Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 817: 146175, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35031422

ABSTRACT

Brucella canis is responsible for canine brucellosis, a neglected zoonotic disease. The omp25 gene has been described as an important marker for Brucella intra-species differentiation, in addition to the ability to interact with the host immune system. Therefore, this study investigated the omp25 sequence from B. canis strains associated to a phylogenetic characterization and the unveiling of the molecular structure. In vitro analyses comprised DNA extraction, PCR, and sequencing of omp25 from 19 B. canis strains. Moreover, in silico analyses were performed at nucleotide level for phylogenetic characterization and evolutionary history of B. canis omp25 gene; and in amino acid level including modeling, dynamics, and epitope prediction of B. canis Omp25 protein. Here, we identified a new mutation, L109P, which diverges the worldwide omp25 sequences in two large branches. Interestingly, this mutation appears to have epidemiology importance, based on a geographical distribution of B. canis strains. Structural and molecular dynamics analyses of Omp25 revealed that Omp25L109P does not sustain its native ß-barrel. Likewise, the conformation of B-cell epitope on the mutated region was changed in Omp25L109P protein. Even without an evolutive marker, the new identified mutation appears to affect the basic function of B. canis Omp25 protein, which could indicate virulence adaptation for some B. canis strains in a context of geographical disposition.


Subject(s)
Bacterial Proteins , Brucella canis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Brucella canis/classification , Brucella canis/genetics , Brucella canis/physiology , Evolution, Molecular , Genes, Bacterial , Models, Molecular , Mutation , Phylogeny , Polymerase Chain Reaction , Protein Conformation , Sequence Analysis, DNA
2.
Microb Pathog ; 139: 103865, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31715318

ABSTRACT

Brucella spp. are facultative intracellular pathogens and zoonotic agents which pose a huge threat to human health and animal husbandry. The B. melitensis, B. abortus, and B. suis cause undulant fever and influenza-like symptoms in humans. However, the effects of B. canis have not been extensively studied. The quorum sensing-dependent transcriptional regulator VjbR influences the Brucella virulence in smooth type Brucella strains, such as B. melitensis, B. abortus and rough type Brucella ovis. However, the function of VjbR in the rough-type B. canis is unknown. In the present study, we discovered that deletion of this regulator significantly affected Brucella virulence in macrophage and mice infection models. The expression levels of virB operon and the ftcR gene were significantly altered in the vjbR mutant strain. We further investigated the protective effect of different doses of the vjbR mutant in mice and the results indicated that VjbR conferred protection against the virulent B. canis strain. This study presents the first evidence that the transcriptional regulator VjbR has important function in B. canis. In addition, according to its reduced virulence and the protective immunity it induces in mice, it can be a potential live attenuated vaccine against B. canis.


Subject(s)
Bacterial Proteins/genetics , Brucella canis/physiology , Brucellosis/microbiology , Gene Expression Regulation, Bacterial , Mutation , Repressor Proteins/genetics , Trans-Activators/genetics , Type IV Secretion Systems/physiology , Animals , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Vaccines/immunology , Brucellosis/immunology , Brucellosis/prevention & control , Cell Line , Gene Deletion , Host-Pathogen Interactions/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Quorum Sensing/genetics , RAW 264.7 Cells , Repressor Proteins/immunology , Repressor Proteins/metabolism , Trans-Activators/immunology , Trans-Activators/metabolism , Virulence , Virulence Factors/genetics
3.
Vet Res ; 48(1): 72, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29096717

ABSTRACT

Brucella canis is a small intracellular Gram-negative bacterium whose primary host is the dog, but it also can cause mild human brucellosis. One of the main causes of an inefficient immune response against other species of Brucella is their interaction with dendritic cells (DCs), which affects antigen presentation and impairs the development of an effective Th1 immune response. This study analysed the cytokine pattern production, by RT-qPCR and ELISA, in human and canine DCs against whole B. canis or its purified LPS. Human and canine DCs produced different patterns of cytokines after stimulation with B. canis. In particular, while human DCs produced a Th1-pattern of cytokines (IL-1ß, IL-12, and TNF-α), canine cells produced both Th1 and Th17-related cytokines (IL-6, IL-12, IL-17, and IFN-γ). Thus, differences in susceptibility and pathogenicity between these two hosts could be explained, at least partly, by the distinct cytokine patterns observed in this study, where we propose that human DCs induce an effective Th1 immune response to control the infection, while canine DCs lead to a less effective immune response, with the activation of Th17-related response ineffective to control the B. canis infection.


Subject(s)
Brucella canis/physiology , Brucellosis/immunology , Cytokines/genetics , Dendritic Cells/immunology , Animals , Brucellosis/microbiology , Cytokines/metabolism , Dendritic Cells/microbiology , Dogs , Female , Humans , Male
4.
PLoS One ; 12(10): e0186561, 2017.
Article in English | MEDLINE | ID: mdl-29036184

ABSTRACT

Brucella canis infection is an important cause of late-term abortion in pregnant bitches. The pathophysiological mechanisms leading to B. canis-induced abortion are unknown, but heavily infected trophoblasts are consistently observed. As trophoblasts responses to other pathogens contribute to placental inflammation leading to abortion, the aim of the present study was to characterize the cytokine response of canine trophoblasts to B. canis infection. To achieve this, trophoblasts isolated from term placenta of healthy female dogs were infected with B. canis, culture supernatants were harvested for cytokine determinations, and the load of intracellular viable B. canis was determined at different times post-infection. Additionally, cytokine responses were assessed in non-infected trophoblasts stimulated with conditioned media (CM) from B. canis-infected canine monocytes and neutrophils. Finally, cytokine response and bacteria replication were assessed in canine placental explants infected ex vivo. B. canis successfully infected and replicated in primary canine trophoblasts, eliciting an increase in IL-8 and RANTES (CCL5) secretion. Moreover, the stimulation of trophoblasts with CM from B. canis-infected monocytes and neutrophils induced a significant increase in IL-8, IL-6 and RANTES secretion. B. canis replication was confirmed in infected placental explants and the infection elicited an increased secretion of TNF-α, IL-8, IL-6 and RANTES. This study shows that canine trophoblasts produce proinflammatory cytokines in response to B. canis infection and/or to stimulation with factors produced by infected monocytes and neutrophils. These cytokines may contribute to placental inflammation leading to abortion in B. canis-infected pregnant bitches.


Subject(s)
Brucella canis/physiology , Trophoblasts/microbiology , Animals , Antigens, Bacterial/immunology , Brucella canis/immunology , Chemokines/metabolism , Dogs , Female , Inflammation/microbiology , Phagocytes/cytology , Placenta/microbiology , Pregnancy , Toll-Like Receptors/agonists , Trophoblasts/cytology , Trophoblasts/metabolism
5.
PLoS One ; 7(3): e31747, 2012.
Article in English | MEDLINE | ID: mdl-22403618

ABSTRACT

Brucella spp. cause chronic zoonotic disease often affecting individuals and animals in impoverished economic or public health conditions; however, these bacteria do not have obvious virulence factors. Restriction of iron availability to pathogens is an effective strategy of host defense. For brucellae, virulence depends on the ability to survive and replicate within the host cell where iron is an essential nutrient for the growth and survival of both mammalian and bacterial cells. Iron is a particularly scarce nutrient for bacteria with an intracellular lifestyle. Brucella melitensis and Brucella canis share ~99% of their genomes but differ in intracellular lifestyles. To identify differences, gene transcription of these two pathogens was examined during infection of murine macrophages and compared to broth grown bacteria. Transcriptome analysis of B. melitensis and B. canis revealed differences of genes involved in iron transport. Gene transcription of the TonB, enterobactin, and ferric anguibactin transport systems was increased in B. canis but not B. melitensis during infection of macrophages. The data suggest differences in iron requirements that may contribute to differences observed in the lifestyles of these closely related pathogens. The initial importance of iron for B. canis but not for B. melitensis helps elucidate differing intracellular survival strategies for two closely related bacteria and provides insight for controlling these pathogens.


Subject(s)
Brucella canis/genetics , Brucella melitensis/genetics , Genes, Bacterial/genetics , Iron/metabolism , Macrophages/microbiology , Transcriptome , Animals , Brucella canis/metabolism , Brucella canis/physiology , Brucella melitensis/metabolism , Brucella melitensis/physiology , Cell Line , Intracellular Space/microbiology , Macrophages/cytology , Mice , Oligonucleotide Array Sequence Analysis , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , Reproducibility of Results , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...