Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.591
Filter
1.
Food Res Int ; 188: 114476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823866

ABSTRACT

Kimchi cabbage, the key ingredient in kimchi, is cultivated year-round to meet high production demands. This study aimed to examine the effects of seasonal harvesting (spring, summer, fall, and winter) on the microbial and metabolic profiles of kimchi during 30 days of fermentation. Lactic acid bacteria distribution is notably influenced by seasonal variations, with Latilactobacillus dominant in fall-harvested kimchi group and Weissella prevailing in spring, summer, and winter. The microbial communities of spring and fall group exhibited similar profiles before fermentation, whereas the microbial communities and metabolic profiles of spring and summer group were similar after 30 days of fermentation. Seasonal disparities in metabolite concentrations, including glutamic acid, serine, and cytosine, persist throughout fermentation. This study provides a comprehensive understanding of the substantial impact of seasonal harvesting of kimchi cabbage on the microbial and metabolic characteristics of kimchi, providing valuable insights into producing kimchi with diverse qualities.


Subject(s)
Brassica , Fermentation , Fermented Foods , Food Microbiology , Seasons , Brassica/microbiology , Brassica/metabolism , Fermented Foods/microbiology , Fermented Foods/analysis , Metabolome , Microbiota , Weissella/metabolism
2.
Genes (Basel) ; 15(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790174

ABSTRACT

Black spot, caused by Alternaria brassicicola (Ab), poses a serious threat to crucifer production, and knowledge of how plants respond to Ab infection is essential for black spot management. In the current study, combined transcriptomic and metabolic analysis was employed to investigate the response to Ab infection in two cabbage (Brassica oleracea var. capitata) genotypes, Bo257 (resistant to Ab) and Bo190 (susceptible to Ab). A total of 1100 and 7490 differentially expressed genes were identified in Bo257 (R_mock vs. R_Ab) and Bo190 (S_mock vs. S_Ab), respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that "metabolic pathways", "biosynthesis of secondary metabolites", and "glucosinolate biosynthesis" were the top three enriched KEGG pathways in Bo257, while "metabolic pathways", "biosynthesis of secondary metabolites", and "carbon metabolism" were the top three enriched KEGG pathways in Bo190. Further analysis showed that genes involved in extracellular reactive oxygen species (ROS) production, jasmonic acid signaling pathway, and indolic glucosinolate biosynthesis pathway were differentially expressed in response to Ab infection. Notably, when infected with Ab, genes involved in extracellular ROS production were largely unchanged in Bo257, whereas most of these genes were upregulated in Bo190. Metabolic profiling revealed 24 and 56 differentially accumulated metabolites in Bo257 and Bo190, respectively, with the majority being primary metabolites. Further analysis revealed that dramatic accumulation of succinate was observed in Bo257 and Bo190, which may provide energy for resistance responses against Ab infection via the tricarboxylic acid cycle pathway. Collectively, this study provides comprehensive insights into the Ab-cabbage interactions and helps uncover targets for breeding Ab-resistant varieties in cabbage.


Subject(s)
Alternaria , Brassica , Gene Expression Regulation, Plant , Metabolome , Plant Diseases , Transcriptome , Alternaria/pathogenicity , Alternaria/genetics , Brassica/microbiology , Brassica/genetics , Brassica/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Transcriptome/genetics , Metabolome/genetics , Disease Resistance/genetics , Metabolic Networks and Pathways/genetics , Gene Expression Profiling/methods , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791131

ABSTRACT

Salinity stress is a type of abiotic stress which negatively affects the signaling pathways and cellular compartments of plants. Melatonin (MT) has been found to be a bioactive compound that can mitigate these adverse effects, which makes it necessary to understand the function of MT and its role in salt stress. During this study, plants were treated exogenously with 100 µM of MT for 7 days and subjected to 200 mM of salt stress, and samples were collected after 1 and 7 days for different indicators and transcriptome analysis. The results showed that salt reduced chlorophyll contents and damaged the chloroplast structure, which was confirmed by the downregulation of key genes involved in the photosynthesis pathway after transcriptome analysis and qRT-PCR confirmation. Meanwhile, MT increased the chlorophyll contents, reduced the electrolyte leakage, and protected the chloroplast structure during salt stress by upregulating several photosynthesis pathway genes. MT also decreased the H2O2 level and increased the ascorbic acid contents and APX activity by upregulating genes involved in the ascorbic acid pathway during salt stress, as confirmed by the transcriptome and qRT-PCR analyses. Transcriptome profiling also showed that 321 and 441 DEGs were expressed after 1 and 7 days of treatment, respectively. The KEGG enrichment analysis showed that 76 DEGs were involved in the photosynthesis pathway, while 35 DEGs were involved in the ascorbic acid metabolism pathway, respectively. These results suggest that the exogenous application of MT in plants provides important insight into understanding MT-induced stress-responsive mechanisms and protecting Brassica campestris against salt stress by regulating the photosynthesis and ascorbic acid pathway genes.


Subject(s)
Ascorbic Acid , Brassica , Gene Expression Profiling , Gene Expression Regulation, Plant , Melatonin , Photosynthesis , Salt Stress , Melatonin/pharmacology , Melatonin/metabolism , Photosynthesis/drug effects , Ascorbic Acid/metabolism , Brassica/metabolism , Brassica/genetics , Brassica/drug effects , Gene Expression Regulation, Plant/drug effects , Transcriptome/drug effects , Chlorophyll/metabolism
4.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791354

ABSTRACT

Aliphatic glucosinolates are an abundant group of plant secondary metabolites in Brassica vegetables, with some of their degradation products demonstrating significant anti-cancer effects. The transcription factors MYB28 and MYB29 play key roles in the transcriptional regulation of aliphatic glucosinolates biosynthesis, but little is known about whether BoMYB28 and BoMYB29 are also modulated by upstream regulators or how, nor their gene regulatory networks. In this study, we first explored the hierarchical transcriptional regulatory networks of MYB28 and MYB29 in a model plant, then systemically screened the regulators of the three BoMYB28 homologs in cabbage using a yeast one-hybrid. Furthermore, we selected a novel RNA binding protein, BoRHON1, to functionally validate its roles in modulating aliphatic glucosinolates biosynthesis. Importantly, BoRHON1 induced the accumulation of all detectable aliphatic and indolic glucosinolates, and the net photosynthetic rates of BoRHON1 overexpression lines were significantly increased. Interestingly, the growth and biomass of these overexpression lines of BoRHON1 remained the same as those of the control plants. BoRHON1 was shown to be a novel, potent, positive regulator of glucosinolates biosynthesis, as well as a novel regulator of normal plant growth and development, while significantly increasing plants' defense costs.


Subject(s)
Brassica , Gene Expression Regulation, Plant , Glucosinolates , Plant Proteins , RNA-Binding Proteins , Transcription Factors , Glucosinolates/metabolism , Brassica/metabolism , Brassica/genetics , Brassica/growth & development , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Regulatory Networks , Plants, Genetically Modified
5.
ScientificWorldJournal ; 2024: 6086730, 2024.
Article in English | MEDLINE | ID: mdl-38715843

ABSTRACT

Cabbage (Brassica oleracea var. capitata L.) holds significant agricultural and nutritional importance in Ethiopia; yet, its production faces challenges, including suboptimal nitrogen fertilizer management. The aim of this review was to review the possible effect of nitrogen fertilizer levels on the production of cabbage in Ethiopia. Nitrogen fertilization significantly influences cabbage yield and quality. Moderate to high levels of nitrogen application enhance plant growth, leaf area, head weight, and yield. However, excessive nitrogen levels can lead to adverse effects such as delayed maturity, increased susceptibility to pests and diseases, and reduced postharvest quality. In Ethiopia, small-scale farmers use different nitrogen levels for cabbage cultivation. In Ethiopia, NPSB or NPSBZN fertilizers are widely employed for the growing of various crops such as cabbage. 242 kg of NPS and 79 kg of urea are the blanket recommendation for the current production of cabbage in Ethiopia. The existing rate is not conducive for farmers. Therefore, small-scale farmers ought to utilize an optimal and cost-effective nitrogen rate to boost the cabbage yield. Furthermore, the effectiveness of nitrogen fertilization is influenced by various factors including the soil type, climate, cabbage variety, and agronomic practices. Integrated nutrient management approaches, combining nitrogen fertilizers with organic amendments or other nutrients, have shown promise in optimizing cabbage production while minimizing environmental impacts. The government ought to heed suggestions concerning soil characteristics such as the soil type, fertility, and additional factors such as the soil pH level and soil moisture contents.


Subject(s)
Brassica , Fertilizers , Nitrogen , Agriculture/methods , Brassica/growth & development , Brassica/drug effects , Brassica/metabolism , Crops, Agricultural/growth & development , Ethiopia , Fertilizers/analysis , Nitrogen/analysis , Nitrogen/metabolism , Soil/chemistry
6.
Food Chem ; 450: 139517, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38703670

ABSTRACT

The purpose of this study was to investigate the impact of high­oxygen-modified atmospheric packaging (HOMAP) on aroma changes in fresh-cut broccoli during storage and to explore its regulatory mechanisms. The results showed that HOMAP reduced the levels of undesirable aroma substances hexanoic acid, isobutyric acid, cyclopentanone and increased glucosinolate accumulation by inhibiting the expression of arogenate/prephenate dehydratase (ADT), bifunctional aspartate aminotransferase and glutamate/aspartate-prephenate aminotransferase (PAT), thiosulfate/3-mercaptopyruvate Transferase (TST) to reduce the odor of fresh-cut broccoli. HOMAP inhibited the expression of respiratory metabolism related genes 6-phosphate fructokinase 1 (PFK), pyruvate kinase (PK), and NADH-ubiquinone oxidoreductase chain 6 (ND6). In HOMAP group, the low expression of phospholipase C (PLC), phospholipase A1 (PLA1), linoleate 9S-lipoxygenase 1 (LOX1) related to lipid metabolism and the high expression of naringenin 3-dioxygenase (F3H), trans-4-Hydroxycinnamate (C4H), glutaredoxin 3 (GRX3), and thioredoxin 1 (TrX1) in the antioxidant system maintained membrane stability while reducing the occurrence of membrane lipid peroxidation.


Subject(s)
Brassica , Food Packaging , Oxygen , Brassica/chemistry , Brassica/metabolism , Food Packaging/instrumentation , Oxygen/metabolism , Oxygen/analysis , Taste , Odorants/analysis , Plant Proteins/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Food Storage , Food Preservation/methods
7.
Plant Physiol Biochem ; 211: 108694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714131

ABSTRACT

Using natural clinoptilolite (NCP) as a carrier and alginate (Alg)-calcium as an active species, the porous silicon calcium alginate nanocomposite (Alg-Ca-NCP) was successfully fabricated via adsorption-covalence-hydrogen bond. Its structural features and physicochemical properties were detailed investigated by various characterizations. The results indicated that Alg-Ca-NCP presented the disordered lamellar structures with approximately uniform particles in size of 300-500 nm. Specially, their surface fractal evolutions between the irregular roughness and dense structures were demonstrated via the SAXS patterns. The results elucidated that the abundant micropores of NCP were beneficial for unrestricted diffusing of Alg-Ca, which was conducive to facilitate a higher loading and sustainable releasing. The Ca content of leaf mustard treated with Alg-Ca-NCP-0.5 was 484.5 mg/100g on the 21st day, higher than that by water (CK) and CaCl2 solution treatments, respectively. Meanwhile, the prepared Alg-Ca-NCPs presented the obvious anti-aging effects on peroxidase drought stress of mustard leaves. These demonstrations provided a simple and effective method to synthesize Alg-Ca-NCPs as delivery nanocomposites, which is useful to improve the weak absorption and low utilization of calcium alginate by plants.


Subject(s)
Alginates , Mustard Plant , Zeolites , Alginates/chemistry , Alginates/pharmacology , Zeolites/chemistry , Zeolites/pharmacology , Mustard Plant/metabolism , Mustard Plant/drug effects , Mustard Plant/chemistry , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/chemistry , Porosity , Brassica/metabolism , Brassica/drug effects , Brassica/growth & development , Glucuronic Acid/chemistry , Nanocomposites/chemistry , X-Ray Diffraction , Hexuronic Acids/chemistry , Hexuronic Acids/metabolism
8.
Food Chem ; 452: 139615, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38754169

ABSTRACT

Screening for pollution-safe cultivars (PSCs) is a cost-effective strategy for reducing health risks of crops in heavy metal (HM)-contaminated soils. In this study, 13 head cabbages were grown in multi-HMs contaminated soil, and their accumulation characteristics, interaction of HM types, and health risks assessment using Monte Carlo simulation were examined. Results showed that the edible part of head cabbage is susceptible to HM contamination, with 84.62% of varieties polluted. The average bio-concentration ability of HMs in head cabbage was Cd> > Hg > Cr > As>Pb. Among five HMs, Cd and As contributed more to potential health risks (accounting for 20.8%-48.5%). Significant positive correlations were observed between HM accumulation and co-occurring HMs in soil. Genotypic variations in HM accumulation suggested the potential for reducing health risks through crop screening. G7 is a recommended variety for head cabbage cultivation in areas with multiple HM contamination, while G3 could serve as a suitable alternative for heavily Hg-contaminated soils.


Subject(s)
Bioaccumulation , Brassica , Metals, Heavy , Soil Pollutants , Soil Pollutants/metabolism , Soil Pollutants/analysis , Soil Pollutants/chemistry , Metals, Heavy/metabolism , Metals, Heavy/analysis , Brassica/chemistry , Brassica/metabolism , Brassica/growth & development , Soil/chemistry , Food Contamination/analysis
9.
Food Chem ; 452: 139557, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728895

ABSTRACT

ß-Galactosidase (ß-gal), an enzyme related to cell wall degradation, plays an important role in regulating cell wall metabolism and reconstruction. However, activatable fluorescence probes for the detection and imaging of ß-gal fluctuations in plants have been less exploited. Herein, we report an activatable fluorescent probe based on intramolecular charge transfer (ICT), benzothiazole coumarin-bearing ß-galactoside (BC-ßgal), to achieve distinct in situ imaging of ß-gal in plant cells. It exhibits high sensitivity and selectivity to ß-gal with a fast response (8 min). BC-ßgal can be used to efficiently detect the alternations of intracellular ß-gal levels in cabbage root cells with considerable imaging integrity and imaging contrast. Significantly, BC-ßgal can assess ß-gal activity in cabbage roots under heavy metal stress (Cd2+, Cu2+, and Pb2+), revealing that ß-gal activity is negatively correlated with the severity of heavy metal stress. Our work thus facilitates the study of ß-gal biological mechanisms.


Subject(s)
Brassica , Fluorescent Dyes , Metals, Heavy , Plant Roots , beta-Galactosidase , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Brassica/chemistry , Brassica/metabolism , Brassica/enzymology , Plant Roots/chemistry , Plant Roots/metabolism , Fluorescent Dyes/chemistry , Metals, Heavy/metabolism , Metals, Heavy/analysis , Optical Imaging , Plant Proteins/metabolism
10.
BMC Plant Biol ; 24(1): 324, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658831

ABSTRACT

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) significantly affects the production of cabbage and other cruciferous vegetables. Plant antioxidant system plays an important role in pathogen invasion and is one of the main mechanisms underlying resistance to biological stress. Therefore, it is important to study the resistance mechanisms of the cabbage antioxidant system during the early stages of Xcc. In this study, 108 CFU/mL (OD600 = 0.1) Xcc race1 was inoculated on "zhonggan 11" cabbage using the spraying method. The effects of Xcc infection on the antioxidant system before and after Xcc inoculation (0, 1, 3, and 5 d) were studied by physiological indexes determination, transcriptome and metabolome analyses. We concluded that early Xcc infection can destroy the balance of the active oxygen metabolism system, increase the generation of free radicals, and decrease the scavenging ability, leading to membrane lipid peroxidation, resulting in the destruction of the biofilm system and metabolic disorders. In response to Xcc infection, cabbage clears a series of reactive oxygen species (ROS) produced during Xcc infection via various antioxidant pathways. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased after Xcc infection, and the ROS scavenging rate increased. The biosynthesis of non-obligate antioxidants, such as ascorbic acid (AsA) and glutathione (GSH), is also enhanced after Xcc infection. Moreover, the alkaloid and vitamin contents increased significantly after Xcc infection. We concluded that cabbage could resist Xcc invasion by maintaining the stability of the cell membrane system and improving the biosynthesis of antioxidant substances and enzymes after infection by Xcc. Our results provide theoretical basis and data support for subsequent research on the cruciferous vegetables resistance mechanism and breeding to Xcc.


Subject(s)
Antioxidants , Brassica , Plant Diseases , Xanthomonas campestris , Xanthomonas campestris/physiology , Xanthomonas campestris/pathogenicity , Brassica/microbiology , Brassica/metabolism , Antioxidants/metabolism , Plant Diseases/microbiology , Reactive Oxygen Species/metabolism
11.
BMC Genomics ; 25(1): 425, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684983

ABSTRACT

BACKGROUND: Purple non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis] has become popular because of its richness in anthocyanin. However, anthocyanin only accumulates in the upper epidermis of leaves. Further studies are needed to investigate the molecular mechanisms underlying the specific accumulation of it. RESULTS: In this study, we used the laser capture frozen section method (LCM) to divide purple (ZBC) and green (LBC) non-heading Chinese cabbage leaves into upper and lower epidermis parts (Pup represents the purple upper epidermis, Plow represents the purple lower epidermis, Gup represents the green upper epidermis, Glow represents the green lower epidermis). Through transcriptome sequencing, we found that the DIHYDROFLAVONOL 4-REDUCTASE-encoding gene BcDFR, is strongly expressed in Pup but hardly in others (Plow, Gup, Glow). Further, a deletion and insertion in the promoter of BcDFR in LBC were found, which may interfere with BcDFR expression. Subsequent analysis of gene structure and conserved structural domains showed that BcDFR is highly conserved in Brassica species. The predicted protein-protein interaction network of BcDFR suggests that it interacts with almost all functional proteins in the anthocyanin biosynthesis pathway. Finally, the results of the tobacco transient expression also demonstrated that BcDFR promotes the synthesis and accumulation of anthocyanin. CONCLUSIONS: BcDFR is specifically highly expressed on the upper epidermis of purple non-heading Chinese cabbage leaves and regulates anthocyanin biosynthesis and accumulation. Our study provides new insights into the functional analysis and transcriptional regulatory network of anthocyanin-related genes in purple non-heading Chinese cabbage.


Subject(s)
Anthocyanins , Brassica , Plant Proteins , Anthocyanins/biosynthesis , Brassica/genetics , Brassica/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome , Laser Capture Microdissection , Gene Expression Regulation, Plant , Gene Expression Profiling , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , RNA-Seq , Promoter Regions, Genetic
12.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675547

ABSTRACT

Fermentation is used not only to preserve food but also to enhance its beneficial effects on human health and achieve functional foods. This study aimed to investigate how different treatments (spontaneous fermentation or fermentation with the use of starter culture) affect phenolic content, antioxidant potential, and cholinesterase inhibitory activity in different kale cultivars: 'Halbhoner Grüner Krauser', 'Scarlet', and 'Nero di Toscana'. Chosen samples were further tested for their protective potential against the Caco-2 cell line. HPLC-MS analysis revealed that the fermentation affected the composition of polyphenolic compounds, leading to an increase in the content of rutin, kaempferol, sinapinic, and protocatechuic acids. In general, kale cultivars demonstrated various antioxidant activities, and fermentation led to an increase in total phenolic content and antioxidant activity. Fermentation boosted anti-cholinesterase activity most profoundly in 'Nero di Toscana'. Extracts of spontaneously fermented 'Scarlet' (SS) and 'Nero di Toscana' (NTS) showed cytoprotective properties, as revealed by the malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) assays. Additionally, strong anti-inflammatory activity of NTS was shown by decreased release of cytokines IL-1ß and TNF-α. Collectively, the conducted studies suggest fermented kale cultivars as a potential source for functional foods.


Subject(s)
Antioxidants , Brassica , Fermentation , Phenols , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Phenols/pharmacology , Phenols/analysis , Phenols/chemistry , Caco-2 Cells , Brassica/chemistry , Brassica/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cholinesterase Inhibitors/pharmacology , Chromatography, High Pressure Liquid , Polyphenols/pharmacology , Polyphenols/chemistry
13.
Food Chem ; 450: 139349, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631205

ABSTRACT

Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.


Subject(s)
Brassica , Homeostasis , Microplastics , Oxidation-Reduction , Photosynthesis , Plant Growth Regulators , Secondary Metabolism , Selenium , Photosynthesis/drug effects , Brassica/metabolism , Brassica/chemistry , Brassica/growth & development , Brassica/drug effects , Microplastics/metabolism , Selenium/metabolism , Selenium/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Soil Pollutants/metabolism
14.
J Environ Manage ; 359: 120956, 2024 May.
Article in English | MEDLINE | ID: mdl-38669883

ABSTRACT

The interaction between cadmium(Cd) and copper(Cu) during combined pollution can lead to more complex toxic effects on humans and plants.However, there is still a lack of sufficient understanding regarding the types of interactions at the plant molecular level and the response strategies of plants to combined pollution. To assess this, we investigated the phenotypic and transcriptomic patterns of pakchoi (Brassica chinensis L) roots in response to individual and combined pollution of Cd and Cu. The results showed that compared to single addition, the translocation factor of heavy metals in roots significantly decreased (p < 0.05) under the combined addition, resulting in higher accumulation of Cd and Cu in the roots. Transcriptomic analysis of pakchoi roots revealed that compared to single pollution, there were 312 and 1926 differentially expressed genes (DEGs) specifically regulated in the Cd2Cu20 and Cd2Cu100 combined treatments, respectively. By comparing the expression of these DEGs among different treatments, we found that the combined pollution of Cd and Cu mainly affected the transcriptome of the roots in an antagonistic manner. Enrichment analysis indicated that pakchoi roots upregulated the expression of genes involved in glucosetransferase activity, phospholipid homeostasis, proton transport, and the biosynthesis of phenylpropanoids and flavonoids to resist Cd and Cu combined pollution. Using weighted gene co-expression network analysis (WGCNA), we identified hub genes related to the accumulation of Cd and Cu in the roots, which mainly belonged to the LBD, thaumatin-like protein, ERF, MYB, WRKY, and TCP transcription factor families. This may reflect a transcription factor-driven trade-off strategy between heavy metal accumulation and growth in pakchoi roots. Additionally, compared to single metal pollution, the expression of genes related to Nramp, cation/H+ antiporters, and some belonging to the ABC transporter family in the pakchoi roots was significantly upregulated under combined pollution. This could lead to increased accumulation of Cd and Cu in the roots. These findings provide new insights into the interactions and toxic mechanisms of multiple metal combined pollution at the molecular level in plants.


Subject(s)
Brassica , Cadmium , Copper , Plant Roots , Transcriptome , Cadmium/toxicity , Brassica/genetics , Brassica/drug effects , Brassica/metabolism , Copper/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Transcriptome/drug effects , Soil Pollutants/toxicity , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects
15.
BMC Plant Biol ; 24(1): 275, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605329

ABSTRACT

Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.


Subject(s)
Brassica , Composting , Indoleacetic Acids , Soil Pollutants , Humans , Nickel/metabolism , Nickel/toxicity , Brassica/metabolism , Hydrogen Peroxide/metabolism , Rhizosphere , Chlorophyll A , Soil Pollutants/toxicity , Soil Pollutants/metabolism
16.
Environ Sci Pollut Res Int ; 31(20): 30137-30148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602632

ABSTRACT

Antibiotics in agricultural soil can be accumulated in crops and might pose a potential risk to human health. Nevertheless, there is a lack of knowledge about the impact of nitrogen fertilizers on the dissipation and uptake of antibiotics in soils. Therefore, our aim in this study is to investigate the effects of urea fertilizer on the residues of ciprofloxacin and its uptake by Chinese flowering cabbage (Brassica parachinensis L.) as affected by the associated changes on the soil microbial community. A pot experiment has been conducted using spiked soil with 20 mg ciprofloxacin /kg soil and fertilized with urea at dosages equal to 0, 0.2, 0.4, 0.8 t/ha. Application urea especially at 0.4 t/ha decreased the residue of ciprofloxacin in the soil and its uptake by the roots and its translocation to the shoots of Chinese flowering cabbage. The translocation factors (TFs) for ciprofloxacin were significantly decreased (P < 0.05) only at the treatment of 0.4 t/ha, while no significant difference of bio-concentration factors (BCFs). The average well color development (AWCD) values, Shannon diversity, and richness index were higher in the fertilized than the un-fertilized soils, and all such indicators were greater at the treatment of 0.4 t/ha than at 0.2 and 0.8 t/ha. The carbon substrate utilization of phenolic acids at the treatments of 0.4 t/ha were greater than with other levels of urea fertilizer. In conclusion, moderate urea addition significantly increased soil microbial activity and abundance, which in turn promoted the ciprofloxacin dissipation in soil and plant tissue. The present study provides an economical and operational strategy for the remediation of ciprofloxacin contaminated soils.


Subject(s)
Brassica , Ciprofloxacin , Soil Microbiology , Soil Pollutants , Soil , Urea , Brassica/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Urea/metabolism , Fertilizers , East Asian People
17.
BMC Plant Biol ; 24(1): 335, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664614

ABSTRACT

BACKGROUND: The vivid red, purple, and blue hues that are observed in a variety of plant fruits, flowers, and leaves are produced by anthocyanins, which are naturally occurring pigments produced by a series of biochemical processes occurring inside the plant cells. The purple-stalked Chinese kale, a popular vegetable that contains anthocyanins, has many health benefits but needs to be investigated further to identify the genes involved in the anthocyanin biosynthesis and translocation in this vegetable. RESULTS: In this study, the purple- and green-stalked Chinese kale were examined using integrative transcriptome and metabolome analyses. The content of anthocyanins such as cyanidin-3-O-(6″-O-feruloyl) sophoroside-5-O-glucoside, cyanidin-3,5-O-diglucoside (cyanin), and cyanidin-3-O-(6″-O-p-hydroxybenzoyl) sophoroside-5-O-glucoside were considerably higher in purple-stalked Chinese kale than in its green-stalked relative. RNA-seq analysis indicated that 23 important anthocyanin biosynthesis genes, including 3 PAL, 2 C4H, 3 4CL, 3 CHS, 1 CHI, 1 F3H, 2 FLS, 2 F3'H, 1 DFR, 3 ANS, and 2 UFGT, along with the transcription factor BoMYB114, were significantly differentially expressed between the purple- and green-stalked varieties. Results of analyzing the expression levels of 11 genes involved in anthocyanin production using qRT-PCR further supported our findings. Association analysis between genes and metabolites revealed a strong correlation between BoGSTF12 and anthocyanin. We overexpressed BoGSTF12 in Arabidopsis thaliana tt19, an anthocyanin transport mutant, and this rescued the anthocyanin-loss phenotype in the stem and rosette leaves, indicating BoGSTF12 encodes an anthocyanin transporter that affects the accumulation of anthocyanins. CONCLUSION: This work represents a key step forward in our understanding of the molecular processes underlying anthocyanin production in Chinese kale. Our comprehensive metabolomic and transcriptome analyses provide important insights into the regulatory system that controls anthocyanin production and transport, while providing a foundation for further research to elucidate the physiological importance of the metabolites found in this nutritionally significant vegetable.


Subject(s)
Anthocyanins , Brassica , Gene Expression Profiling , Metabolome , Plant Proteins , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Brassica/genetics , Brassica/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics
18.
Biomolecules ; 14(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540770

ABSTRACT

Sulforaphane (SFN) is one of the hydrolysates of glucosinolates (GSLs), primarily derived from Brassica vegetables like broccoli. In clinical therapy, SFN has been proven to display antimicrobial, anticancer, antioxidant, and anti-inflammatory properties. However, the antimicrobial effects and mechanism of SFN against plant pathogens need to be further elucidated, which limits its application in agriculture. In this study, the genetic factors involved in SFN biosynthesis in 33 B. oleracea varieties were explored. The finding showed that besides the genetic background of different B. oleracea varieties, myrosinase and ESP genes play important roles in affecting SFN content. Subsequently, the molecular identification cards of these 33 B. oleracea varieties were constructed to rapidly assess their SFN biosynthetic ability. Furthermore, an optimized protocol for SFN extraction using low-cost broccoli curds was established, yielding SFN-enriched extracts (SFN-ee) containing up to 628.44 µg/g DW of SFN. The antimicrobial activity assay confirmed that SFN-ee obtained here remarkably inhibit the proliferation of nine tested microorganisms including four plant pathogens by destroying their membrane integrity. Additionally, the data demonstrated that exogenous application of SFN-ee could also induce ROS accumulation in broccoli leaves. These results indicated that SFN-ee should play a dual role in defense against plant pathogens by directly killing pathogenic cells and activating the ROS signaling pathway. These findings provide new evidence for the antimicrobial effect and mechanism of SFN against plant pathogens, and suggest that SFN-ee can be used as a natural plant antimicrobial agent for crop protection and food preservation.


Subject(s)
Anti-Infective Agents , Brassica , Isothiocyanates , Sulfoxides , Brassica/metabolism , Crop Protection , Reactive Oxygen Species/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
19.
Ecotoxicol Environ Saf ; 274: 116200, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38479316

ABSTRACT

Low concentration strontium (LC-Sr) can promote the growth of plants. In order to explore its promoting mechanism from the aspect of photosynthesis, the leaf characteristics, CO2 assimilation and chlorophyll (Chl) a fluorescence kinetics were investigated with hydroponically LC-Sr-treated Chinese cabbage seedlings. After a 28-d treatment to SrCl2 at different concentrations (0.1, 0.2, 0.5, and 1.0 mmol L-1), we observed an increase in the specific leaf weight (SLW) of Chinese cabbage compared with the control group. Notably, as the strontium concentration increased, a more pronounced improvement trend in the contents of Chl and protein in the leaves was observed, contributing to the enhancement of photosynthesis. However, the statistical differences in Pn among various LC-Sr treatments were not significant. Nevertheless, the leaf starch content exhibited a significant increase after LC-Sr treatments. Additionally, Chl a fluorescence transient has been used as a sensitive indicator of the promotional effect of LC-Sr on photosynthesis. The results of fluorescence parameters showed that LC-Sr treatments accelerated the light reaction speed of leaves (Tfm, dV/dto, dVG/dto), improved the energy utilization efficiency of photosystem (PSI and PSII) (ETo/CSo, ψET,ψRE, δRo, φRo), and ultimately enhanced the photosynthetic performance of leaves (PIabs, SFIabs, DFabs). The increased RCs/CSo and Sm contributed to the enhancement of the light reaction activity of strontium-treated leaves. The LC-Sr treatments had no interference with the calcium absorption, and notably enhanced the photosynthetic capacity of Chinese cabbage, shedding light on potential benefits of LC-Sr for crop cultivation.


Subject(s)
Brassica , Seedlings , Chlorophyll/metabolism , Carbon/metabolism , Fluorescence , Photosynthesis , Chlorophyll A/metabolism , Plant Leaves/metabolism , Brassica/metabolism
20.
BMC Plant Biol ; 24(1): 187, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38481163

ABSTRACT

BACKGROUND: As the second largest leafy vegetable, cabbage (Brassica oleracea L. var. capitata) is grown globally, and the characteristics of the different varieties, forms, and colors of cabbage may differ. In this study, five analysis methods-variance analysis, correlation analysis, cluster analysis, principal component analysis, and comprehensive ranking-were used to evaluate the quality indices (soluble protein, soluble sugar, and nitrate), antioxidant content (vitamin C, polyphenols, and flavonoids), and mineral (K, Ca, Mg, Cu, Fe, Mn, and Zn) content of 159 varieties of four forms (green spherical, green oblate, purple spherical, and green cow heart) of cabbage. RESULTS: The results showed that there are significant differences among different forms and varieties of cabbage. Compared to the other three forms, the purple spherical cabbage had the highest flavonoid, K, Mg, Cu, Mn, and Zn content. A scatter plot of the principal component analysis showed that the purple spherical and green cow heart cabbage varieties were distributed to the same quadrant, indicating that their quality indices and mineral contents were highly consistent, while those of the green spherical and oblate varieties were irregularly distributed. Overall, the green spherical cabbage ranked first, followed by the green cow heart, green oblate, and purple spherical varieties. CONCLUSIONS: Our results provide a theoretical basis for the cultivation and high-quality breeding of cabbage.


Subject(s)
Antioxidants , Brassica , Antioxidants/metabolism , Brassica/genetics , Brassica/metabolism , Plant Breeding , Flavonoids/metabolism , Minerals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...