Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.265
Filter
1.
Cancer Med ; 13(11): e7304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826094

ABSTRACT

BACKGROUND: The surge in omicron variants has caused nationwide breakthrough infections in mainland China since the December 2022. In this study, we report the neutralization profiles of serum samples from the patients with breast cancer and the patients with liver cancer who had contracted subvariant breakthrough infections. METHODS: In this real-world study, we enrolled 143 COVID-19-vaccinated (81 and 62 patients with breast and liver cancers) and 105 unvaccinated patients with cancer (58 and 47 patients with breast and liver cancers) after omicron infection. Anti-spike receptor binding domain (RBD) IgGs and 50% pseudovirus neutralization titer (pVNT50) for the preceding (wild type), circulating omicron (BA.4-BA.5, and BF.7), and new subvariants (XBB.1.5) were comprehensively analyzed. RESULTS: Patients with liver cancer receiving booster doses had higher levels of anti-spike RBD IgG against circulating omicron (BA.4-BA.5, and BF.7) and a novel subvariant (XBB.1.5) compared to patients with breast cancer after breakthrough infection. Additionally, all vaccinated patients produced higher neutralizing antibody titers against circulating omicron (BA.4-BA.5, and BF.7) compared to unvaccinated patients. However, the unvaccinated patients produced higher neutralizing antibody against XBB.1.5 than vaccinated patients after Omicron infection, with this trend being more pronounced in breast cancer than in liver cancer patients. Moreover, we found that there was no correlation between anti-spike RBD IgG against wildtype virus and the neutralizing antibody titer, but a positive correlation between anti-spike RBD IgG and the neutralizing antibody against XBB.1.5 was found in unvaccinated patients. CONCLUSION: Our study found that there may be differences in vaccine response and protective effect against COVID-19 infection in patients with liver and breast cancer. Therefore, we recommend that COVID-19 vaccine strategies should be optimized based on vaccine components and immunology profiles of different patients with cancer.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Breast Neoplasms , COVID-19 Vaccines , COVID-19 , Liver Neoplasms , SARS-CoV-2 , Humans , Female , COVID-19/immunology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Liver Neoplasms/virology , Liver Neoplasms/immunology , Liver Neoplasms/epidemiology , Breast Neoplasms/immunology , Breast Neoplasms/epidemiology , Breast Neoplasms/virology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , China/epidemiology , COVID-19 Vaccines/immunology , Adult , Aged , Spike Glycoprotein, Coronavirus/immunology , Male , Disease Outbreaks , Immunoglobulin G/blood , Immunoglobulin G/immunology
2.
Cancer Immunol Immunother ; 73(8): 136, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833004

ABSTRACT

A checkpoint protein called the V-domain Ig suppressor of T cell activation (VISTA) is important for controlling immune responses. Immune cells that interact with VISTA have molecules, or receptors, known as VISTA receptors. Immune system activity can be modified by the interaction between VISTA and its receptors. Since targeting VISTA or its receptors may be beneficial in certain conditions, VISTA has been studied in relation to immunotherapy for cancer and autoimmune illnesses. The purpose of this study was to examine the expression levels and interactions between VISTA and its receptors, VSIG3 and PSGL-1, in breast cancer tissues. IHC analysis revealed higher levels of proteins within the VISTA/VSIG3/PSGL-1 axis in cancer tissues than in the reference samples (mastopathies). VISTA was found in breast cancer cells and intratumoral immune cells, with membranous and cytoplasmic staining patterns. VISTA was also linked with pathological grade and VSIG3 and PSGL-1 levels. Furthermore, we discovered that the knockdown of one axis member boosted the expression of the other partners. This highlights the significance of VISTA/VSIG3/PSGL-1 in tumor stroma and microenvironment remodeling. Our findings indicate the importance of the VISTA/VSIG3/PSGL-1 axis in the molecular biology of cancer cells and the immune microenvironment.


Subject(s)
B7 Antigens , Breast Neoplasms , Carcinoma, Ductal, Breast , Membrane Glycoproteins , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/immunology , B7 Antigens/metabolism , Carcinoma, Ductal, Breast/immunology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/metabolism , Tumor Microenvironment/immunology , Middle Aged
3.
J Cancer Res Clin Oncol ; 150(6): 286, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833021

ABSTRACT

BACKGROUND: Granzyme K (GZMK) is a crucial mediator released by immune cells to eliminate tumor cells, playing significant roles in inflammation and tumorigenesis. Despite its importance, the specific role of GZMK in breast cancer and its mechanisms are not well understood. METHODS: We utilized data from the TCGA and GEO databases and employed a range of analytical methods including GO, KEGG, GSEA, ssGSEA, and PPI to investigate the impact of GZMK on breast cancer. In vitro studies, including RT-qPCR, CCK-8 assay, cell cycle experiments, apoptosis assays, Celigo scratch assays, Transwell assays, and immunohistochemical methods, were conducted to validate the effects of GZMK on breast cancer cells. Additionally, Cox regression analysis integrating TCGA and our clinical data was used to develop an overall survival (OS) prediction model. RESULTS: Analysis of clinical pathological features revealed significant correlations between GZMK expression and lymph node staging, differentiation grade, and molecular breast cancer subtypes. High GZMK expression was associated with improved OS, progression-free survival (PFS), and recurrence-free survival (RFS), as confirmed by multifactorial Cox regression analysis. Functional and pathway enrichment analyses of genes positively correlated with GZMK highlighted involvement in lymphocyte differentiation, T cell differentiation, and T cell receptor signaling pathways. A robust association between GZMK expression and T cell presence was noted in the breast cancer tumor microenvironment (TME), with strong correlations with ESTIMATEScore (Cor = 0.743, P < 0.001), ImmuneScore (Cor = 0.802, P < 0.001), and StromalScore (Cor = 0.516, P < 0.001). GZMK also showed significant correlations with immune checkpoint molecules, including CTLA4 (Cor = 0.856, P < 0.001), PD-1 (Cor = 0.82, P < 0.001), PD-L1 (Cor = 0.56, P < 0.001), CD48 (Cor = 0.75, P < 0.001), and CCR7 (Cor = 0.856, P < 0.001). Studies indicated that high GZMK expression enhances patient responsiveness to immunotherapy, with higher levels observed in responsive patients compared to non-responsive ones. In vitro experiments confirmed that GZMK promotes cell proliferation, cell division, apoptosis, cell migration, and invasiveness (P < 0.05). CONCLUSION: Our study provides insights into the differential expression of GZMK in breast cancer and its potential mechanisms in breast cancer pathogenesis. Elevated GZMK expression is associated with improved OS and RFS, suggesting its potential as a prognostic marker for breast cancer survival and as a predictor of the efficacy of immunotherapy.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Granzymes , Immunotherapy , Humans , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Breast Neoplasms/mortality , Female , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Immunotherapy/methods , Granzymes/metabolism , Granzymes/genetics , Treatment Outcome , Middle Aged , Tumor Microenvironment/immunology
4.
Amino Acids ; 56(1): 34, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691208

ABSTRACT

Breast cancer is the most common cancer among women worldwide, and marine creatures are the most abundant reservoir of anticancer medicines. Tachyplesin peptides have shown antibacterial capabilities, but their potential to inhibit cancer growth and trigger cancer cell death has not been investigated. A synthetic tachyplesin nucleotide sequence was generated and inserted into the pcDNA3.1( +) Mammalian Expression Vector. PCR analysis and enzyme digesting procedures were used to evaluate the vectors' accuracy. The transfection efficiency of MCF-7 and MCF10-A cells was 57% and 65%, respectively. The proliferation of MCF-7 cancer cells was markedly suppressed. Administration of plasmid DNA (pDNA) combined with tachyplesin to mice with tumors did not cause any discernible morbidity or mortality throughout treatment. The final body weight curves revealed a significant reduction in weight among mice treated with pDNA/tachyplesin and tachyplesin at a dose of 100 µg/ml (18.4 ± 0.24 gr, P < 0.05; 11.4 ± 0.24 gr P < 0.01) compared to the control group treated with PBS (22 ± 0.31 gr). Animals treated with pDNA/tachyplesin and tachyplesin exhibited a higher percentage of CD4 + Foxp3 + Tregs, CD8 + Foxp3 + Tregs, and CD4 + and CD8 + T cell populations expressing CTLA-4 in their lymph nodes and spleen compared to the PBS group. The groups that received pDNA/tachyplesin exhibited a substantial upregulation in the expression levels of caspase-3, caspase-8, BAX, PI3K, STAT3, and JAK genes. The results offer new possibilities for treating cancer by targeting malignancies using pDNA/tachyplesin and activating the mTOR and NFκB signaling pathways.


Subject(s)
Antimicrobial Cationic Peptides , Apoptosis , DNA-Binding Proteins , Peptides, Cyclic , Plasmids , Animals , Apoptosis/drug effects , Humans , Mice , Female , Antimicrobial Cationic Peptides/pharmacology , Peptides, Cyclic/pharmacology , MCF-7 Cells , Cell Proliferation/drug effects , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/immunology , DNA , Mice, Inbred BALB C
5.
Front Immunol ; 15: 1373497, 2024.
Article in English | MEDLINE | ID: mdl-38720889

ABSTRACT

Introduction: Intraoperative radiation therapy (IORT) delivers a single accelerated radiation dose to the breast tumor bed during breast-conserving surgery (BCS). The synergistic biologic effects of simultaneous surgery and radiation remain unclear. This study explores the cellular and molecular changes induced by IORT in the tumor microenvironment and its impact on the immune response modulation. Methods: Patients with hormone receptor (HR)-positive/HER2-negative, ductal carcinoma in situ (DCIS), or early-stage invasive breast carcinoma undergoing BCS with margin re-excision were included. Histopathological evaluation and RNA-sequencing in the re-excision tissue were compared between patients with IORT (n=11) vs. non-IORT (n=11). Results: Squamous metaplasia with atypia was exclusively identified in IORT specimens (63.6%, p=0.004), mimicking DCIS. We then identified 1,662 differentially expressed genes (875 upregulated and 787 downregulated) between IORT and non-IORT samples. Gene ontology analyses showed that IORT was associated with the enrichment of several immune response pathways, such as inflammatory response, granulocyte activation, and T-cell activation (p<0.001). When only considering normal tissue from both cohorts, IORT was associated with intrinsic apoptotic signaling, response to gamma radiation, and positive regulation of programmed cell death (p<0.001). Using the xCell algorithm, we inferred a higher abundance of γδ T-cells, dendritic cells, and monocytes in the IORT samples. Conclusion: IORT induces histological changes, including squamous metaplasia with atypia, and elicits molecular alterations associated with immune response and intrinsic apoptotic pathways. The increased abundance of immune-related components in breast tissue exposed to IORT suggests a potential shift towards active immunogenicity, particularly immune-desert tumors like HR-positive/HER2-negative breast cancer.


Subject(s)
Breast Neoplasms , Immunomodulation , Intraoperative Care , Mastectomy, Segmental , Tumor Microenvironment , Humans , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Middle Aged , Tumor Microenvironment/immunology , Tumor Microenvironment/radiation effects , Immunomodulation/radiation effects , Aged , Adult , Combined Modality Therapy
6.
Nat Commun ; 15(1): 3837, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714665

ABSTRACT

Although metabolic reprogramming within tumor cells and tumor microenvironment (TME) is well described in breast cancer, little is known about how the interplay of immune state and cancer metabolism evolves during treatment. Here, we characterize the immunometabolic profiles of tumor tissue samples longitudinally collected from individuals with breast cancer before, during and after neoadjuvant chemotherapy (NAC) using proteomics, genomics and histopathology. We show that the pre-, on-treatment and dynamic changes of the immune state, tumor metabolic proteins and tumor cell gene expression profiling-based metabolic phenotype are associated with treatment response. Single-cell/nucleus RNA sequencing revealed distinct tumor and immune cell states in metabolism between cold and hot tumors. Potential drivers of NAC based on above analyses were validated in vitro. In summary, the study shows that the interaction of tumor-intrinsic metabolic states and TME is associated with treatment outcome, supporting the concept of targeting tumor metabolism for immunoregulation.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Tumor Microenvironment , Humans , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Longitudinal Studies , Middle Aged , Proteomics , Adult , Cell Line, Tumor , Single-Cell Analysis
7.
Front Immunol ; 15: 1325191, 2024.
Article in English | MEDLINE | ID: mdl-38711512

ABSTRACT

Imaging Mass Cytometry (IMC) is a novel, and formidable high multiplexing imaging method emerging as a promising tool for in-depth studying of tissue architecture and intercellular communications. Several studies have reported various IMC antibody panels mainly focused on studying the immunological landscape of the tumor microenvironment (TME). With this paper, we wanted to address cancer associated fibroblasts (CAFs), a component of the TME very often underrepresented and not emphasized enough in present IMC studies. Therefore, we focused on the development of a comprehensive IMC panel that can be used for a thorough description of the CAF composition of breast cancer TME and for an in-depth study of different CAF niches in relation to both immune and breast cancer cell communication. We established and validated a 42 marker panel using a variety of control tissues and rigorous quantification methods. The final panel contained 6 CAF-associated markers (aSMA, FAP, PDGFRa, PDGFRb, YAP1, pSMAD2). Breast cancer tissues (4 cases of luminal, 5 cases of triple negative breast cancer) and a modified CELESTA pipeline were used to demonstrate the utility of our IMC panel for detailed profiling of different CAF, immune and cancer cell phenotypes.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cancer-Associated Fibroblasts , Image Cytometry , Tumor Microenvironment , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Female , Tumor Microenvironment/immunology , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Biomarkers, Tumor/metabolism , Image Cytometry/methods
8.
BMC Immunol ; 25(1): 25, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702630

ABSTRACT

BACKGROUND: Breast cancer is the most common cancer in females. The immune system has a crucial role in the fight against cancer. B and T cells, the two main components of the adaptive immunity, are critical players that specifically target tumor cells. However, B cells, in contrast to T cells, and their role in cancer inhibition or progression is less investigated. Accordingly, in this study, we assessed and compared the frequency of naïve and different subsets of memory B cells in the peripheral blood of patients with breast cancer and healthy women. RESULTS: We found no significant differences in the frequencies of peripheral CD19+ B cells between the patients and controls. However, there was a significant decrease in the frequency of CD19+IgM+ B cells in patients compared to the control group (P=0.030). Moreover, the patients exhibited higher percentages of atypical memory B cells (CD19+CD27‒IgM‒, P=0.006) and a non-significant increasing trend in switched memory B cells (CD19+CD27+IgM‒, P=0.074). Further analysis revealed a higher frequency of atypical memory B cells (aMBCs) in the peripheral blood of patients without lymph node involvement as well as those with a tumor size greater than 2cm or with estrogen receptor (ER) negative/progesterone receptor (PR) negative tumors, compared with controls (P=0.030, P=0.040, P=0.031 and P=0.054, respectively). CONCLUSION: Atypical memory B cells (CD19+CD27‒IgM‒) showed a significant increase in the peripheral blood of patients with breast cancer compared to the control group. This increase seems to be associated with tumor characteristics. Nevertheless, additional research is necessary to determine the precise role of these cells during breast cancer progression.


Subject(s)
Breast Neoplasms , Lymph Nodes , Memory B Cells , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/blood , Middle Aged , Adult , Lymph Nodes/immunology , Lymph Nodes/pathology , Memory B Cells/immunology , Aged , Antigens, CD19/metabolism , Immunologic Memory , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , B-Lymphocyte Subsets/immunology
9.
Nano Lett ; 24(19): 5690-5698, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700237

ABSTRACT

Long-term tumor starvation may be a potential strategy to elevate the antitumor immune response by depriving nutrients. However, combining long-term starvation therapy with immunotherapy often yields limited efficacy due to the blockage of immune cell migration pathways. Herein, an intelligent blood flow regulator (BFR) is first established through photoactivated in situ formation of the extravascular dynamic hydrogel to compress blood vessels, which can induce long-term tumor starvation to elicit metabolic stress in tumor cells without affecting immune cell migration pathways. By leveraging methacrylate-modified nanophotosensitizers (HMMAN) and biodegradable gelatin methacrylate (GelMA), the developed extravascular hydrogel dynamically regulates blood flow via enzymatic degradation. Additionally, aPD-L1 loaded into HMMAN continuously blocks immune checkpoints. Systematic in vivo experiments demonstrate that the combination of immune checkpoint blockade (ICB) and BFR-induced metabolic stress (BIMS) significantly delays the progression of Lewis lung and breast cancers by reshaping the tumor immunogenic landscape and enhancing antitumor immune responses.


Subject(s)
Hydrogels , Hydrogels/chemistry , Animals , Mice , Humans , Cell Line, Tumor , Female , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Immunotherapy , Gelatin/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Breast Neoplasms/immunology
10.
Front Immunol ; 15: 1355130, 2024.
Article in English | MEDLINE | ID: mdl-38742103

ABSTRACT

Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.


Subject(s)
B7-H1 Antigen , Immune Checkpoint Inhibitors , Neoadjuvant Therapy , Receptor, ErbB-2 , Triple Negative Breast Neoplasms , Animals , Female , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/therapy , Neoadjuvant Therapy/methods , Mice , Humans , Receptor, ErbB-2/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Cell Line, Tumor , Receptors, Estrogen/metabolism , Disease Models, Animal , Xenograft Model Antitumor Assays , Breast Neoplasms/immunology , Breast Neoplasms/radiotherapy , Breast Neoplasms/therapy
11.
Technol Cancer Res Treat ; 23: 15330338241241484, 2024.
Article in English | MEDLINE | ID: mdl-38725284

ABSTRACT

Introduction: Endoplasmic reticulum stress (ERS) was a response to the accumulation of unfolded proteins and plays a crucial role in the development of tumors, including processes such as tumor cell invasion, metastasis, and immune evasion. However, the specific regulatory mechanisms of ERS in breast cancer (BC) remain unclear. Methods: In this study, we analyzed RNA sequencing data from The Cancer Genome Atlas (TCGA) for breast cancer and identified 8 core genes associated with ERS: ELOVL2, IFNG, MAP2K6, MZB1, PCSK6, PCSK9, IGF2BP1, and POP1. We evaluated their individual expression, independent diagnostic, and prognostic values in breast cancer patients. A multifactorial Cox analysis established a risk prognostic model, validated with an external dataset. Additionally, we conducted a comprehensive assessment of immune infiltration and drug sensitivity for these genes. Results: The results indicate that these eight core genes play a crucial role in regulating the immune microenvironment of breast cancer (BRCA) patients. Meanwhile, an independent diagnostic model based on the expression of these eight genes shows limited independent diagnostic value, and its independent prognostic value is unsatisfactory, with the time ROC AUC values generally below 0.5. According to the results of logistic regression neural networks and risk prognosis models, when these eight genes interact synergistically, they can serve as excellent biomarkers for the diagnosis and prognosis of breast cancer patients. Furthermore, the research findings have been confirmed through qPCR experiments and validation. Conclusion: In conclusion, we explored the mechanisms of ERS in BRCA patients and identified 8 outstanding biomolecular diagnostic markers and prognostic indicators. The research results were double-validated using the GEO database and qPCR.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Humans , Female , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Prognosis , Endoplasmic Reticulum Stress/genetics , Biomarkers, Tumor/genetics , Gene Expression Profiling , Computational Biology/methods , Databases, Genetic , ROC Curve , Kaplan-Meier Estimate , Transcriptome
12.
Medicine (Baltimore) ; 103(19): e38146, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728446

ABSTRACT

Breast cancer is a prevalent ailment among women, and the inflammatory response plays a crucial role in the management and prediction of breast cancer (BRCA). However, the new subtypes based on inflammation in BRCA research are still undefined. The databases including The Cancer Genome Atlas and gene expression omnibus were utilized to gather clinical data and somatic mutation information for approximately 1069 BRCA patients. Through Consensus Clustering, novel subtypes linked to inflammation were identified. A comparative analysis was conducted on the prognosis, and immune cell infiltration, and somatic mutation of the new subtypes. Additionally, an investigation into drug therapy and immunotherapy was conducted to distinguish high-risk individuals from low-risk ones. The findings of this investigation proposed the categorization of BRCA into innovative subtypes predicated on the inflammatory response and 6 key genes were a meaningful approach. Specifically, the low-, medium-, and high-inflammation subtypes exhibited varying degrees of association with clinicopathological features, tumor microenvironment, and prognosis. Notably, the high-inflammation subtype was characterized by a strong correlation with immunosuppressive microenvironments and a higher frequency of somatic mutations, which was an indication of poorer health. This study revealed that a brand-new classification could throw new light on the effective prognosis. The integration of multiple key genes was a new characterization that could promote more immunotherapy strategies and contribute to predicting the efficacy of the chemotherapeutic drugs.


Subject(s)
Breast Neoplasms , Inflammation , Tumor Microenvironment , Humans , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Female , Inflammation/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Prognosis , Mutation , Immunotherapy/methods , Middle Aged , Biomarkers, Tumor/genetics
13.
Cancer Immunol Immunother ; 73(7): 130, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748254

ABSTRACT

Immune surveillance and chemotherapy sensitivity play critical functions in the tumorigenesis of breast cancer (BC). Emerging findings have indicated that circular RNA (circRNA) and N6-methyladenosine (m6A) both participate in the BC tumorigenesis. Here, present study aimed to investigate the roles of m6A-modified circATAD2 on BC and explore better understanding for BC precision therapeutic. Results reported that m6A-modifid circRNA (m6A-circRNA) microarray revealed the m6A-circRNA landscape in BC. M6A-modifid circATAD2 upregulated in BC samples and was closely correlated to poor prognosis. Functionally, circATAD2 promoted the immune evasion of BC cells and reduced the CD8+ T cells' killing effect. Mechanistically, MeRIP-seq unveiled the m6A modification in the 3'-UTR of PD-L1 mRNA, which was bound by circATAD2 and recognized by m6A reader IGF2BP3 to enhance PD-L1 mRNA stability and expression. In summary, these findings revealed the circATAD2/m6A/IGF2BP3/PD-L1 axis in BC immune surveillance, suggesting the potential that circATAD2 as a potential target for PD-L1-mediated BC.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , CD8-Positive T-Lymphocytes , Immunologic Surveillance , RNA, Circular , RNA-Binding Proteins , Humans , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , RNA, Circular/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Gene Expression Regulation, Neoplastic , Mice , Prognosis , Cell Line, Tumor
14.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750591

ABSTRACT

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Subject(s)
Natural Killer T-Cells , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Female , Mice , Natural Killer T-Cells/immunology , Oncolytic Virotherapy/methods , Humans , Cell Line, Tumor , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Immunotherapy/methods , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Combined Modality Therapy , Neoplasm Metastasis , Vesiculovirus/genetics , Dendritic Cells/immunology , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Disease Models, Animal
15.
Acta Oncol ; 63: 359-367, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779867

ABSTRACT

BACKGROUND: The tumor microenvironment significantly influences breast cancer development, progression, and metastasis. Various immune cell populations, including T cells, B cells, NK cells, and myeloid cells exhibit diverse functions in different breast cancer subtypes, contributing to both anti-tumor and pro-tumor activities. PURPOSE: This review provides an overview of the predominant immune cell populations in breast cancer subtypes, elucidating their suppressive and prognostic effects. We aim to outline the role of the immune microenvironment from normal breast tissue to invasive cancer and distant metastasis. METHODS: A comprehensive literature review was conducted to analyze the involvement of immune cells throughout breast cancer progression. RESULTS: In breast cancer, tumors exhibit increased immune cell infiltration compared to normal tissue. Variations exist across subtypes, with higher levels observed in triple-negative and HER2+ tumors are linked to better survival. In contrast,  ER+ tumors display lower immune infiltration, associated with poorer outcomes. Furthermore, metastatic sites commonly exhibit a more immunosuppressive microenvironment. CONCLUSION: Understanding the complex interaction between tumor and immune cells during breast cancer progression is essential for future research and the development of immune-based strategies. This comprehensive understanding may pave the way for more effective treatment approaches and improved patients outcomes.


Subject(s)
Breast Neoplasms , Disease Progression , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Prognosis , Lymphocytes, Tumor-Infiltrating/immunology , Killer Cells, Natural/immunology
16.
Mol Immunol ; 170: 156-169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692097

ABSTRACT

Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , Transcription Factors , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Neoplasm Recurrence, Local/immunology , Interferons/metabolism , Interferons/immunology , Interferons/genetics , Cell Line, Tumor , Epithelial Cells/immunology , Epithelial Cells/metabolism , Animals , RNA, Double-Stranded/immunology , Transcription Factor RelA/metabolism , Mice , Gene Expression Regulation, Neoplastic , Signal Transduction/immunology , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology
17.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732051

ABSTRACT

This review offers a comprehensive exploration of the intricate immunological landscape of breast cancer (BC), focusing on recent advances in diagnosis and prognosis through the analysis of circulating tumor cells (CTCs). Positioned within the broader context of BC research, it underscores the pivotal role of the immune system in shaping the disease's progression. The primary objective of this investigation is to synthesize current knowledge on the immunological aspects of BC, with a particular emphasis on the diagnostic and prognostic potential offered by CTCs. This review adopts a thorough examination of the relevant literature, incorporating recent breakthroughs in the field. The methodology section succinctly outlines the approach, with a specific focus on CTC analysis and its implications for BC diagnosis and prognosis. Through this review, insights into the dynamic interplay between the immune system and BC are highlighted, with a specific emphasis on the role of CTCs in advancing diagnostic methodologies and refining prognostic assessments. Furthermore, this review presents objective and substantiated results, contributing to a deeper understanding of the immunological complexity in BC. In conclusion, this investigation underscores the significance of exploring the immunological profile of BC patients, providing valuable insights into novel advances in diagnosis and prognosis through the utilization of CTCs. The objective presentation of findings emphasizes the crucial role of the immune system in BC dynamics, thereby opening avenues for enhanced clinical management strategies.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/immunology , Breast Neoplasms/blood , Prognosis , Female
18.
Breast Dis ; 43(1): 79-92, 2024.
Article in English | MEDLINE | ID: mdl-38701137

ABSTRACT

INTRODUCTION: Immunotherapy has shown encouraging outcomes in breast cancer (BC) treatment in recent years. The programmed cell death ligand 1 (PD-L1) transmembrane protein is suggested to function as a co-inhibitory factor in the immune response, where it collaborates with programmed cell death protein 1 (PD-1) to stimulate apoptosis, suppress cytokine release from PD-1 positive cells, and limit the growth of PD-1 positive cells. Furthermore, in many malignancies, PD-L1 reduces the immune system's response to neoplastic cells. These observations suggest that the PD-1/PD-L1 axis plays a vital role in cancer therapy and the regulation of cancer immune escape mechanisms. This review aimed to provide an overview of the functions of PD-1 and PD-L1 in BC cancer therapy. METHODS: This research design is a literature review. The style is a traditional review on topics or variables relating to the PD-1/PD-L1 pathway. A literature search was carried out using three online databases. RESULTS: The search using the keywords yielded a total of 248 studies. Each result was filtered again according to the inclusion and exclusion criteria, resulting in a final total of 4 studies to be included in the literature review. CONCLUSIONS: The combination of PD-1/PD-L1 is essential for many malignancies. According to the evidence presented, this combination presents both an opportunity and a challenge in cancer treatment. Since many solid cancers, especially BC, express high levels of PD-1/PD-L1, cancer treatment mainly involves targeted therapies.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , Programmed Cell Death 1 Receptor , Humans , Breast Neoplasms/immunology , Female , Immunotherapy , Immune Checkpoint Inhibitors/therapeutic use
19.
Front Immunol ; 15: 1385484, 2024.
Article in English | MEDLINE | ID: mdl-38803496

ABSTRACT

Breast cancer poses one of the largest threats to women's health. Treatment continues to improve for all the subtypes of breast cancer, but some subtypes, such as triple negative breast cancer, still present a significant treatment challenge. Additionally, metastasis and local recurrence are two prevalent problems in breast cancer treatment. A newer type of therapy, immunotherapy, may offer alternatives to traditional treatments for difficult-to-treat subtypes. Immunotherapy engages the host's immune system to eradicate disease, with the potential to induce long-lasting, durable responses. However, systemic immunotherapy is only approved in a limited number of indications, and it benefits only a minority of patients. Furthermore, immune related toxicities following systemic administration of potent immunomodulators limit dosing and, consequently, efficacy. To address these safety considerations and improve treatment efficacy, interest in local delivery at the site of the tumor has increased. Numerous intratumorally delivered immunotherapeutics have been and are being explored clinically and preclinically, including monoclonal antibodies, cellular therapies, viruses, nucleic acids, cytokines, innate immune agonists, and bacteria. This review summarizes the current and past intratumoral immunotherapy clinical landscape in breast cancer as well as current progress that has been made in preclinical studies, with a focus on delivery parameters and considerations.


Subject(s)
Breast Neoplasms , Immunotherapy , Humans , Female , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Immunotherapy/methods , Animals
20.
Clin Exp Pharmacol Physiol ; 51(7): e13875, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797522

ABSTRACT

N6-methyladenosine (m6A) methylation modification affects the tumorigenesis and metastasis of breast cancer (BC). This study investigated the association between m6A regulator-mediated methylation modification patterns and characterization of the tumour microenvironment in BC, as well as their prognostic importance. Public gene expression data and clinical annotations were collected from The Cancer Genome Atlas (TCGA) database, the Gene Expression Omnibus website and the METABRIC program. We analysed the genetic expression, gene-gene interactions, gene mutations and copy number variations using R software. The data were screened for risk genes using the Cox risk regression model, and we developed an algorithm for risk score and its predictive value. Compared to adjacent normal tissue, we identified 16 differentially expressed m6A regulators in BC, including six writers and 10 readers. Under unsupervised clustering, two distinguished modification patterns were identified, cluster C1 and C2. Compared to m6A cluster C2, cluster C1 was found to be more involved in immune-related pathways, with a relatively higher immune score and stromal score (P < 0.05). Patients were divided into two groups based on their risk scores for survival analysis. The patients in the high-risk score group had significantly worse overall survival than patients in the low-risk score group, (P < 0.0001). The TCGA database validation revealed the same prognostic tendency. In summary, our study showed distinct m6A regulator modification patterns contribute to the immunological heterogeneity and diversity of BC. The development of m6A gene signatures and the m6A score aid in the prognostic prediction of patients with BC.


Subject(s)
Adenosine , Breast Neoplasms , Tumor Microenvironment , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Female , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic , Methylation , Prognosis , Databases, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...