Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 274: 197775, 2019 12.
Article in English | MEDLINE | ID: mdl-31600527

ABSTRACT

Phage infection of bacterial cells is a process requiring the interaction between phage receptor binding proteins and receptors on the bacterial cell surface. We prepared a Brevibacterium flavum CCM 251 EZ-Tn5 transposon insertional library and isolated phage-resistant mutants. Analysis of the DNA fragments produced by single-primer PCR was used to determine the EZ-Tn5 transposon insertion sites in the genomes of phage-resistant B. flavum mutants. Seven disrupted genes were identified in forty B. flavum mutants. The phage resistance of these mutants was demonstrated by cultivation analysis in the presence of BFK20, and the adsorption rate of BFK20 to these mutants was tested. B. flavum mutants displayed significantly reduced adsorption rates; the lowest rate was observed for mutants containing interrupted major facilitator superfamily (MFS) protein and glycosyltransferase genes. Uninterrupted forms of these genes were cloned into corynebacterial vector pJUP06 and used for in trans complementation of the corresponding B. flavum mutants. The growth of these complemented mutants when infected with BFK20 closely resembled that of wild-type B. flavum. These complemented mutants also exhibited similar BFK20 adsorption as the wild-type control. We infer that the disrupted MFS protein and glycosyltransferase genes are responsible for the phage-resistant phenotype of these B. flavum transposition mutants.


Subject(s)
Bacteriophages/physiology , Brevibacterium flavum/virology , Genes, Bacterial , Receptors, Virus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/metabolism , Brevibacterium flavum/genetics , Brevibacterium flavum/metabolism , Genetic Complementation Test , Mutagenesis, Insertional , Mutation , Receptors, Virus/genetics , Virus Attachment
2.
FEMS Microbiol Lett ; 366(8)2019 04 01.
Article in English | MEDLINE | ID: mdl-31089703

ABSTRACT

The phage BFK20 replication origin was identified using bioinformatics tools and a fragment with the origin nucleotide sequence was cloned into the tetracycline resistance gene of Escherichia coli vector pBR328, to make the plasmid pBOS. After transformation into the host strain Brevibacterium flavum CCM 251, pBOS was able to replicate, showing that the cloned region may function as a replication origin. The presence of the BFK20 origin sequence in a pBOS plasmid isolated from B. flavum CCM 251 was confirmed by Southern hybridisation. Monitoring pBOS stability in corynebacterial hosts showed that pBOS was stable in Corynebacterium glutamicum RM3 for 20 generations and in B. flavum CCM 251 for 10 generations. The effect of the cloned BFK20 replication origin on host resistance to BFK20 infection was tested. Growth of a B. flavum CCM 251 strain harbouring pBOS stopped after phage infection, but without complete lysis. Five hours after infection, the viability of the modified strain was about five times higher than the viability of wild-type B. flavum CCM 251. Thus, the ability of the BFK20 replication origin to confer the origin-derived phage-encoded resistance phenotype to B. flavum CCM 251 was confirmed.


Subject(s)
Bacteriophages/genetics , Brevibacterium flavum/virology , Genes, Viral , Phenotype , Replication Origin , Bacteriophages/physiology , Brevibacterium flavum/genetics , Computational Biology , Corynebacterium/genetics , Escherichia coli/genetics , Microbial Viability/genetics , Plasmids/genetics , Viral Proteins/genetics
3.
World J Microbiol Biotechnol ; 34(8): 121, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30039311

ABSTRACT

L-valine is an essential branched-amino acid that is widely used in multiple areas such as pharmaceuticals and special dietary products and its use is increasing. As the world market for L-valine grows rapidly, there is an increasing interest to develop an efficient L-valine-producing strain. In this study, a simple, sensitive, efficient, and consistent screening procedure termed 96 well plate-PC-HPLC (96-PH) was developed for the rapid identification of high-yield L-valine strains to replace the traditional L-valine assay. L-valine production by Brevibacterium flavum MDV1 was increased by genome shuffling. The starting strains were obtained using ultraviolet (UV) irradiation and binary ethylenimine treatment followed by preparation of protoplasts, UV irradiation inactivation, multi-cell fusion, and fusion of the inactivated protoplasts to produce positive colonies. After two rounds of genome shuffling and the 96-PH method, six L-valine high-yielding mutants were selected. One genetically stable mutant (MDVR2-21) showed an L-valine yield of 30.1 g/L during shake flask fermentation, 6.8-fold higher than that of MDV1. Under fed-batch conditions in a 30 L automated fermentor, MDVR2-21 accumulated 70.1 g/L of L-valine (0.598 mol L-valine per mole of glucose; 38.9% glucose conversion rate). During large-scale fermentation using a 120 m3 fermentor, this strain produced > 66.8 g/L L-valine (36.5% glucose conversion rate), reflecting a very productive and stable industrial enrichment fermentation effect. Genome shuffling is an efficient technique to improve production of L-valine by B. flavum MDV1. Screening using 96-PH is very economical, rapid, efficient, and well-suited for high-throughput screening.


Subject(s)
Brevibacterium flavum/genetics , Brevibacterium flavum/metabolism , DNA Shuffling/methods , High-Throughput Screening Assays/methods , Valine/biosynthesis , Valine/genetics , Aziridines/pharmacology , Batch Cell Culture Techniques , Biomass , Bioreactors/microbiology , Brevibacterium flavum/drug effects , Brevibacterium flavum/radiation effects , Fermentation , Genome, Bacterial , Genomic Instability , Glucose/metabolism , Industrial Microbiology , Membrane Fusion , Mutagenesis , Mutation/genetics , Protoplasts/drug effects , Protoplasts/radiation effects , Time Factors , Ultraviolet Rays
4.
Pak J Pharm Sci ; 28(4): 1401-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26142531

ABSTRACT

Lysine executes imperative structural and functional roles in body and its supplementation in diet beneficial to prevent the escalating threat of protein deficiency. The physical mutagenesis offers new fascinating avenues of research for overproduction of lysine through surplus carbohydrate containing agriculture waste especially in developing countries. The current study was aimed to investigate the potential of UV mutated strain of Brevibacterium flavum at 254 nm for lysine production. The physical and nutritional parameters were optimized and maximum lysine production was observed with molasses (4% substrate water ratio). Moreover, supplementation of culture medium with metal cations (i.e. 0.4% CaSO4, 0.3% NaCl, 0.3% KH2PO4, 0.4% MgSO4, and 0.2% (NH4) 2SO4w/v) together with 0.75% v/v corn steep liquor significantly enhanced the lysine production up to 26.71 ± 0.31 g/L. Though, concentrations of urea, ammonium nitrate and yeast sludge did not exhibit any profound effect on lysine production. Biological evaluation of lysine enriched biomass in terms of weight gain and feed conversion ratio reflected non-significant difference for experimental and control (+ve) groups. Conclusively, lysine produced in the form of biomass was compatible to market lysine in its effectiveness and have potential to utilize at commercial scale.


Subject(s)
Agriculture , Brevibacterium flavum/metabolism , Chickens/growth & development , Lysine/biosynthesis , Animals , Biomass , Brevibacterium flavum/genetics , Brevibacterium flavum/radiation effects , Mutation , Nitrogen/metabolism , Sodium Chloride/pharmacology , Temperature , Ultraviolet Rays
5.
J Ind Microbiol Biotechnol ; 39(1): 63-72, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21706252

ABSTRACT

Brevibacterium flavum ATCC14067 was engineered for L: -valine production by overexpression of different ilv genes; the ilvEBN(r)C genes from B. flavum NV128 provided the best candidate for L: -valine production. In traditional fermentation, L: -valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the L: -valine production and conversion efficiency based on the optimum temperatures of L: -valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and L: -valine biosynthesis enzymes activity were obtained at high temperature, and the maximum L: -valine production, conversion efficiency, and specific L: -valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g(-1) h(-1), respectively, at 37°C in 48 h fermentation. The strategy for enhancing L: -valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.


Subject(s)
Brevibacterium flavum/metabolism , Hot Temperature , Valine/biosynthesis , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brevibacterium flavum/genetics , Enzymes/chemistry , Enzymes/genetics , Enzymes/metabolism , Fermentation , Genes, Bacterial , Molecular Sequence Data
6.
Biochemistry ; 50(47): 10262-74, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22011290

ABSTRACT

Substrates homoprotocatechuate (HPCA) and O(2) bind to the Fe(II) of homoprotocatechuate 2,3-dioxygenase (FeHPCD) in adjacent coordination sites. Transfer of an electron(s) from HPCA to O(2) via the iron is proposed to activate the substrates for reaction with each other to initiate aromatic ring cleavage. Here, rapid-freeze-quench methods are used to trap and spectroscopically characterize intermediates in the reactions of the HPCA complexes of FeHPCD and the variant His200Asn (FeHPCD−HPCA and H200N−HPCA, respectively) with O(2). A blue intermediate forms within 20 ms of mixing of O(2) with H200N−HPCA (H200N(Int1)(HPCA)). Parallel mode electron paramagnetic resonance and Mössbauer spectroscopies show that this intermediate contains high-spin Fe(III) (S = 5/2) antiferromagnetically coupled to a radical (S(R) = 1/2) to yield an S = 2 state. Together, optical and Mössbauer spectra of the intermediate support assignment of the radical as an HPCA semiquinone, implying that oxygen is bound as a (hydro)peroxo ligand. H200N(Int1)(HPCA) decays over the next 2 s, possibly through an Fe(II) intermediate (H200N(Int2)(HPCA)), to yield the product and the resting Fe(II) enzyme. Reaction of FeHPCD−HPCA with O(2) results in rapid formation of a colorless Fe(II) intermediate (FeHPCD(Int1)(HPCA)). This species decays within 1 s to yield the product and the resting enzyme. The absence of a chromophore from a semiquinone or evidence of a spin-coupled species in FeHPCD(Int1)(HPCA) suggests it is an intermediate occurring after O(2) activation and attack. The similar Mössbauer parameters for FeHPCD(Int1)(HPCA) and H200N(Int2)(HPCA) suggest these are similar intermediates. The results show that transfer of an electron from the substrate to the O(2) via the iron does occur, leading to aromatic ring cleavage.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Brevibacterium flavum/enzymology , Dioxygenases/chemistry , Dioxygenases/metabolism , Ferrous Compounds/metabolism , Oxygen/metabolism , Bacterial Proteins/genetics , Binding Sites , Brevibacterium flavum/chemistry , Brevibacterium flavum/genetics , Dioxygenases/genetics , Electron Transport , Ferrous Compounds/chemistry , Kinetics , Models, Molecular , Oxygen/chemistry , Protein Binding
7.
J Microbiol Methods ; 80(1): 86-92, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19913575

ABSTRACT

Brevibacterium flavum has been developed to produce amino acids l-valine, l-lysine and l-threonine. However, there are not enough vectors available for the research on metabolic engineering in Brevibacterium flavum. Here we have constructed a shuttle expression vector pDXW-8 between Escherichia coli and B. flavum. The vector harbors an origin oriE for replicating in E. coli, a second origin oriC for replicating in B. flavum, a large multiple cloning site including 11 single restriction enzyme sites and suitable for cloning multiple genes or large DNA fragments, a tac promoter and a lacI(PF104) fragment which tightly controls the tac promoter. The applicability of pDXW-8 was confirmed by the expression of the vhb gene in B. flavum. The vector pDXW-8 will be very useful for research on metabolic engineering in corynebacteria.


Subject(s)
Amino Acids/metabolism , Brevibacterium flavum/genetics , Genetic Engineering/methods , Genetic Vectors/genetics , Industrial Microbiology , Brevibacterium flavum/metabolism , Cloning, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...