Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.585
Filter
1.
J Sports Sci Med ; 23(2): 351-357, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841641

ABSTRACT

The maximum oxygen uptake (VO2max) is a critical factor for endurance performance in soccer. Novel wearable technology may allow frequent assessment of V̇O2max during non-fatiguing warm-up runs of soccer players with minimal interference to soccer practice. The aim of this study was to assess the validity of VO2max provided by a consumer grade smartwatch (Garmin Forerunner 245, Garmin, Olathe, USA, Software:13.00) and the YoYo Intermittent Recovery Run 2 (YYIR2) by comparing it with respiratory gas analysis. 24 trained male youth soccer players performed different tests to assess VO2max: i) a treadmill test employing respiratory gas analysis, ii) YYIR2 and iii) during a non-fatiguing warm-up run of 10 min wearing a smartwatch as recommended by the device-manufacturer on 3 different days within 2 weeks. As the device-manufacturer indicates that validity of smartwatch-derived VO2max may differ with an increase in runs, 16 players performed a second run with the smartwatch to test this claim. The main evidence revealed that the smartwatch showed an ICC of 0.37 [95% CI: -0.25; 0.71] a mean absolute percentage error (MAPE) of 5.58% after one run, as well as an ICC of 0.54 [95% CI: -0.3; 8.4] and a MAPE of 1.06% after the second run with the smartwatch. The YYIR2 showed an ICC of 0.17 [95% CI: -5.7; 0.6]; and MAPE of 4.2%. When using the smartwatch for VO2max assessment in a non-fatiguing run as a warm-up, as suggested by the device manufacturer before soccer practice, the MAPE diminishes after two runs. Therefore, for more accurate VO2max assessment with the smartwatch, we recommend to perform at least two runs to reduce the MAPE and enhance the validity of the findings.


Subject(s)
Exercise Test , Oxygen Consumption , Soccer , Humans , Soccer/physiology , Male , Adolescent , Oxygen Consumption/physiology , Exercise Test/methods , Exercise Test/instrumentation , Running/physiology , Wearable Electronic Devices , Warm-Up Exercise/physiology , Reproducibility of Results , Breath Tests/instrumentation , Breath Tests/methods
3.
Front Endocrinol (Lausanne) ; 15: 1360989, 2024.
Article in English | MEDLINE | ID: mdl-38752172

ABSTRACT

Purpose: This feasibility study aimed to investigate the use of exhaled breath analysis to capture and quantify relative changes of metabolites during resolution of acute diabetic ketoacidosis under insulin and rehydration therapy. Methods: Breath analysis was conducted on 30 patients of which 5 with DKA. They inflated Nalophan bags, and their metabolic content was subsequently interrogated by secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS). Results: SESI-HRMS analysis showed that acetone, pyruvate, and acetoacetate, which are well known to be altered in DKA, were readily detectable in breath of participants with DKA. In addition, a total of 665 mass spectral features were found to significantly correlate with base excess and prompt metabolic trajectories toward an in-control state as they progress toward homeostasis. Conclusion: This study provides proof-of-principle for using exhaled breath analysis in a real ICU setting for DKA monitoring. This non-invasive new technology provides new insights and a more comprehensive overview of the effect of insulin and rehydration during DKA treatment.


Subject(s)
Breath Tests , Diabetic Ketoacidosis , Insulin , Humans , Diabetic Ketoacidosis/metabolism , Breath Tests/methods , Male , Female , Adult , Middle Aged , Insulin/metabolism , Feasibility Studies , Fluid Therapy/methods , Aged , Biomarkers/metabolism , Biomarkers/analysis , Spectrometry, Mass, Electrospray Ionization/methods
4.
Transpl Int ; 37: 12298, 2024.
Article in English | MEDLINE | ID: mdl-38741700

ABSTRACT

Primary graft dysfunction (PGD) remains a challenge for lung transplantation (LTx) recipients as a leading cause of poor early outcomes. New methods are needed for more detailed monitoring and understanding of the pathophysiology of PGD. The measurement of particle flow rate (PFR) in exhaled breath is a novel tool to monitor and understand the disease at the proteomic level. In total, 22 recipient pigs underwent orthotopic left LTx and were evaluated for PGD on postoperative day 3. Exhaled breath particles (EBPs) were evaluated by mass spectrometry and the proteome was compared to tissue biopsies and bronchoalveolar lavage fluid (BALF). Findings were confirmed in EBPs from 11 human transplant recipients. Recipients with PGD had significantly higher PFR [686.4 (449.7-8,824.0) particles per minute (ppm)] compared to recipients without PGD [116.6 (79.7-307.4) ppm, p = 0.0005]. Porcine and human EBP proteins recapitulated proteins found in the BAL, demonstrating its utility instead of more invasive techniques. Furthermore, adherens and tight junction proteins were underexpressed in PGD tissue. Histological and proteomic analysis found significant changes to the alveolar-capillary barrier explaining the high PFR in PGD. Exhaled breath measurement is proposed as a rapid and non-invasive bedside measurement of PGD.


Subject(s)
Breath Tests , Bronchoalveolar Lavage Fluid , Lung Transplantation , Primary Graft Dysfunction , Proteomics , Animals , Lung Transplantation/adverse effects , Proteomics/methods , Primary Graft Dysfunction/metabolism , Primary Graft Dysfunction/etiology , Swine , Humans , Breath Tests/methods , Bronchoalveolar Lavage Fluid/chemistry , Female , Male , Exhalation
5.
Metabolomics ; 20(3): 59, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773019

ABSTRACT

INTRODUCTION: Thyroid cancer incidence rate has increased substantially worldwide in recent years. Fine needle aspiration biopsy (FNAB) is currently the golden standard of thyroid cancer diagnosis, which however, is invasive and costly. In contrast, breath analysis is a non-invasive, safe and simple sampling method combined with a promising metabolomics approach, which is suitable for early cancer diagnosis in high volume population. OBJECTIVES: This study aims to achieve a more comprehensive and definitive exhaled breath metabolism profile in papillary thyroid cancer patients (PTCs). METHODS: We studied both end-tidal and mixed expiratory breath, solid-phase microextraction gas chromatography coupled with high resolution mass spectrometry (SPME-GC-HRMS) was used to analyze the breath samples. Multivariate combined univariate analysis was applied to identify potential breath biomarkers. RESULTS: The biomarkers identified in end-tidal and mixed expiratory breath mainly included alkanes, olefins, enols, enones, esters, aromatic compounds, and fluorine and chlorine containing organic compounds. The area under the curve (AUC) values of combined biomarkers were 0.974 (sensitivity: 96.1%, specificity: 90.2%) and 0.909 (sensitivity: 98.0%, specificity: 74.5%), respectively, for the end-tidal and mixed expiratory breath, indicating of reliability of the sampling and analysis method CONCLUSION: This work not only successfully established a standard metabolomic approach for early diagnosis of PTC, but also revealed the necessity of using both the two breath types for comprehensive analysis of the biomarkers.


Subject(s)
Biomarkers, Tumor , Breath Tests , Gas Chromatography-Mass Spectrometry , Metabolomics , Solid Phase Microextraction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Metabolomics/methods , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/metabolism , Breath Tests/methods , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Female , Male , Middle Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Adult , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/metabolism , Early Detection of Cancer/methods , Aged
6.
BMC Pulm Med ; 24(1): 244, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760654

ABSTRACT

BACKGROUND: Whether asthma patients could benefit from home monitoring for fractional exhaled nitric oxide (flow of 50 mL/s, FeNO50) is unknown. We explore the application value of home monitoring FeNO50 in daily asthma management. METHODS: Twenty-two untreated, uncontrolled asthma patients were selected. Medical history, blood and sputum samples, pulmonary function, Asthma Control Test (ACT), and other clinical data of the subjects were collected. All subjects underwent daily monitoring for four weeks using a FeNO50 monitor and mobile spirometry (mSpirometry). The diurnal differences and dynamic changes were described. Compare the effect-acting time and the relative plateau of treatment between FeNO50 and mSpirometry monitoring. RESULTS: In the first two weeks, the morning median (IQR) level of FeNO50 was 44 (35, 56) ppb, which was significantly higher than the evening median level [41 (32, 53) ppb, P = 0.028]. The median (IQR) effect-acting time assessed by FeNO50 was 4 (3, 5) days, which was significantly earlier than each measure of mSpirometry (P < 0.05). FeNO50 reached the relative plateau significantly earlier than FEV1 (15 ± 2 days vs. 21 ± 3 days, P < 0.001). After treatment, the daily and weekly variation rates of FeNO50 showed a gradually decreasing trend (P < 0.05). The ACT score, sputum eosinophils, and blood eosinophils also significantly improved (P ≤ 0.01). CONCLUSIONS: The daily home monitoring of FeNO50 in asthmatic patients showed significant circadian rhythm, and the sensitivity of FeNO50 in evaluating the response to treatment was higher than mSpirometry. The daily and weekly variation rates of FeNO50 change dynamically with time, which may be used to assess the condition of asthma.


Subject(s)
Asthma , Nitric Oxide , Spirometry , Humans , Asthma/drug therapy , Asthma/metabolism , Asthma/diagnosis , Asthma/physiopathology , Pilot Projects , Male , Female , Adult , Middle Aged , Nitric Oxide/analysis , Nitric Oxide/metabolism , Forced Expiratory Volume , Fractional Exhaled Nitric Oxide Testing , Circadian Rhythm , Sputum/metabolism , Eosinophils/metabolism , Exhalation , Breath Tests/methods
7.
Sensors (Basel) ; 24(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732924

ABSTRACT

The application of artificial intelligence to point-of-care testing (POCT) disease detection has become a hot research field, in which breath detection, which detects the patient's exhaled VOCs, combined with sensor arrays of convolutional neural network (CNN) algorithms as a new lung cancer detection is attracting more researchers' attention. However, the low accuracy, high-complexity computation and large number of parameters make the CNN algorithms difficult to transplant to the embedded system of POCT devices. A lightweight neural network (LTNet) in this work is proposed to deal with this problem, and meanwhile, achieve high-precision classification of acetone and ethanol gases, which are respiratory markers for lung cancer patients. Compared to currently popular lightweight CNN models, such as EfficientNet, LTNet has fewer parameters (32 K) and its training weight size is only 0.155 MB. LTNet achieved an overall classification accuracy of 99.06% and 99.14% in the own mixed gas dataset and the University of California (UCI) dataset, which are both higher than the scores of the six existing models, and it also offers the shortest training (844.38 s and 584.67 s) and inference times (23 s and 14 s) in the same validation sets. Compared to the existing CNN models, LTNet is more suitable for resource-limited POCT devices.


Subject(s)
Algorithms , Breath Tests , Lung Neoplasms , Neural Networks, Computer , Volatile Organic Compounds , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/classification , Volatile Organic Compounds/analysis , Breath Tests/methods , Acetone/analysis , Ethanol/chemistry
8.
Respir Res ; 25(1): 203, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730430

ABSTRACT

BACKGROUND: Although electronic nose (eNose) has been intensively investigated for diagnosing lung cancer, cross-site validation remains a major obstacle to be overcome and no studies have yet been performed. METHODS: Patients with lung cancer, as well as healthy control and diseased control groups, were prospectively recruited from two referral centers between 2019 and 2022. Deep learning models for detecting lung cancer with eNose breathprint were developed using training cohort from one site and then tested on cohort from the other site. Semi-Supervised Domain-Generalized (Semi-DG) Augmentation (SDA) and Noise-Shift Augmentation (NSA) methods with or without fine-tuning was applied to improve performance. RESULTS: In this study, 231 participants were enrolled, comprising a training/validation cohort of 168 individuals (90 with lung cancer, 16 healthy controls, and 62 diseased controls) and a test cohort of 63 individuals (28 with lung cancer, 10 healthy controls, and 25 diseased controls). The model has satisfactory results in the validation cohort from the same hospital while directly applying the trained model to the test cohort yielded suboptimal results (AUC, 0.61, 95% CI: 0.47─0.76). The performance improved after applying data augmentation methods in the training cohort (SDA, AUC: 0.89 [0.81─0.97]; NSA, AUC:0.90 [0.89─1.00]). Additionally, after applying fine-tuning methods, the performance further improved (SDA plus fine-tuning, AUC:0.95 [0.89─1.00]; NSA plus fine-tuning, AUC:0.95 [0.90─1.00]). CONCLUSION: Our study revealed that deep learning models developed for eNose breathprint can achieve cross-site validation with data augmentation and fine-tuning. Accordingly, eNose breathprints emerge as a convenient, non-invasive, and potentially generalizable solution for lung cancer detection. CLINICAL TRIAL REGISTRATION: This study is not a clinical trial and was therefore not registered.


Subject(s)
Deep Learning , Electronic Nose , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Female , Male , Prospective Studies , Middle Aged , Aged , Reproducibility of Results , Breath Tests/methods , Adult
9.
Rev Assoc Med Bras (1992) ; 70(5): e20231499, 2024.
Article in English | MEDLINE | ID: mdl-38775509

ABSTRACT

OBJECTIVE: Heart failure is a disease with cardiac dysfunction, and its morbidity and mortality are associated with the degree of dysfunction. The New York Heart Association classifies the heart failure stages based on the severity of symptoms and physical activity. End-tidal carbon dioxide refers to the level of carbon dioxide that a person exhales with each breath. End-tidal carbon dioxide levels can be used in many clinical conditions such as heart failure, asthma, and chronic obstructive pulmonary disease. The aim of the study was to reveal the relationship between end-tidal carbon dioxide levels and the New York Heart Association classification of heart failure stages. METHODS: This study was conducted at Kahramanmaras Sütçü Imam University Faculty of Medicine Adult Emergency Department between 01/03/2019 and 01/09/2019. A total of 80 patients who presented to the emergency department with a history of heart failure or were diagnosed with heart failure during admission were grouped according to the New York Heart Association classification of heart failure stages. The laboratory parameters, ejection fraction values, and end-tidal carbon dioxide levels of the patients were measured and recorded in the study forms. RESULTS: End-tidal carbon dioxide levels and ejection fraction values were found to be significantly lower in the stage 4 group compared to the other groups. Furthermore, pro-B-type natriuretic peptide (BNP) values were found to be significantly higher in stage 4 group compared to the other groups. CONCLUSION: It was concluded that end-tidal carbon dioxide levels could be used together with pro-BNP and ejection fraction values in determining the severity of heart failure.


Subject(s)
Carbon Dioxide , Heart Failure , Severity of Illness Index , Stroke Volume , Humans , Heart Failure/classification , Heart Failure/metabolism , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Female , Male , Middle Aged , Aged , Stroke Volume/physiology , Adult , Tidal Volume/physiology , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/analysis , Breath Tests/methods , Emergency Service, Hospital
10.
World J Gastroenterol ; 30(17): 2302-2307, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38813047

ABSTRACT

In this editorial, we discuss the article in the World Journal of Gastroenterology. The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test (UBT), a non-invasive method for detecting Helicobacter pylori (H. pylori) infection in humans. It is based on radionuclide-labeled urea. Various methods, both invasive and non-invasive, are available for diagnosing H. pylori infection, including endoscopy with biopsy, serology for immunoglobulin titers, stool antigen analysis, and UBT. Several guidelines recommend UBTs as the primary choice for diagnosing H. pylori infection and for reexamining after eradication therapy. It is used to be the first choice non-invasive test due to their high accuracy, specificity, rapid results, and simplicity. Moreover, its performance remains unaffected by the distribution of H. pylori in the stomach, allowing a high flow of patients to be tested. Despite its widespread use, the performance characteristics of UBT have been inconsistently described and remain incompletely defined. There are two UBTs available with Food and Drug Administration approval: The 13C and 14C tests. Both tests are affordable and can provide real-time results. Physicians may prefer the 13C test because it is non-radioactive, compared to 14C which uses a radioactive isotope, especially in young children and pregnant women. Although there was heterogeneity among the studies regarding the diagnostic accuracy of both UBTs, 13C-UBT consistently outperforms the 14C-UBT. This makes the 13C-UBT the preferred diagnostic approach. Furthermore, the provided findings of the meta-analysis emphasize the significance of precise considerations when choosing urea dosage, assessment timing, and measurement techniques for both the 13C-UBT and 14C-UBT, to enhance diagnostic precision.


Subject(s)
Breath Tests , Dyspepsia , Helicobacter Infections , Helicobacter pylori , Urea , Adult , Humans , Breath Tests/methods , Carbon Isotopes/analysis , Carbon Radioisotopes , Dyspepsia/microbiology , Dyspepsia/diagnosis , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Helicobacter pylori/immunology , Sensitivity and Specificity , Urea/analysis , Urea/metabolism , Meta-Analysis as Topic
11.
Head Face Med ; 20(1): 32, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750491

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) directly affects oral health. Yet data about halitosis in young CKD patients and the impact of dental prophylaxis is limited. Therefore, as part of this randomized clinical trial, halitosis in young CKD patients undergoing intensive or standard oral preventive procedures was to be explored. METHODS: Three volatile sulfur compounds (hydrogen sulfide, methyl mercaptan and dimethyl sulfide) were measured in 30 young patients with CKD (mean age 14.2 years; 16 males, 14 females). Breath samples were taken after 3 and 6 months and analyzed with selective gas chromatography (OralChroma). Tongue coating (Winkel Index) and clinical indices to determine local inflammation or oral hygiene (Papillary Bleeding Index and Quigley-Hein Index) were assessed. Within an extended anamnesis, patients and their mothers and nurses were questioned about the perceived halitosis. Corresponding quotes were noted verbatim. Patients were randomized to either intensive need-related oral health care measures (oral preventative program, OPP) or a one-stage standard prevention (treatment as usual, TAU). RESULTS: While there were no differences in volatile sulfur compound levels between TAU and OPP at the three time points of measurements (p > 0.05), there was a tendency towards a reduction in dimethyl sulfide and hydrogen sulfide of affected patients within the OPP group over time. Looking at potential differences between both groups with regard to tongue coating, significant differences were observed between baseline and 3 months after study start in the OPP group, and between baseline and 6 months after study start in the TAU group (p < 0.05). The burden of halitosis was frequently reported by patients' mothers and nurses. CONCLUSIONS: Young CKD patients regularly suffered from halitosis and dimethyl sulfide was its main source. Preventive measures mainly resulted in a reduction of tongue coating. TRIAL REGISTRATION: The German Clinical Trial Register (# DRKS00010580).


Subject(s)
Halitosis , Renal Insufficiency, Chronic , Humans , Halitosis/etiology , Halitosis/prevention & control , Female , Male , Adolescent , Renal Insufficiency, Chronic/complications , Breath Tests/methods , Child , Oral Hygiene , Sulfur Compounds/analysis , Chromatography, Gas/methods , Hydrogen Sulfide
12.
BMJ Open Respir Res ; 11(1)2024 May 02.
Article in English | MEDLINE | ID: mdl-38697675

ABSTRACT

BACKGROUND: Methods used to assess ventilation heterogeneity through inert gas washout have been standardised and showed high sensitivity in diagnosing many respiratory diseases. We hypothesised that nitrogen single or multiple breath washout tests, respectively nitrogen single breath washout (N2SBW) and nitrogen multiple breath washout (N2MBW), may be pathological in patients with clinical suspicion of asthma but normal spirometry. Our aim was to assess whether N2SBW and N2MBW are associated with methacholine challenge test (MCT) results in this population. We also postulated that an alteration in SIII at N2SBW could be detected before the 20% fall of forced expiratory volume in the first second (FEV1) in MCT. STUDY DESIGN AND METHODS: This prospective, observational, single-centre study included patients with suspicion of asthma with normal spirometry. Patients completed questionnaires on symptoms and health-related quality-of-life and underwent the following lung function tests: N2SBW (SIII), N2MBW (Lung clearance index (LCI), Scond, Sacin), MCT (FEV1 and sGeff) as well as N2SBW between each methacholine dose. RESULTS: 182 patients were screened and 106 were included in the study, with mean age of 41.8±14 years. The majority were never-smokers (58%) and women (61%). MCT was abnormal in 48% of participants, N2SBW was pathological in 10.6% at baseline and N2MBW abnormality ranged widely (LCI 81%, Scond 18%, Sacin 43%). The dose response rate of the MCT showed weak to moderate correlation with the subsequent N2SBW measurements during the provocation phases (ρ 0.34-0.50) but no correlation with N2MBW. CONCLUSIONS: Both MCT and N2 washout tests are frequently pathological in patients with suspicion of asthma with normal spirometry. The weak association and lack of concordance across the tests highlight that they reflect different but not interchangeable pathological pathways of the disease.


Subject(s)
Asthma , Breath Tests , Bronchial Provocation Tests , Methacholine Chloride , Nitrogen , Spirometry , Humans , Asthma/diagnosis , Asthma/physiopathology , Methacholine Chloride/administration & dosage , Female , Male , Prospective Studies , Adult , Breath Tests/methods , Middle Aged , Nitrogen/analysis , Bronchial Provocation Tests/methods , Forced Expiratory Volume , Respiratory Function Tests/methods , Lung/physiopathology , Bronchoconstrictor Agents/administration & dosage
13.
Sci Rep ; 14(1): 11943, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789449

ABSTRACT

The volatile particles and molecules in our dry exhaled breath can reveal enormous information about the health of any person, such as the person's respiratory and metabolic functioning. Beyond the carbon dioxide level is an indicator of life, it provides important health-related data like people's metabolic rate. This study considers periodic open and closed resonators for measuring carbon dioxide concentration in dry exhaled breath. Transfer matrix and green methods are used to simulate the interaction between acoustic waves and the proposed sensor. The band gaps using the green method coincide with the transmittance spectra by the transfer matrix. The suggested sensor recorded a sensitivity of 5.3 H z . m - 1 . s , a figure of merit of 10,254 m - 1 . s , a detection limit of 5 × 10 - 6 m . s - 1 , and a quality factor of 3 × 10 6 . Furthermore, the efficiency shows that the proposed design is appropriate as a diagnostic sensor for different diseases such as chronic obstructive pulmonary. Besides, cylindrical-adapted sensors are urgently needed in medicine, industry, and biology because they can simultaneously be used for fluid transport and detection.


Subject(s)
Biosensing Techniques , Breath Tests , Carbon Dioxide , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans , Carbon Dioxide/analysis , Breath Tests/methods , Breath Tests/instrumentation , Exhalation
14.
Diagn Microbiol Infect Dis ; 109(3): 116309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692202

ABSTRACT

BACKGROUND: The COVID-19 pandemic had profound global impacts on daily lives, economic stability, and healthcare systems. Diagnosis of COVID-19 infection via RT-PCR was crucial in reducing spread of disease and informing treatment management. While RT-PCR is a key diagnostic test, there is room for improvement in the development of diagnostic criteria. Identification of volatile organic compounds (VOCs) in exhaled breath provides a fast, reliable, and economically favorable alternative for disease detection. METHODS: This meta-analysis analyzed the diagnostic performance of VOC-based breath analysis in detection of COVID-19 infection. A systematic review of twenty-nine papers using the grading criteria from Newcastle-Ottawa Scale (NOS) and PRISMA guidelines was conducted. RESULTS: The cumulative results showed a sensitivity of 0.92 (95 % CI, 90 %-95 %) and a specificity of 0.90 (95 % CI 87 %-93 %). Subgroup analysis by variant demonstrated strong sensitivity to the original strain compared to the Omicron and Delta variant in detection of SARS-CoV-2 infection. An additional subgroup analysis of detection methods showed eNose technology had the highest sensitivity when compared to GC-MS, GC-IMS, and high sensitivity-MS. CONCLUSION: Overall, these results support the use of breath analysis as a new detection method of COVID-19 infection.


Subject(s)
Breath Tests , COVID-19 , SARS-CoV-2 , Sensitivity and Specificity , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Humans , COVID-19/diagnosis , Breath Tests/methods , SARS-CoV-2/isolation & purification , COVID-19 Testing/methods , Gas Chromatography-Mass Spectrometry
15.
Article in English | MEDLINE | ID: mdl-38718698

ABSTRACT

Aerosol microparticles in exhaled breath carry non-volatile compounds from the deeper parts of the lung. When captured and analyzed, these aerosol microparticles constitute a non-invasive and readily available specimen for drugs of abuse testing. The present study aimed to evaluate a simple breath collection device in a clinical setting. The device divides a breath sample into three parallel "collectors" that can be individually analyzed. Urine was used as the reference specimen, and parallel specimens were collected from 99 patients undergoing methadone maintenance treatment. Methadone was used as the primary validation parameter. A sensitive multi-analyte method using tandem liquid chromatography - mass spectrometry was developed and validated as part of the project. The method was successfully validated for 36 analytes with a limit of detection of 1 pg/collector for most compounds. Based on the validation results tetrahydrocannabinol THC), cannabidiol (CBD), and lysergic acid diethylamide (LSD) are suitable for qualitative analysis, but all other analytes can be quantitively assessed by the method. Methadone was positive in urine in 97 cases and detected in exhaled breath in 98 cases. Median methadone concentration was 64 pg/collector. The methadone metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) was detected in 90 % of the cases but below 10 pg/collector in most. Amphetamine was also present in the urine in 17 cases and in exhaled breath in 16 cases. Several other substances were detected in the exhaled breath and urine samples, but at a lower frequency. This study concluded that the device provides a specimen from exhaled breath, that is useful for drugs of abuse testing. The results show that high analytical sensitivity is needed to achieve good detectability and detection time after intake.


Subject(s)
Breath Tests , Limit of Detection , Substance Abuse Detection , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Substance Abuse Detection/methods , Breath Tests/methods , Chromatography, Liquid/methods , Reproducibility of Results , Methadone/analysis , Methadone/urine , Linear Models , Male , Female , Adult , Illicit Drugs/analysis , Illicit Drugs/urine , Liquid Chromatography-Mass Spectrometry
16.
J Mol Model ; 30(6): 166, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744728

ABSTRACT

CONTEXT: Coronavirus (COVID-19) is a novel respiratory viral infection, causing a relatively large number of deaths especially in people who underly lung diseases such as chronic obstructive pulmonary and asthma, and humans are still suffering from the limited testing capacity. In this article, a solution is proposed for the detection of COVID-19 viral infections through the analysis of exhaled breath gasses, i.e., nitric oxide, a prominent biomarker released by respiratory epithelial, as a non-invasive and time-saving approach. Here, we designed a novel and low-cost N and P co-doped C60 fullerene-based breathalyzer for the detection of NO gas exhaled from the respiratory epithelial cells. This breathalyzer shows a quick response to the detection of NO gas by directly converting NO to NO2 without passing any energy barrier (0 kcal/mol activation energy). The recovery time of breathalyzer is very short (0.98 × 103 s), whereas it is highly selective for NO sensing in the mixture of CO2 and H2O gasses. The study provides an idea for the synthesis of low-cost (compared to previously reported Au atom decorated nanostructure and metal-based breathalyzer), efficient, and highly selective N and P co-doped C60 fullerene-based breathalyzer for COVID-19 detection. METHODS: The geometries of N and P-doped systems and gas molecules are simulated using spin-polarized density functional theory calculations.


Subject(s)
Biomarkers , COVID-19 , Fullerenes , Nitric Oxide , Fullerenes/chemistry , Humans , Nitric Oxide/analysis , Nitric Oxide/chemistry , COVID-19/virology , COVID-19/diagnosis , Breath Tests/methods , SARS-CoV-2
17.
J Breath Res ; 18(3)2024 05 17.
Article in English | MEDLINE | ID: mdl-38701772

ABSTRACT

The analysis of volatile organic compounds (VOCs) in exhaled air has attracted the interest of the scientific community because it provides the possibility of monitoring physiological and metabolic processes and non-invasive diagnostics of various diseases. However, this method remains underused in clinical practice as well as in research because of the lack of standardized procedures for the collection, storage and transport of breath samples, which would guarantee good reproducibility and comparability of results. The method of sampling, as well as the storage time of the breath samples in the polymer bags used for sample storage and transport, affect the composition and concentration of VOCs present in the breath samples. The aim of our study was to compare breath samples obtained using two methods with fully disposable equipment: a Haldane sampling tube intended for direct breath collection and breath samples exhaled into a transparent Tedlar bag. The second task was to monitor the stability of selected compounds of real breath samples stored in a Tedlar bag for 6 h. Gas chromatography coupled with ion mobility spectrometry (GC-IMS) implemented in the BreathSpec®device was used to analyse exhaled breath. Our results showed a significant difference in the signal intensity of some volatiles when taking a breath sample with a Haldane tube and a Tedlar bag. Due to its endogenous origin, acetone levels were significantly higher when the Haldane tube sampler was used while elevated levels of 2-propanol and unidentified VOC (designated as VOC 3) in the Tedlar bag samples likely originated from contamination of the Tedlar bags. The VOC stability study revealed compound-specific signal intensity changes of the selected VOCs with storage time in the Tedlar bags, with some volatiles showing increasing signal intensity during storage in Tedlar bags. This limits the use of Tedlar bags only for very limited time and carefully selected purpose. Our results highlight the importance of careful design and implementation of experiments and clinical protocols to obtain relevant and reliable results.


Subject(s)
Breath Tests , Specimen Handling , Volatile Organic Compounds , Humans , Breath Tests/instrumentation , Breath Tests/methods , Volatile Organic Compounds/analysis , Specimen Handling/instrumentation , Specimen Handling/methods , Ion Mobility Spectrometry/methods , Ion Mobility Spectrometry/instrumentation , Male , Female , Reproducibility of Results , Adult , Gas Chromatography-Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/instrumentation , Exhalation , Middle Aged , Time Factors
18.
J Breath Res ; 18(3)2024 05 17.
Article in English | MEDLINE | ID: mdl-38718786

ABSTRACT

Exhaled breath analysis has emerged as a non-invasive and promising method for early detection of lung cancer, offering a novel approach for diagnosis through the identification of specific biomarkers present in a patient's breath. For this longitudinal study, 29 treatment-naive patients with lung cancer were evaluated before and after surgery. Secondary electrospray ionization high-resolution mass spectrometry was used for exhaled breath analysis. Volatile organic compounds with absolute log2fold change ⩾1 andq-values ⩾ 0.71 were selected as potentially relevant. Exhaled breath analysis resulted in a total of 3482 features. 515 features showed a substantial difference before and after surgery. The small sample size generated a false positive rate of 0.71, therefore, around 154 of these 515 features were expected to be true changes. Biological identification of the features with the highest consistency (m/z-242.18428 andm/z-117.0539) revealed to potentially be 3-Oxotetradecanoic acid and Indole, respectively. Principal component analysis revealed a primary cluster of patients with a recurrent lung cancer, which remained undetected in the initial diagnostic and surgical procedures. The change of exhaled breath patterns after surgery in lung cancer emphasizes the potential for lung cancer screening and detection.


Subject(s)
Breath Tests , Exhalation , Lung Neoplasms , Volatile Organic Compounds , Humans , Breath Tests/methods , Lung Neoplasms/surgery , Male , Female , Longitudinal Studies , Aged , Middle Aged , Volatile Organic Compounds/analysis , Biomarkers, Tumor/analysis
19.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791590

ABSTRACT

This paper describes the process of producing chemiresistors based on hybrid nanostructures obtained from graphene and conducting polymers. The technology of graphene presumed the following: dispersion and support stabilization based on the chemical vapor deposition technique; transfer of the graphene to the substrate by spin-coating of polymethyl methacrylate; and thermal treatment and electrochemical delamination. For the process at T = 950 °C, a better settlement of the grains was noticed, with the formation of layers predominantly characterized by peaks and not by depressions. The technology for obtaining hybrid nanostructures from graphene and conducting polymers was drop-casting, with solutions of Poly(3-hexylthiophene (P3HT) and Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2). In the case of F8T2, compared to P3HT, a 10 times larger dimension of grain size and about 7 times larger distances between the peak clusters were noticed. To generate chemiresistors from graphene-polymer structures, an ink-jet printer was used, and the metallization was made with commercial copper ink for printed electronics, leading to a structure of a resistor with an active surface of about 1 cm2. Experimental calibration curves were plotted for both sensing structures, for a domain of CH4 of up to 1000 ppm concentration in air. A linearity of the curve for the low concentration of CH4 was noticed for the graphene structure with F8T2, presenting a sensitivity of about 6 times higher compared with the graphene structure with P3HT, which makes the sensing structure of graphene with F8T2 more feasible and reliable for the medical application of irritable bowel syndrome evaluation.


Subject(s)
Graphite , Irritable Bowel Syndrome , Methane , Nanostructures , Polymers , Graphite/chemistry , Nanostructures/chemistry , Polymers/chemistry , Methane/chemistry , Irritable Bowel Syndrome/metabolism , Humans , Breath Tests/methods , Thiophenes/chemistry , Electric Conductivity
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124473, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38795528

ABSTRACT

Infrared spectroscopy appears to be a promising analytical method for the metabolic analysis of breath. However, due to the presence of trace amounts in exhaled breath, the absorption strength of the metabolites remains extremely low. In such low detection limits, the nonlinear detection sensitivity of the infrared detector and electronic noise strongly modify the baseline of the acquired infrared spectra of breath. Fitting the reference molecular spectra with the baseline-modified spectral features of breath metabolites does not provide accurate identification. Therefore, baseline correction of the acquired infrared spectra of breath is the primary requirement for the success of breath-based infrared diagnosis. A selective spectral region-based, simple baseline correction method is proposed for the infrared spectroscopy of breath.


Subject(s)
Breath Tests , Exhalation , Spectrophotometry, Infrared , Breath Tests/methods , Humans , Spectrophotometry, Infrared/methods , Exhalation/physiology , Male , Adult , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...