperidone [RIS]) on behavior and the potential mechanisms driving these effects. The fish were exposed to OLA (0.1 and 10 µg/L) and RIS (0.03 and 3 µg/L) for 60 days. Behavioral tests and neurological indicators showed that exposure to antipsychotics could cause behavioral abnormalities and neurotoxicity in common carp. Further, 16 S rRNA sequencing revealed gut microbiota alteration and decreased relative abundance of some strains related to SCFA production after OLA and RIS exposure. Subsequently, a pseudo-sterile common carp model was successfully constructed, and transplantation of the gut microbiota from antipsychotic-exposed fish caused behavioral abnormalities and neurotoxicity in pseudo-sterile fish. Further, SCFA supplementation demonstrated that SCFAs ameliorated the behavioral abnormalities and neurological damage caused by antipsychotic exposure. To our knowledge, the present study is the first to investigate the effects of antipsychotics on various complex behaviors (swimming performance and social behavior) in common carp, highlighting the potential health risks associated with antipsychotic drug-induced neurotoxicity in fish. Although these results do not fully elucidate the mechanisms underlying the effects of antipsychotic drugs on fish behavior, they serve as a valuable initial investigation and form the basis for future research.


Subject(s)
Antipsychotic Agents , Behavior, Animal , Carps , Gastrointestinal Microbiome , Risperidone , Water Pollutants, Chemical , Animals , Gastrointestinal Microbiome/drug effects , Antipsychotic Agents/toxicity , Behavior, Animal/drug effects , Risperidone/toxicity , Risperidone/pharmacology , Water Pollutants, Chemical/toxicity , Olanzapine/toxicity , Brain-Gut Axis/drug effects , Swimming , Social Behavior
19.
J Neuroinflammation ; 21(1): 138, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802927

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a significant cause of mortality in patients with sepsis. Despite extensive research, its exact cause remains unclear. Our previous research indicated a relationship between non-hepatic hyperammonemia (NHH) and SAE. This study aimed to investigate the relationship between NHH and SAE and the potential mechanisms causing cognitive impairment. In the in vivo experimental results, there were no significant abnormalities in the livers of mice with moderate cecal ligation and perforation (CLP); however, ammonia levels were elevated in the hippocampal tissue and serum. The ELISA study suggest that fecal microbiota transplantation in CLP mice can reduce ammonia levels. Reduction in ammonia levels improved cognitive dysfunction and neurological impairment in CLP mice through behavioral, neuroimaging, and molecular biology studies. Further studies have shown that ammonia enters the brain to regulate the expression of aquaporins-4 (AQP4) in astrocytes, which may be the mechanism underlying brain dysfunction in CLP mice. The results of the in vitro experiments showed that ammonia up-regulated AQP4 expression in astrocytes, resulting in astrocyte damage. The results of this study suggest that ammonia up-regulates astrocyte AQP4 expression through the gut-brain axis, which may be a potential mechanism for the occurrence of SAE.


Subject(s)
Aquaporin 4 , Astrocytes , Brain-Gut Axis , Hyperammonemia , Sepsis-Associated Encephalopathy , Animals , Mice , Aquaporin 4/metabolism , Aquaporin 4/genetics , Aquaporin 4/biosynthesis , Astrocytes/metabolism , Hyperammonemia/metabolism , Sepsis-Associated Encephalopathy/metabolism , Male , Brain-Gut Axis/physiology , Mice, Inbred C57BL , Ammonia/metabolism , Ammonia/blood , Brain/metabolism , Fecal Microbiota Transplantation
20.
Biomed Pharmacother ; 175: 116601, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749177

ABSTRACT

Alzheimer's disease (AD) comprises a group of neurodegenerative disorders with some changes in the brain, which could lead to the deposition of certain proteins and result in the degeneration and death of brain cells. Patients with AD manifest primarily as cognitive decline, psychiatric symptoms, and behavioural disorders. Short-chain fatty acids (SCFAs) are a class of saturated fatty acids (SFAs) produced by gut microorganisms through the fermentation of dietary fibre ingested. SCFAs, as a significant mediator of signalling, can have diverse physiological and pathological roles in the brain through the gut-brain axis, and play a positive effect on AD via multiple pathways. Firstly, differences in SCFAs and microbial changes have been stated in AD cases of humans and mice in this paper. And then, mechanisms of three main SCFAs in treating with AD have been summarized, as well as differences of gut bacteria. Finally, functions of SCFAs played in regulating intestinal flora homeostasis, modulating the immune system, and the metabolic system, which were considered to be beneficial for the treatment of AD, have been elucidated, and the key roles of gut bacteria and SCFAs were pointed out. All in all, this paper provides an overview of SCFAs and gut bacteria in AD, and can help people to understand the importance of gut-brain axis in AD.


Subject(s)
Alzheimer Disease , Brain-Gut Axis , Brain , Fatty Acids, Volatile , Gastrointestinal Microbiome , Humans , Fatty Acids, Volatile/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/microbiology , Animals , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Brain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...