Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69.214
Filter
1.
Genes Chromosomes Cancer ; 63(5): e23240, 2024 May.
Article in English | MEDLINE | ID: mdl-38722225

ABSTRACT

Both primary and secondary breast angiosarcoma (AS) are characterized by multifocal presentation and aggressive behavior. Despite multimodality therapy, local and distant relapse rates remain high. Therefore, neoadjuvant chemotherapy (NACT) is employed to improve the R0 resection rates and survival, but its benefits remain controversial. Herein, we investigate pathologic and molecular correlates to NACT-induced histologic response in a group of 29 breast AS, 4 primary and 25 radiation-associated (RA). The two NACT regimens applied were anthracycline- and non-anthracycline-based. The pathologic response grade was defined as: I: ≤ 50%, II: 51%-90%, III: 91%-99%, and IV: 100%. An additional 45 primary AS and 102 RA-AS treated by surgery alone were included for survival comparison. The genomic landscape was analyzed in a subset of cases and compared to a cohort of AS without NACT on a paired tumor-normal targeted DNA NGS platform. All patients were females, with a median age of 31 years in primary AS and 68 years in RA-AS. All surgical margins were negative in NACT group. The NACT response was evenly divided between poor (Grades I-II; n = 15) and good responders (Grades III-IV; n = 14). Mitotic count >10/mm2 was the only factor inversely associated with pathologic response. By targeted NGS, all 10 post-NACT RA-AS demonstrated MYC amplification, while both primary AS harbored KDR mutations. TMB or other genomic alterations did not correlate with pathologic response. All four patients with Grade IV response remained free of disease. The good responders had a significantly better disease-specific survival (p = 0.04). There was no survival difference with NACT status or the NACT regimens applied. However, NACT patients with MYC-amplified tumors showed better disease-free survival (p = 0.04) compared to MYC-amplified patients without NACT. The overall survival of NACT group correlated with size >10 cm (p = 0.02), pathologic response (p = 0.04), and multifocality (p = 0.01) by univariate, while only size >10 cm (p = 0.03) remained significant by multivariate analysis.


Subject(s)
Breast Neoplasms , Hemangiosarcoma , Neoadjuvant Therapy , Humans , Hemangiosarcoma/genetics , Hemangiosarcoma/pathology , Hemangiosarcoma/drug therapy , Female , Neoadjuvant Therapy/methods , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Aged , Adult , Middle Aged , Aged, 80 and over , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Anthracyclines/therapeutic use
2.
Chem Biol Drug Des ; 103(5): e14531, 2024 May.
Article in English | MEDLINE | ID: mdl-38726798

ABSTRACT

Inhibition of prolylhydroxylase-2 (PHD-2) in both normoxic and hypoxic cells is a critical component of solid tumours. The present study aimed to identify small molecules with PHD-2 activation potential. Virtually screening 4342 chemical compounds for structural similarity to R59949 and docking with PHD-2. To find the best drug candidate, hits were assessed for drug likeliness, antihypoxic and antineoplastic potential. The selected drug candidate's PHD-2 activation, cytotoxic and apoptotic potentials were assessed using 2-oxoglutarate, MTT, AO/EtBr and JC-1 staining. The drug candidate was also tested for its in-vivo chemopreventive efficacy against DMBA-induced mammary gland cancer alone and in combination with Tirapazamine (TPZ). Virtual screening and 2-oxoglutarate assay showed BBAP-6 as lead compound. BBAP-6 exhibited cytotoxic and apoptotic activity against ER+ MCF-7. In carmine staining and histology, BBAP-6 alone or in combination with TPZ restored normal surface morphology of the mammary gland after DMBA produced malignant alterations. Immunoblotting revealed that BBAP-6 reduced NF-κB expression, activated PHD-2 and induced intrinsic apoptotic pathway. Serum metabolomics conducted with 1H NMR confirmed that BBAP-6 prevented HIF-1α and NF-κB-induced metabolic changes in DMBA mammary gland cancer model. In a nutshell, it can be concluded that BBAP-6 activates PHD-2 and exhibits anticancer potential.


Subject(s)
Apoptosis , Breast Neoplasms , Hypoxia-Inducible Factor-Proline Dioxygenases , Humans , Female , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Apoptosis/drug effects , Mice , Cell Hypoxia/drug effects , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Cell Line, Tumor , NF-kappa B/metabolism , Tirapazamine/pharmacology , Tirapazamine/chemistry , Tirapazamine/metabolism
4.
BMC Complement Med Ther ; 24(1): 185, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711049

ABSTRACT

BACKGROUND: Cancer is a fatal disease that severely affects humans. Designing new anticancer strategies and understanding the mechanism of action of anticancer agents is imperative. HYPOTHESIS/PURPOSE: In this study, we evaluated the utility of metformin and D-limonene, alone or in combination, as potential anticancer therapeutics using the human liver and breast cancer cell lines HepG2 and MCF-7. STUDY DESIGN: An integrated systems pharmacology approach is presented for illustrating the molecular interactions between metformin and D-limonene. METHODS: We applied a systems-based analysis to introduce a drug-target-pathway network that clarifies different mechanisms of treatment. The combination treatment of metformin and D-limonene induced apoptosis in both cell lines compared with single drug treatments, as indicated by flow cytometric and gene expression analysis. RESULTS: The mRNA expression of Bax and P53 genes were significantly upregulated while Bcl-2, iNOS, and Cox-2 were significantly downregulated in all treatment groups compared with normal cells. The percentages of late apoptotic HepG2 and MCF-7 cells were higher in all treatment groups, particularly in the combination treatment group. Calculations for the combination index (CI) revealed a synergistic effect between both drugs for HepG2 cells (CI = 0.14) and MCF-7 cells (CI = 0.22). CONCLUSION: Our data show that metformin, D-limonene, and their combinations exerted significant antitumor effects on the cancer cell lines by inducing apoptosis and modulating the expression of apoptotic genes.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , Limonene , Liver Neoplasms , Metformin , Humans , Metformin/pharmacology , Limonene/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Liver Neoplasms/drug therapy , Cell Proliferation/drug effects , Hep G2 Cells , MCF-7 Cells , Terpenes/pharmacology , Female , Antineoplastic Agents/pharmacology , Cyclohexenes/pharmacology
5.
Cancer Immunol Immunother ; 73(6): 113, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693312

ABSTRACT

Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.


Subject(s)
Breast Neoplasms , Cellular Senescence , Neutrophils , Piperazines , Pyridines , Humans , Piperazines/pharmacology , Pyridines/pharmacology , Cellular Senescence/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Neutrophils/metabolism , Neutrophils/immunology , Neutrophils/drug effects , Cell Line, Tumor , Neutrophil Activation/drug effects , Tumor Microenvironment/drug effects
6.
Rev Assoc Med Bras (1992) ; 70(4): e20230937, 2024.
Article in English | MEDLINE | ID: mdl-38716933

ABSTRACT

OBJECTIVE: Anticipatory nausea and vomiting are unpleasant symptoms observed before undergoing chemotherapy sessions. Less is known about the occurrence of symptoms since the advent of the new neurokinin-1 antagonist. METHODS: This prospective cohort study was performed at a single Brazilian Institution. This study included breast cancer patients who received doxorubicin and cyclophosphamide chemotherapy and an appropriate antiemetic regimen (dexamethasone 10 mg, palonosetron 0.56 mg, and netupitant 300 mg in the D1 followed by dexamethasone 10 mg 12/12 h in D2 and D4). Patients used a diary to record nausea, vomiting, and use of rescue medication in the first two cycles of treatment. The prevalence of anticipatory nausea and vomiting was assessed before chemotherapy on day 1 of C2. RESULTS: From August 4, 2020, to August 12, 2021, 60 patients were screened, and 52 patients were enrolled. The mean age was 50.8 (28-69) years, most had stage III (53.8%), and most received chemotherapy with curative intent (94%). During the first cycle, the frequency of overall nausea and vomiting was 67.31%, and that of severe nausea and vomiting (defined as grade>4 on a 10-point visual scale or use of rescue medication) was 55.77%. Ten patients had anticipatory nausea and vomiting (19.23%). The occurrence of nausea and vomiting during C1 was the only statistically significant predictor of anticipatory nausea and vomiting (OR=16, 95%CI 2.4-670.9, p=0.0003). CONCLUSION: The prevalence of anticipatory nausea is still high in the era of neurokinin-1 antagonists, and failure of antiemetic control in C1 remains the main risk factor. All efforts should be made to control chemotherapy-induced nausea or nausea and vomiting on C1 to avoid anticipatory nausea.


Subject(s)
Antiemetics , Breast Neoplasms , Nausea , Humans , Female , Breast Neoplasms/drug therapy , Middle Aged , Prospective Studies , Adult , Antiemetics/therapeutic use , Aged , Nausea/chemically induced , Prevalence , Brazil/epidemiology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cyclophosphamide/adverse effects , Cyclophosphamide/therapeutic use , Doxorubicin/adverse effects , Vomiting, Anticipatory , Vomiting/chemically induced , Vomiting/epidemiology , Dexamethasone/therapeutic use , Palonosetron/therapeutic use
7.
J Cell Mol Med ; 28(9): e18374, 2024 May.
Article in English | MEDLINE | ID: mdl-38722288

ABSTRACT

The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.


Subject(s)
Breast Neoplasms , Organoids , Precision Medicine , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Organoids/drug effects , Organoids/pathology , Organoids/metabolism , Precision Medicine/methods , Animals , Xenograft Model Antitumor Assays , Mice , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor/methods , Middle Aged
8.
Front Immunol ; 15: 1390261, 2024.
Article in English | MEDLINE | ID: mdl-38726001

ABSTRACT

Objective: The aim of this study was to identify the molecular subtypes of breast cancer based on chromatin regulator-related genes. Methods: The RNA sequencing data of The Cancer Genome Atlas-Breast Cancer cohort were obtained from the official website, while the single-cell data were downloaded from the Gene Expression Omnibus database (GSE176078). Validation was performed using the Molecular Taxonomy of Breast Cancer International Consortium dataset. Furthermore, the immune characteristics, tumor stemness, heterogeneity, and clinical characteristics of these molecular subtypes were analyzed. The correlation between chromatin regulators and chemotherapy resistance was examined in vitro using the quantitative real-time polymerase chain reaction (qRT-PCR) and Cell Counting Kit-8 (CCK8) assays. Results: This study identified three stable molecular subtypes with different prognostic and pathological features. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction analyses revealed that the differentially expressed genes were associated with disease processes, such as mitotic nuclear division, chromosome segregation, condensed chromosome, and specific chromosome region. The T stage and subtypes were correlated with the clinical features. Tumor heterogeneity (mutant-allele tumor heterogeneity, tumor mutational burden, purity, and homologous recombination deficiency) and tumor stemness (RNA expression-based stemness score, epigenetically regulated RNA expression-based stemness score, DNA methylation-based stemness score, and epigenetically regulated DNA methylation-based stemness score) significantly varied between the three subtypes. Furthermore, Western blotting, qRT-PCR, and CCK8 assays demonstrated that the expression of ASCL1 was positively correlated with chemotherapy resistance in breast cancer. Conclusion: This study identified the subtypes of breast cancer based on chromatin regulators and analyzed their clinical features, gene mutation status, immunophenotype, and drug sensitivity. The results of this study provide effective strategies for assessing clinical prognosis and developing personalized treatment strategies.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Breast Neoplasms , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Female , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromatin/genetics , Prognosis , Biomarkers, Tumor/genetics , Cell Line, Tumor , Gene Expression Profiling
9.
Colloids Surf B Biointerfaces ; 238: 113930, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692174

ABSTRACT

Breast cancer is a wide-spread threat to the women's health. The drawbacks of conventional treatments necessitate the development of alternative strategies, where gene therapy has regained hope in achieving an efficient eradication of aggressive tumors. Monocarboxylate transporter 4 (MCT4) plays pivotal roles in the growth and survival of various tumors, which offers a promising target for treatment. In the present study, pH-responsive lipid nanoparticles (LNPs) based on the ionizable lipid,1,2-dioleoyl-3-dimethylammonium propane (DODAP), were designed for the delivery of siRNA targeting MCT4 gene to the breast cancer cells. Following multiple steps of characterization and optimization, the anticancer activities of the LNPs were assessed against an aggressive breast cancer cell line, 4T1, in comparison with a normal cell line, LX-2. The selection of the helper phospholipid to be incorporated into the LNPs had a dramatic impact on their gene delivery performance. The optimized LNPs enabled a powerful MCT4 silencing by ∼90 % at low siRNA concentrations, with a subsequent ∼80 % cytotoxicity to 4T1 cells. Meanwhile, the LNPs demonstrated a 5-fold higher affinity to the breast cancer cells versus the normal cells, in which they had a minimum effect. Moreover, the MCT4 knockdown by the treatment remodeled the cytokine profile in 4T1 cells, as evidenced by 90 % and ∼64 % reduction in the levels of TNF-α and IL-6; respectively. The findings of this study are promising for potential clinical applications. Furthermore, the simple and scalable delivery vector developed herein can serve as a breast cancer-targeting platform for the delivery of other RNA therapeutics.


Subject(s)
Breast Neoplasms , Cytokines , Monocarboxylic Acid Transporters , Muscle Proteins , Nanoparticles , RNA, Small Interfering , Tumor Microenvironment , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Nanoparticles/chemistry , Humans , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Female , Cytokines/metabolism , Tumor Microenvironment/drug effects , Muscle Proteins/genetics , Muscle Proteins/metabolism , RNA, Small Interfering/genetics , Cell Line, Tumor , Cell Survival/drug effects , Animals , Mice , Gene Knockdown Techniques , Particle Size , Hydrogen-Ion Concentration
10.
Zhonghua Yi Xue Za Zhi ; 104(17): 1507-1513, 2024 May 07.
Article in Chinese | MEDLINE | ID: mdl-38706058

ABSTRACT

Objective: To evaluate the efficacy of chemotherapy and endocrine therapy combined with targeted drugs after progression on cyclin-dependent kinase 4/6 (CDK4/6) inhibitor treatment in hormone receptor (HR) positive/human epidermal growth factor receptor 2 (HER2)-low metastatic breast cancer. Methods: Patients with metastatic breast cancer diagnosed with HR positive/HER2 low expression at the Fifth Medical Center of PLA General Hospital from October 1, 2018 to September 30, 2023 were retrospectively included. All patients received sequential chemotherapy or sequential endocrine therapy combined with targeted drugs after progression on CDK4/6 inhibitor treatment.The median follow-up was 9 months, and the follow-up ended on October 31, 2023. The patients were divided into chemotherapy group (receiving sequential chemotherapy) and endocrine therapy group (receiving sequential endocrine therapy combined with targeted drugs), according to the treatment plan. Information on demographic data, clinical and pathological diagnosis, treatment regimen, and efficacy evaluation was collected. The basic conditions of patients who may affect the curative effect of different treatment schemes were preset as stratified subgroups, including age, progesterone receptor (PR) status, HER2 status, disease-free survival, number of previous endocrine therapy and chemotherapy, and visceral metastasis. The primary endpoint was progression-free survival (PFS), the secondary endpoints were objective response rate (ORR), clinical benefit rate(CBR) and PFS based on stratification factors. The survival curve was plotted by Kaplan-Meier method, the comparison of PFS between groups was performed by log-rank test, and the comparison of ORR and CBR between groups were performed by χ2 test. Results: A total of 188 patients were included, including 126 patients in the chemotherapy group [all females, aged 29-74 (51±10) years] and 62 patients in the endocrine therapy group [1 male and 61 female, aged 29-77 (51±12) years]. ORR of chemotherapy group was 23.0% (29/126), higher than that of endocrine treatment group [3.2% (2/62)] (P<0.001); The CBR of chemotherapy group and endocrine therapy group were 46.8% (59/126) and 33.9% (21/62), respectively, with no statistical significance (P=0.091). The median PFS of chemotherapy group and endocrine therapy group were 5.0 (95%CI: 4.3-5.7) and 4.0 (95%CI: 1.6-6.4) months, respectively, with no statistical significance (P=0.484). In the preset stratified subgroups, the median PFS of chemotherapy [6.0 (95%CI: 5.4-6.6) months] was longer than that of endocrine combined with targeted therapy [2.0 (95%CI: 1.8-2.2) months] (P<0.001) in PR negative patients; In patients who had progressed on over 2 previous endocrine treatments, the median PFS of chemotherapy [5.0 (95%CI: 3.8-6.2) months] was longer than that of endocrine combined with targeted therapy [2.0 (95%CI: 0.6-3.4) months] (P=0.045). Conclusions: After progression on treatment with CDK4/6 inhibitors for HR-positive/HER2-low expression metastatic breast cancer, both chemotherapy and endocrine therpy combined with targeted drugs are viable treatment options. However, for patients with PR negative or ≥2 lines of endocrine therapy previously, priority should be accorded to chemotherapy.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Receptor, ErbB-2 , Adult , Aged , Female , Humans , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Neoplasm Metastasis , Protein Kinase Inhibitors/therapeutic use , Receptor, ErbB-2/metabolism , Receptors, Progesterone/metabolism
11.
Sci Rep ; 14(1): 10499, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714740

ABSTRACT

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Subject(s)
Curcumin , Drug Delivery Systems , Liposomes , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Humans , Liposomes/chemistry , Cell Line, Tumor , Drug Delivery Systems/methods , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Microbubbles , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Ultrasonic Waves , Drug Liberation , Apoptosis/drug effects
12.
Mol Cancer ; 23(1): 92, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715072

ABSTRACT

Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Immunotherapy , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Female , Immunotherapy/methods , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Animals , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects
13.
Cancer Rep (Hoboken) ; 7(5): e2009, 2024 May.
Article in English | MEDLINE | ID: mdl-38717954

ABSTRACT

Breast cancer (BC) is the most widespread cancer worldwide. Over 2 million new cases of BC were identified in 2020 alone. Despite previous studies, the lack of specific biomarkers and signaling pathways implicated in BC impedes the development of potential therapeutic strategies. We employed several RNAseq datasets to extract differentially expressed genes (DEGs) based on the intersection of all datasets, followed by protein-protein interaction network construction. Using the shared DEGs, we also identified significant gene ontology (GO) and KEGG pathways to understand the signaling pathways involved in BC development. A molecular docking simulation was performed to explore potential interactions between proteins and drugs. The intersection of the four datasets resulted in 146 DEGs common, including AURKB, PLK1, TTK, UBE2C, CDCA8, KIF15, and CDC45 that are significant hub-proteins associated with breastcancer development. These genes are crucial in complement activation, mitotic cytokinesis, aging, and cancer development. We identified key microRNAs (i.e., hsa-miR-16-5p, hsa-miR-1-3p, hsa-miR-147a, hsa-miR-195-5p, and hsa-miR-155-5p) that are associated with aggressive tumor behavior and poor clinical outcomes in BC. Notable transcription factors (TFs) were FOXC1, GATA2, FOXL1, ZNF24 and NR2F6. These biomarkers are involved in regulating cancer cell proliferation, invasion, and migration. Finally, molecular docking suggested Hesperidin, 2-amino-isoxazolopyridines, and NMS-P715 as potential lead compounds against BC progression. We believe that these findings will provide important insight into the BC progression as well as potential biomarkers and drug candidates for therapeutic development.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Interaction Maps , MicroRNAs/genetics , Transcriptome , Gene Regulatory Networks , Signal Transduction/drug effects
14.
Sci Rep ; 14(1): 10396, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710724

ABSTRACT

Regulatory T cells (Tregs) is a subtype of CD4+ T cells that produce an inhibitory action against effector cells. In the present work we interrogated genomic datasets to explore the transcriptomic profile of breast tumors with high expression of Tregs. Only 0.5% of the total transcriptome correlated with the presence of Tregs and only four transcripts, BIRC6, MAP3K2, USP4 and SMG1, were commonly shared among the different breast cancer subtypes. The combination of these genes predicted favorable outcome, and better prognosis in patients treated with checkpoint inhibitors. Twelve up-regulated genes coded for proteins expressed at the cell membrane that included functions related to neutrophil activation and regulation of macrophages. A positive association between MSR1 and CD80 with macrophages in basal-like tumors and between OLR1, ABCA1, ITGAV, CLEC5A and CD80 and macrophages in HER2 positive tumors was observed. Expression of some of the identified genes correlated with favorable outcome and response to checkpoint inhibitors: MSR1, CD80, OLR1, ABCA1, TMEM245, and ATP13A3 predicted outcome to anti PD(L)1 therapies, and MSR1, CD80, OLR1, ANO6, ABCA1, TMEM245, and ATP13A3 to anti CTLA4 therapies, including a subgroup of melanoma treated patients. In this article we provide evidence of genes strongly associated with the presence of Tregs that modulates the response to check point inhibitors.


Subject(s)
Breast Neoplasms , T-Lymphocytes, Regulatory , Transcriptome , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/drug effects , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Profiling , Prognosis
15.
Int J Nanomedicine ; 19: 4679-4699, 2024.
Article in English | MEDLINE | ID: mdl-38803997

ABSTRACT

Background: Breast cancer is a heterogeneous disease globally accounting for approximately 1 million new cases annually. Chemotherapy remains the main therapeutic option, but the antitumor efficacy needs to be improved. Methods: Two multifunctional nanoparticles were developed in this paper using oleic acid and mPEG2k-PCL2k as the drug carriers. Squamocin (Squ) was employed as a chemotherapeutic agent. Resiquimod (R848) or ginsenoside Rh2 was co-encapsulated in the nanoparticles to remold the immunosuppressive tumor microenvironment, and IR780 was coloaded as a photosensitizer to realize photothermal therapy. Results: The obtained Squ-R848-IR780 nanoparticles and Squ-Rh2-IR780 nanoparticles were uniformly spherical and approximately (162.200 ± 2.800) nm and (157.300 ± 1.1590) nm, respectively, in average diameter, with good encapsulation efficiency (above 85% for each drug), excellent stability in various physiological media and high photothermal conversion efficiency (24.10% and 22.58%, respectively). After intravenous administration, both nanoparticles quickly accumulated in the tumor and effectively enhanced the local temperature of the tumor to over 45 °C when irradiated by an 808 nm laser. At a low dose of 0.1 mg/kg, Squ nanoparticles treatment alone displayed a tumor inhibition rate of 55.28%, pulmonary metastasis inhibition rate of 59.47% and a mean survival time of 38 days, which were all higher than those of PTX injection (8 mg/kg) (43.64%, 25 days and 37.25%), indicating that Squ was a potent and effective antitumor agent. Both multifunctional nanoparticles, Squ-Rh2-IR780 nanoparticles and Squ-R848-IR780 nanoparticles, demonstrated even better therapeutic efficacy, with tumor inhibition rates of 90.02% and 97.28%, pulmonary metastasis inhibition rates of 95.42% and 98.09, and mean survival times of 46 days and 52 days, respectively. Conclusion: The multifunctional nanoparticles coloaded with squamocin, R848 and IR 780 achieved extraordinary therapeutic efficacy and excellent antimetastasis activity and are thus promising in the future treatment of breast tumors and probably other tumors.


Subject(s)
Breast Neoplasms , Indoles , Nanoparticles , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Animals , Nanoparticles/chemistry , Humans , Indoles/chemistry , Indoles/pharmacology , Cell Line, Tumor , Mice , Drug Carriers/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Photothermal Therapy/methods , Mice, Inbred BALB C , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Tumor Microenvironment/drug effects
16.
Chin J Nat Med ; 22(5): 455-465, 2024 May.
Article in English | MEDLINE | ID: mdl-38796218

ABSTRACT

In this study, we reported the discovery and structure-activity relationship analysis of chrysin derivatives as a new class of inhibitors targeting poly (ADP-ribose) polymerase 1 (PARP1). Among these derivatives, compound 5d emerged as the most effective chrysin-based inhibitor of PARP1, with an IC50 value of 108 nmol·L-1. This compound significantly inhibited the proliferation and migration of breast cancer cell lines HCC-1937 and MDA-MB-436 by inducing DNA damage. Furthermore, 5d induced apoptosis and caused an extended G1/S-phase in these cell lines. Molecular docking studies revealed that 5d possesses a strong binding affinity toward PARP1. In vivo, in a xenograft model, 5d effectively reduced tumor growth by downregulating PARP1 expression. Overall, compound 5d shows promise as a potential therapeutic agent for the treatment of BRCA wild-type breast cancer.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , Flavonoids , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/therapeutic use , Breast Neoplasms/drug therapy , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Cell Line, Tumor , Animals , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Apoptosis/drug effects , Molecular Docking Simulation , Mice , Drug Design , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Nude , Mice, Inbred BALB C , Molecular Structure
18.
ESMO Open ; 9(5): 102924, 2024 May.
Article in English | MEDLINE | ID: mdl-38796287

ABSTRACT

BACKGROUND: DESTINY-Breast03 is a randomized, multicenter, open-label, phase III study of trastuzumab deruxtecan (T-DXd) versus trastuzumab emtansine (T-DM1) in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) previously treated with trastuzumab and a taxane. A statistically significant improvement in progression-free survival (PFS) versus T-DM1 was reported in the primary analysis. Here, we report exploratory efficacy data in patients with and without brain metastases (BMs) at baseline. PATIENTS AND METHODS: Patients were randomly assigned 1 : 1 to receive T-DXd 5.4 mg/kg or T-DM1 3.6 mg/kg. Patients with clinically inactive/asymptomatic BMs were eligible. Lesions were measured as per modified RECIST, version 1.1. Outcomes included PFS by blinded independent central review (BICR), objective response rate (ORR), and intracranial ORR as per BICR. RESULTS: As of 21 May 2021, 43/261 patients randomized to T-DXd and 39/263 patients randomized to T-DM1 had BMs at baseline, as per investigator assessment. Among patients with baseline BMs, 20/43 in the T-DXd arm and 19/39 in the T-DM1 arm had not received prior local BM treatment. For patients with BMs, median PFS was 15.0 months [95% confidence interval (CI) 12.5-22.2 months] for T-DXd versus 3.0 months (95% CI 2.8-5.8 months) for T-DM1; hazard ratio (HR) 0.25 (95% CI 0.13-0.45). For patients without BMs, median PFS was not reached (95% CI 22.4 months-not estimable) for T-DXd versus 7.1 months (95% CI 5.6-9.7 months) for T-DM1; HR 0.30 (95% CI 0.22-0.40). Confirmed systemic ORR was 67.4% for T-DXd versus 20.5% for T-DM1 and 82.1% for T-DXd versus 36.6% for T-DM1 for patients with and without BMs, respectively. Intracranial ORR was 65.7% with T-DXd versus 34.3% with T-DM1. CONCLUSIONS: Patients with HER2-positive mBC whose disease progressed after trastuzumab and a taxane achieved a substantial benefit from treatment with T-DXd compared with T-DM1, including those with baseline BMs.


Subject(s)
Ado-Trastuzumab Emtansine , Brain Neoplasms , Breast Neoplasms , Receptor, ErbB-2 , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Middle Aged , Ado-Trastuzumab Emtansine/therapeutic use , Ado-Trastuzumab Emtansine/pharmacology , Receptor, ErbB-2/metabolism , Adult , Aged , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Progression-Free Survival
20.
Cell Biochem Funct ; 42(4): e4062, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807490

ABSTRACT

Since most solid tumors have a low pH value, a pH-responsive drug delivery system may offer a broad method for tumor-targeting treatment. The present study is used to analyze the anticancer activity of carvacrol-zinc oxide quantum dots (CVC-ZnO QDs) against breast cancer cells (MDA-MB-231). CVC-ZnO QDs demonstrate pH responsive and are specifically released within the acidic pH tumor microenvironment. This property enables targeted drug delivery exclusively to cancer cells while minimizing the impact on normal cells. To the synthesized ZnO QDs, the CVC was loaded and then examined by X-ray diffraction, ultraviolet-visible, Fourier transform infrared spectrophotometer, scanning electron microscopy-energy dispersive X-ray, and transmission electron microscopy. For up to 20 h, CVC release was examined in different pH-buffered solutions. The results showed that carvacrol release was stable in an acidic pH solution. Further, cytotoxicity assay, antioxidant, and lipid peroxidation activity, reactive oxygen species, mitochondrial membrane potential, nuclear damage, and the ability of CVC-ZnO QDs to cause apoptosis were all examined. Apoptosis markers such as Bcl2, Bax, caspase-3, and caspase-9, were also studied. In conclusion, the CVC-ZnO QDs destabilized the MDA-MB-231cells under its acidic tumor microenvironment and regulated apoptosis.


Subject(s)
Antineoplastic Agents , Apoptosis , Breast Neoplasms , Cymenes , Quantum Dots , Zinc Oxide , Humans , Quantum Dots/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemical synthesis , Cymenes/pharmacology , Cymenes/chemistry , Hydrogen-Ion Concentration , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Female , Apoptosis/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...