Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.191
Filter
1.
Food Chem ; 452: 139594, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749142

ABSTRACT

Protein glycation closely intertwines with the pathogenesis of various diseases, sparking a growing interest in exploring natural antiglycation agents. Herein, high-purity betacyanins (betanin and phyllocactin) derived from Hylocereus polyrhizus peel were studied for their antiglycation potential using an in vitro bovine serum albumin (BSA)-glucose model. Notably, betacyanins outperformed aminoguanidine, a recognized antiglycation agent, in inhibiting glycation product formation across different stages, especially advanced glycation end-products (AGEs). Interestingly, phyllocactin displayed stronger antiglycation activity than betanin. Subsequent mechanistic studies employing molecular docking analysis and fluorescence quenching assay unveiled that betacyanins interact with BSA endothermically and spontaneously, with hydrophobic forces playing a dominant role. Remarkably, phyllocactin demonstrated higher binding affinity and stability to BSA than betanin. Furthermore, the incorporation of betacyanins into bread dose-dependently suppressed AGEs formation during baking and shows promise for inhibiting in vivo glycation process post-consumption. Overall, this study highlights the substantial potential of betacyanins as natural antiglycation agents.


Subject(s)
Betacyanins , Bread , Glycation End Products, Advanced , Molecular Docking Simulation , Plant Extracts , Serum Albumin, Bovine , Glycosylation , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/chemistry , Betacyanins/chemistry , Betacyanins/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Bread/analysis , Cactaceae/chemistry , Cactaceae/metabolism , Animals , Cattle
2.
Food Res Int ; 183: 114186, 2024 May.
Article in English | MEDLINE | ID: mdl-38760125

ABSTRACT

The rise of pre-diabetes at the global level has created a significant interest in developing low glycaemic index food products. The pearl millet is a cheaper source of starch and its germ contains significant amount of protein and fat. The complexing of pearl millet starch and germ by dry heat treatment (PMSGH) resulted an increase in the resistant starch content upto 45.09 % due to formation of amylose-glutelin-linoleic acid complex. The resulting pearl millet starch germ complex was incorporated into wheat bread at 20, 25, and 30 %. The PMSGH incorporated into bread at 30 % reduced the glycaemic index to 52.31. The PMSGH incorporated bread had significantly (p < 0.05)increased in the hardness with a reduction in springiness and cohesiveness. The structural attributes of the 30 % PMSGH incorporated bread revealed a significant (p < 0.05)increase in 1040/1020 cm-1 ratio and relative crystallinity. The consumption of functional bread incorporated with pearl millet starch germ complex reduced blood glucose levels and in vivo glycaemic index in healthy and pre-diabetic participants when compared to white bread. Hence, the study showed that the incorporation of pearl millet starch-germ complex into food products could be a potential new and healthier approach for improving dietary options in pre-diabetes care.


Subject(s)
Blood Glucose , Bread , Glycemic Index , Pennisetum , Prediabetic State , Starch , Humans , Bread/analysis , Pennisetum/chemistry , Starch/chemistry , Male , Adult , Female , Nutritive Value , Single-Blind Method , Young Adult , Middle Aged , Amylose/chemistry
3.
Food Res Int ; 187: 114422, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763672

ABSTRACT

Tons of orange by-products (OBPs) are generated during industrial orange processing. Currently, OBPs management is challenging due to their high amounts, physico-chemical characteristics (high water content, low pH, presence of essential oils) and seasonal nature of the production. Whereas agro-industrial OBPs can be highly valuable due to their abundant sources of bioactive compounds, which can add value to novel bakery products (e.g. bread, biscuits, cakes). This review covers the most recent research issues linked to the use of OBPs in bakery products, with a focus on available stabilization methods and on the main challenges to designing improved products. The application of OBPs improved the nutritional quality of bakery products, offering interesting sustainability benefits but also critical challenges. The valorization of OBPs may open new routes for the development of new natural ingredients for the food industry and lower food processing waste.


Subject(s)
Citrus sinensis , Industrial Waste , Citrus sinensis/chemistry , Industrial Waste/analysis , Food Handling/methods , Food Industry , Bread/analysis , Nutritive Value , Recycling , Food-Processing Industry
4.
Food Res Int ; 187: 114459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763692

ABSTRACT

Staple foods serve as vital nutrient sources for the human body, and chewiness is an essential aspect of food texture. Age, specific preferences, and diminished eating functions have broadened the chewiness requirements for staple foods. Therefore, comprehending the formation mechanism of chewiness in staple foods and exploring approaches to modulate it becomes imperative. This article reviewed the formation mechanisms and quality control methods for chewiness in several of the most common staple foods (rice, noodles, potatoes and bread). It initially summarized the chewiness formation mechanisms under three distinct thermal processing methods: water medium, oil medium, and air medium processing. Subsequently, proposed some effective approaches for regulating chewiness based on mechanistic changes. Optimizing raw material composition, controlling processing conditions, and adopting innovative processing techniques can be utilized. Nonetheless, the precise adjustment of staple foods' chewiness remains a challenge due to their diversity and technical study limitations. Hence, further in-depth exploration of chewiness across different staple foods is warranted.


Subject(s)
Bread , Food Handling , Oryza , Solanum tuberosum , Bread/analysis , Humans , Food Handling/methods , Mastication
5.
J Texture Stud ; 55(3): e12836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702990

ABSTRACT

A new technique known as dough crumb-sheet composite rolling (DC-SCR) was used to improve the quality of fresh noodles. However, there is a dearth of theoretical investigations into the optimal selection of specific parameters for this technology, and the underlying mechanisms are not fully understood. Therefore, the effects of dough crumb addition times in DC-SCR on the texture, cooking, and eating quality of fresh noodles were first studied. Then, the underlying regulation mechanism of DC-SCR technology on fresh noodles was analyzed in terms of moisture distribution and microstructure. The study demonstrated that the most significant enhancement in the quality of fresh noodles was achieved by adding dough crumbs six times. Compared with fresh noodles made without the addition of dough crumbs, the initial hardness and chewiness of fresh noodles made by adding six times of dough crumbs increased by 25.32% and 46.82%, respectively. In contrast, the cooking time and cooking loss were reduced by 28.45% and 29.69%, respectively. This quality improvement in fresh noodles made by DC-SCR came from the microstructural differences of the gluten network between the inner and outer layers of the dough sheet. A dense structure on the outside and a loose structure on the inside could endow the fresh noodles made by DC-SCR with higher hardness, a shortened cooking time, and less cooking loss. This study would provide a theoretical and experimental basis for creating high-quality fresh noodles.


Subject(s)
Bread , Cooking , Flour , Food Handling , Water , Cooking/methods , Flour/analysis , Food Handling/methods , Bread/analysis , Hardness , Glutens/analysis , Food Quality , Triticum/chemistry , Humans
6.
Food Chem ; 451: 139512, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38718641

ABSTRACT

In view of the merits of all-purpose wheat flour (APWF) to soft wheat flour (SWF) in cost and protein supply, the feasibility of heat-moisture treatment (HMT, 19% moisture for 1 h at 60, 80 and 100 °C, respectively) to modify APWF as a substitute SWF in making short dough biscuits was explored. For underlying mechanisms, on the one hand, HMT reduced the hydration capacity of damaged starch particles by coating them with denatured proteins. On the other hand, HMT at 80 °C and 100 °C significantly denatured gluten proteins to form protein aggregates, highly weakening the gluten network in dough. These two aspects jointly conferred APWF dough with higher deformability and therefore significantly improved the qualities of biscuits. Moreover, the qualities of biscuits from APWF upon HMT-100 °C were largely comparable to that from SWF, even higher values were concluded in spread ratio, volume, specific volume and consumer acceptance.


Subject(s)
Bread , Flour , Food Handling , Hot Temperature , Triticum , Flour/analysis , Triticum/chemistry , Bread/analysis , Glutens/chemistry , Water/chemistry , Humans
7.
Food Chem ; 448: 139117, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38608398

ABSTRACT

This study aimed to determine the impact of supplementation with probiotically fermented chickpea (Cicer arietinum L) seeds on the quality parameters and functional characteristics of wheat bread. The addition of chickpea seeds caused significant changes in the chemical composition of the control wheat bread. The legume-supplemented products exhibited higher values of a* and b* color parameters and higher hardness after 24 h of storage than the control. The application of fermented or unfermented chickpeas contributed to an increase in total polyphenol and flavonoid contents, iron chelating capacity, and antioxidant properties of the final product. The variant containing unfermented seeds had the highest riboflavin content (29.53 ± 1.11 µg/100 g d.w.), Trolox equivalent antioxidant capacity (227.02 ± 7.29 µmol·L-1 TX/100 g d.w.), and free radical scavenging activity (71.37 ± 1.30 % DPPH inhibition). The results of this preliminary research have practical importance in the production of innovative bakery products with potential properties of functional food.


Subject(s)
Antioxidants , Bread , Cicer , Fermentation , Probiotics , Cicer/chemistry , Bread/analysis , Antioxidants/chemistry , Antioxidants/analysis , Probiotics/analysis , Probiotics/chemistry , Seeds/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Functional Food/analysis , Triticum/chemistry , Triticum/metabolism
8.
Molecules ; 29(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38675700

ABSTRACT

Crispbread is gaining popularity as a healthy snack or bread substitute. This is a lightweight dry type of flat food that stays fresh for a very long time due to its lack of water and usually contains different types of grain flour, including gluten-containing wheat or rye flour. The incorporation of legume purée into crispbread represents an innovative approach to enhancing the nutritional profile and taste of the product. The rheological properties of various legume purées (chickpea, white bean, black bean, and red bean) mixed with citrus pectin were examined, revealing significant differences in fluid behavior and viscosity. Crispbread formulations were analyzed for water content and activity, color, structure, FT-IR spectra, water vapor adsorption isotherms, and sensory evaluation. The results showed the possibility of obtaining crispbread based on the purée of legumes and citrus pectin. Crispbread enriched with red bean purée exhibited low water activity (0.156) and water content (3.16%), along with a continuous porous structure, and received the highest sensory evaluation score among the products. These findings can be treated as a basis for the development of other innovative recipes and combinations using legumes.


Subject(s)
Fabaceae , Rheology , Fabaceae/chemistry , Vegetables/chemistry , Viscosity , Pectins/chemistry , Pectins/analysis , Flour/analysis , Bread/analysis , Spectroscopy, Fourier Transform Infrared , Water/chemistry
9.
Molecules ; 29(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38675714

ABSTRACT

Xylanase is an essential component used to hydrolyze the xylan in wheat flour to enhance the quality of bread. Presently, cold-activated xylanase is popularly utilized to aid in the development of dough. In this study, ancestral sequence reconstruction and molecular docking of xylanase and wheat xylan were used to enhance the activity and stability of a thermophilic xylanase. The results indicated that the ancestral enzyme TmxN3 exhibited significantly improved activity and thermal stability. The Vmax increased by 2.7 times, and the catalytic efficiency (Kcat/Km) increased by 1.7 times in comparison to TmxB. After being incubated at 100 °C for 120 min, it still retained 87.3% of its activity, and the half-life in 100 °C was 330 min, while the wild type xylanase was only 55 min. This resulted in an improved shelf life of bread, while adding TmxN3 considerably enhanced its quality with excellent volume and reduced hardness, chewiness, and gumminess. The results showed that the hardness was reduced by 55.2%, the chewiness was reduced by 40.11%, and the gumminess was reduced by 53.52%. To facilitate its industrial application, we further optimized the production conditions in a 5L bioreactor, and the xylanase activity reached 1.52 × 106 U/mL culture.


Subject(s)
Bread , Endo-1,4-beta Xylanases , Enzyme Stability , Flour , Molecular Docking Simulation , Triticum , Bread/analysis , Flour/analysis , Triticum/chemistry , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism
10.
Int J Biol Macromol ; 267(Pt 2): 131315, 2024 May.
Article in English | MEDLINE | ID: mdl-38569985

ABSTRACT

Understanding the hierarchical structure and physicochemical properties of starch isolated from fermented dough with different times (0-120 min) is valuable for improving the quality of fermented dough-based products. The results indicate that fermentation disrupted the starch granule surface and decreased the average particle size from 19.72 µm to 18.45 µm. Short-term fermentation (< 60 min) disrupted the crystalline, lamellar, short-range ordered molecular and helical structures of starch, while long-term fermentation (60-120 min) elevated the ordered degree of these structures. For example, relative crystallinity and double helix contents increased from 23.7 % to 26.8 % and 34.4 % to 37.2 %, respectively. During short-term fermentation, the structural amorphization facilitated interactions between starch molecular chains and water molecules, which increased the peak viscosity from 275.4 to 320.6 mPa·s and the swelling power from 7.99 to 8.52 g/g. In contrast, starches extracted from long-term fermented dough displayed the opposite results. Interestingly, the hardness and springiness of starch gels gradually decreased as fermentation time increased. These findings extend our understanding of the starch structure-property relationship during varied fermentation stages, potentially benefiting the production of better-fermented foods.


Subject(s)
Fermentation , Starch , Starch/chemistry , Viscosity , Chemical Phenomena , Flour/analysis , Particle Size , Bread/analysis
11.
Int J Biol Macromol ; 267(Pt 2): 131367, 2024 May.
Article in English | MEDLINE | ID: mdl-38583837

ABSTRACT

Chitosan (CS)-based bio-nanocomposite food packaging films were prepared via solvent-casting method by incorporating a unique combination of additives and fillers, including polyvinyl alcohol (PVA), glycerol, Tween 80, castor oil (CO), and nano titanium dioxide (TiO2) in various proportions to enhance film properties. For a comprehensive analysis of the synthesized films, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), tensile testing, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and UV-vis spectrophotometry were employed. Furthermore, the antimicrobial efficacy of the films against S. aureus, E. coli, and A. niger was examined to assess their potential to preserve food from foodborne pathogens. The results claimed that the inclusion of castor oil and TiO2 nanoparticles considerably improved antimicrobial properties, UV-vis light barrier properties, thermal stability, optical transparency, and mechanical strength of the films, while reducing their water solubility, moisture content, water vapor and oxygen permeability. Based on the overall analysis, CS/PVA/CO/TiO2-0.3 film can be selected as the optimal one for practical applications. Furthermore, the practical application of the optimum film was evaluated using white bread as a model food product. The modified film successfully extended the shelf life of bread to 10 days, surpassing the performance of commercial LDPE packaging (6 days), and showed promising attributes for applications in the food packaging sector. These films exhibit superior antimicrobial properties, improved mechanical strength, and extended shelf life for food products, marking a sustainable and efficient alternative to conventional plastic packaging in both scientific research and industrial applications.


Subject(s)
Bread , Chitosan , Food Packaging , Nanocomposites , Titanium , Titanium/chemistry , Chitosan/chemistry , Nanocomposites/chemistry , Food Packaging/methods , Bread/analysis , Nanoparticles/chemistry , Food Preservation/methods , Permeability , Thermogravimetry , Tensile Strength , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , X-Ray Diffraction
12.
Int J Biol Macromol ; 268(Pt 2): 131681, 2024 May.
Article in English | MEDLINE | ID: mdl-38643913

ABSTRACT

Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and ß-glucan. This study investigated the effects of ß-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that ß-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.


Subject(s)
Bread , Hordeum , Molecular Weight , Plant Proteins , Starch , Triticum , beta-Glucans , Hordeum/chemistry , beta-Glucans/chemistry , Starch/chemistry , Bread/analysis , Triticum/chemistry , Plant Proteins/chemistry , Rheology , Digestion , Water/chemistry
13.
Food Chem ; 450: 139219, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640531

ABSTRACT

Foxtail millet and sourdough are used to make foxtail millet sourdough steamed bread to improve the flavor and taste. Compared with the conventional freeze-thaw treatment (CFT), the effect of magnetic field-assisted freeze-thaw treatment (MFT) on the storage quality of foxtail millet sourdough and steamed bread is explored. The results showed that compared with CFT, MFT shortened the phase transition time of dough; decreased the water loss rate, the water mobility, and the freezable water content; increased the fermentation volume; stabilized the rheological properties; and minimized the damage of freezing and thawing to the secondary structure and microstructure of the gluten. In addition, an analysis of the specific volume, texture, surface color, and texture structure showed that MFT was beneficial to slowing the deterioration of the steamed bread texture. Finally, MFT effectively inhibited the growth and recrystallization of ice crystals during freezing and thawing, improving the quality of millet dough and steamed bread.


Subject(s)
Bread , Freezing , Setaria Plant , Taste , Bread/analysis , Setaria Plant/chemistry , Setaria Plant/growth & development , Food Handling , Fermentation , Flour/analysis , Magnetic Fields , Glutens/chemistry , Glutens/analysis , Rheology
14.
Food Chem ; 451: 139416, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38663249

ABSTRACT

A reliable solid-liquid extraction protocol coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry in the negative-ion mode was developed and validated for illegal bromate determination in preliminary and bakery products. Crude and dried-treated samples were directly extracted with acetonitrile-water (4:1, v/v). Bromate was determined using a Phenomenex Synergi™ Polar reversed-phase column and MS/MS under multiple reaction monitoring. The chosen solvent efficiently extracted bromate with all applied extraction-assisting techniques (p > 0.05). Although this assay avoids cleanup procedures, matrix effect of <-11% was achieved. Rapid bromate separation in only 8 min was attained by a reversed-phase column. In both commodities, linearity range, R2, recovery%, repeatability, intermediate precision, LOD and LOQ results were 0.05-100 ng mL-1, >0.9999, 88.6-103%, 2.93-9.80% and 9.64-10.10%, 0.015 µg kg-1 and 0.05 µg kg-1, respectively. Out of 288 tested real samples, 13.9% of violations were observed. This high-sensitivity protocol offers effective oversight and consumer protection.


Subject(s)
Bromates , Food Contamination , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Food Contamination/analysis , Bromates/analysis , Bromates/chemistry , Food Additives/analysis , Food Additives/isolation & purification , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid , Bread/analysis , Limit of Detection
15.
Compr Rev Food Sci Food Saf ; 23(3): e13353, 2024 05.
Article in English | MEDLINE | ID: mdl-38660747

ABSTRACT

Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.


Subject(s)
Bread , Dextrans , Glutens , Starch , Triticum , Bread/analysis , Bread/standards , Starch/chemistry , Glutens/chemistry , Dextrans/chemistry , Triticum/chemistry , Fermentation , Food Handling/methods , Food Quality
16.
Food Chem ; 449: 139237, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581780

ABSTRACT

Whole grains (WG) are beneficial to health but have reduced sensory quality, partly attributable to inhibition of Maillard reaction products (MRP) by WG phenolics. The study investigated how major flavonoid classes in cereals affect Maillard reaction pathways. Flavonoids were reacted with xylose-lysine aqueous system at 160 °C/12 min. Additionally, breads were made with catechin, and wheat and sorghum bran fortification. Low Mw MRP were profiled using UPLC-MS/MS, while melanoidins were characterized using fluorescence spectroscopy and HPSEC-MALS. The flavonoids significantly (p < 0.05) reduced both melanoidin content (by 33-86%) and Mw (3.5-15 kDa vs 20 kDa control), leading to lighter bread crust. Flavonoids inhibited MRP via direct condensation with early-stage amines and carbonyls into stable adducts, and reduction of late-stage polymerization reactions, increasing accumulation of cyclic N-containing intermediates. Inhibitory trend was flavones>flavanones>flavanols. C-Ring π-bond dramatically enhance flavonoid MRP inhibition; thus flavone-rich cereal grains are likely to strongly impact MRP-dependent sensory attributes of WG products.


Subject(s)
Bread , Edible Grain , Flavonoids , Maillard Reaction , Flavonoids/chemistry , Flavonoids/pharmacology , Edible Grain/chemistry , Bread/analysis , Food Handling , Triticum/chemistry , Tandem Mass Spectrometry
18.
Food Chem ; 449: 139321, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38615637

ABSTRACT

This study investigated the effect of low-intensity pulsed electric field (PEF) (0.3-0.7 kV/cm) and/or germination (0-72 h, 20 °C) on faba beans prior to flour- and breadmaking. PEF (0.5 and 0.7 kV/cm) had no significant effect on the germination performance of faba bean but had a positive effect on in vitro starch and protein hydrolysis of PEF-treated beans germinated for 72 h. The incorporation of flour from soaked, germinated, PEF-treated, and PEF-treated+germinated faba beans into wheat bread, at 30% mass level, improved the nutritional composition (total starch and protein contents) and protein digestibility but it reduced the specific volume and increased the density, brownness, and hardness of the bread. This finding shows for the first time that PEF-treatment (<0.7 kV/cm) of faba beans followed by germination (72 h) improved in vitro starch and protein hydrolysis of its flour and the protein digestibility at gastric phase of its enriched wheat bread.


Subject(s)
Bread , Digestion , Flour , Food Handling , Germination , Triticum , Vicia faba , Vicia faba/chemistry , Vicia faba/metabolism , Vicia faba/growth & development , Flour/analysis , Bread/analysis , Triticum/chemistry , Triticum/metabolism , Triticum/growth & development , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Starch/metabolism , Starch/chemistry , Electricity , Plant Proteins/metabolism , Hydrolysis
19.
Int J Biol Macromol ; 269(Pt 1): 131907, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677676

ABSTRACT

This study incorporated citrus pectin in wheat bread, aiming to develop breads with both desirable texture and slow starch digestibility. Results showed that starch digestibility in wheat bread decreased over the addition of pectin, and the maximum starch digested amount decreased by 6.6 % after the addition of 12 % pectin (wheat flour weight basis). The addition of pectin transferred part of the rapidly digestible starch into slowly digestible starch, and reduced the binding rate constant between slowly digestible starch and digestive enzymes, resulting in overall reduced starch digestibility. Furthermore, the addition of 4 % pectin contributed to the development of wheat bread with softer texture and increased specific volume. Mechanistically, the lowered starch digestibility of wheat bread after the pectin addition was due to (1) residual outermost swollen layer of starch granules, (2) protein and pectin interactions, and (3) increased short-range ordering of starch. This study, therefore, suggests that the addition of an appropriate amount of citrus pectin has the potential to develop bread with both a low glycemic index and desirable texture.


Subject(s)
Bread , Glutens , Pectins , Starch , Triticum , Pectins/metabolism , Pectins/chemistry , Bread/analysis , Starch/metabolism , Starch/chemistry , Glutens/chemistry , Glutens/metabolism , Triticum/chemistry , Triticum/metabolism , Digestion , Flour/analysis
20.
Food Microbiol ; 120: 104474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431320

ABSTRACT

This work describes the characterization of an artisanal sourdough set of bakeries located in the city of Valencia. Culture-dependent and -independent analyses detected Fructilactobacillus sanfranciscensis, Saccharomyces cerevisiae and Kazachstania humilis as dominant species. Nevertheless, specific technological parameters, including backslopping temperature, dough yield, or the addition of salt affected microbial counting, LAB/Yeast ratio, and gassing performance, favouring the appearance of several species of Lactobacillus sp., Limosilactobacillus pontis or Torulaspora delbrueckii as additional players. Sourdough leavening activity was affected positively by yeast counts and negatively by the presence of salt. In addition, the predominance of a particular yeast species appeared to impact the dynamics of CO2 release. Seven important flavour-active compounds (ethyl acetate, 1-hexanol, 2-penthylfuran, 3-ethyl-2-methyl-1,3-hexadiene, 2-octen-1-ol, nonanal and 1-nonanol) were detected in all samples and together with 3-methyl butanol and hexyl acetate represented more than the 53% of volatile abundancy in nine of the ten sourdoughs analysed. Even so, the specific microbial composition of each sample influenced the volatile profile. For example, the occurrence of K. humilis or S. cerevisiae as dominant yeast influenced the composition of major alcohol species, while F. sanfranciscensis and L. pontis positively correlated with aldehydes and octanoic acid content. In addition, relevant correlations could be also found among different technological parameters and between these, volatile compounds and microbial species. Overall, our study emphasises on how differences in technological parameters generate biodiversity in a relatively small set of artisan sourdoughs providing opportunities for excellence and quality baking products.


Subject(s)
Bioprospecting , Saccharomyces cerevisiae , Fermentation , Bread/analysis , Biodiversity , Flour/analysis , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...