Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 717
Filter
1.
PLoS One ; 19(8): e0304347, 2024.
Article in English | MEDLINE | ID: mdl-39116053

ABSTRACT

Parasmittina is the most representative cheilostome genus of the family Smittinidae, often reported in the fouling non-indigenous marine community. Here, we present a review of Parasmittina species reported in the Southwestern Atlantic including the characterization of one species from Argentina (P. dubitata) and ten from the Brazilian coast: P. abrolhosensis, P. alba, P. bimucronata, P. ligulata comb. nov., P. longirostrata, P. pinctatae, P. serrula, P. simpulata, P. winstonae and the new species Parasmittina falciformis sp. nov. The new species is characterized by a smooth distally primary orifice with 1-2 oral spines, large lyrula, serrated condyles with hooked tips, and two types of avicularia-small and subtriangular and large sublanceolate. This study does not recognize four species previous recorded in Brazil: reports of P. betamorphaea and P. trispinosa are now assigned to P. pinctatae; records of P. munita belong to P. falciformis sp. nov.; and reports of P. spathulata encompass at least two taxa, including P. abrolhosensis and P. simpulata. In this study, five species complexes (P. alba, P. longirostrata, P. serrula, P. simpulata and P. winstonae) were identified and require further investigations. While six species characterized here were first described based on specimens from the Southwestern Atlantic (P. abrolhosensis, P. alba, P. dubitata, P. ligulata comb. nov., P. simpulata and P. falciformis sp. nov.), the remaining species are mainly known from the Indo-Pacific. These taxa are here recognized as exotic (P. longirostrata) and cryptogenic (P. bimucronata, P. pinctatae, P. serrula and P. winstonae) in the studied area. Most of the non-native taxa are widespread along the Brazilian coast, growing on both artificial and natural surfaces, indicating that they are well-established in the area. As non-native bryozoans can negatively influence the environment, affecting human economic activities and beach usage, further studies on the fauna presented here are suggested to determine the origin of these taxa and help prevent bioinvasion events along the SW Atlantic.


Subject(s)
Bryozoa , Animals , Atlantic Ocean , Brazil , Bryozoa/classification , Bryozoa/anatomy & histology , Phylogeny , Argentina , Biodiversity , Species Specificity
2.
J Morphol ; 285(9): e21770, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39185764

ABSTRACT

Terebriporidae is one of the four extant endolithic ctenostome bryozoan families, with colonies immersed into carbonate substrates like molluscan shells. This monogeneric family comprises 17 species, with 11 extant and 6 fossil species. It is currently considered closely related to vesicularioid ctenostomes, a group characterized by colonies interconnected by polymorphic stolons and a distinct gizzard as part of their digestive systems. However, confusion persists regarding the correct species identities and affiliations of many terebriporid species, and even the description of the entire family is based solely on a few external features of their boring traces, rendering the family an ichnotaxon (trace fossil). Our molecular analysis does not support a vesicularioid affinity, but corroborate a close relationship to Immergentia, another genus of boring bryozoans. Consequently, this study aims to untangle the systematic confusion surrounding Terebriporidae by examining the tracemaker of the type species of the family, Terebripora ramosa from Chile, and investigating its morphology and histology using modern techniques. The current analysis could not confirm typical vesicularioid characters such as a gizzard or true polymorphic stolons. Instead, all characters point towards a closer relationship to Immergentiidae as suggested by a recent molecular phylogeny. In fact, these two taxa share several characters such as cystid appendages and duplicature bands, and appear closely related, with the only difference being a characteristic vane with tubulets present in the tracemaker of T. ramosa. The sister-group relationship of the tracemaker and the genus Immergentia infers that these borers share a common boring ancestor, but also emphasizes that additional species from the ichnogenus Terebripora need to be studied for more clarity.


Subject(s)
Bryozoa , Fossils , Bryozoa/anatomy & histology , Animals , Fossils/anatomy & histology , Phylogeny
3.
Curr Biol ; 34(16): R762-R763, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39163832

ABSTRACT

Aaron O'Dea and Kimberly García-Méndez introduce the cupuladriids, a group of bryozoans that are atypical for their ability to actively move.


Subject(s)
Bryozoa , Bryozoa/physiology , Animals
4.
J Exp Biol ; 227(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38920135

ABSTRACT

Warming global temperatures have consequences for biological rates. Feeding rates reflect the intake of energy that fuels survival, growth and reproduction. However, temperature can also affect food abundance and quality, as well as feeding behavior, which all affect feeding rate, making it challenging to understand the pathways by which temperature affects the intake of energy. Therefore, we experimentally assessed how clearance rate varied across a thermal gradient in a filter-feeding colonial marine invertebrate (the bryozoan Bugula neritina). We also assessed how temperature affects phytoplankton as a food source, and zooid states within a colony that affect energy budgets and feeding behavior. Clearance rate increased linearly from 18°C to 32°C, a temperature range that the population experiences most of the year. However, temperature increased algal cell size, and decreased the proportion of feeding zooids, suggesting indirect effects of temperature on clearance rates. Temperature increased polypide regression, possibly as a stress response because satiation occurred quicker, or because phytoplankton quality declined. Temperature had a greater effect on clearance rate per feeding zooid than it did per total zooids. Together, these results suggest that the effect of temperature on clearance rate at the colony level is not just the outcome of individual zooids feeding more in direct response to temperature but also emerges from temperature increasing polypide regression and the remaining zooids increasing their feeding rates in response. Our study highlights some of the challenges for understanding why temperature affects feeding rates, especially for understudied, yet ecologically important, marine colonial organisms.


Subject(s)
Bryozoa , Feeding Behavior , Phytoplankton , Temperature , Animals , Bryozoa/physiology , Phytoplankton/physiology
5.
PLoS One ; 19(4): e0297028, 2024.
Article in English | MEDLINE | ID: mdl-38557742

ABSTRACT

Machine learning techniques that rely on textual features or sentiment lexicons can lead to erroneous sentiment analysis. These techniques are especially vulnerable to domain-related difficulties, especially when dealing in Big data. In addition, labeling is time-consuming and supervised machine learning algorithms often lack labeled data. Transfer learning can help save time and obtain high performance with fewer datasets in this field. To cope this, we used a transfer learning-based Multi-Domain Sentiment Classification (MDSC) technique. We are able to identify the sentiment polarity of text in a target domain that is unlabeled by looking at reviews in a labelled source domain. This research aims to evaluate the impact of domain adaptation and measure the extent to which transfer learning enhances sentiment analysis outcomes. We employed transfer learning models BERT, RoBERTa, ELECTRA, and ULMFiT to improve the performance in sentiment analysis. We analyzed sentiment through various transformer models and compared the performance of LSTM and CNN. The experiments are carried on five publicly available sentiment analysis datasets, namely Hotel Reviews (HR), Movie Reviews (MR), Sentiment140 Tweets (ST), Citation Sentiment Corpus (CSC), and Bioinformatics Citation Corpus (BCC), to adapt multi-target domains. The performance of numerous models employing transfer learning from diverse datasets demonstrating how various factors influence the outputs.


Subject(s)
Big Data , Bryozoa , Animals , Sentiment Analysis , Algorithms , Computational Biology
6.
J Morphol ; 285(4): e21686, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491849

ABSTRACT

Brachiopods have the most complex lophophore in comparison with other lophophorates, i.e., phoronids and bryozoans. However, at early ontogenetic stages, brachiopods have a lophophore of simple morphology, which consists of the oral tentacles. Data on the ultrastructure of the oral tentacles is mostly missing. Nonetheless, it has recently been suggested that the structure of oral tentacles is ancestral for all lophophorates in general, and for brachiopods in particular. The fine structure of the oral tentacles in the brachiopod Hemithiris psittacea is studied using light microscopy, transmission and scanning electron microscopy, cytochemistry and confocal laser scanning microscopy. The oral tentacles have a round shape in transverse section, and four ciliary zones, i.e., one frontal, two lateral, and one abfrontal. Latero-frontal sensory cells occur among the frontal epithelium. Four basiepithelial nerves in the ciliary epithelium are colocalized with ciliary zones. Lophophores of simple morphology in phoronids and brachiopods are characterized by non-specified round forms of tentacles. In phoronids and bryozoans, tentacles have additional latero-frontal ciliary zones that function as a sieve during filtration. In most brachiopods, lateral cilia are involved in the capture of food particles, whereas latero-frontal cells are retained in the frontal zone as sensory elements. The oral tentacles of H. psittacea contain a coelomic canal and have distinct frontal and abfrontal longitudinal muscles, which are separated from each other by peritoneal cells. A similar structure of tentacle muscles occurs in all bryozoans, whereas in phoronids, the frontal and abfrontal tentacle muscles are not separated by peritoneal cells. We suggest that the lophophorates' ancestor had tentacles, which were similar to the tentacles of some phoronids with lophophore of simple morphology. We also assume that the structure of the oral tentacles is ancestral for all brachiopods and the specialization of brachiopod tentacles correlates with the appearance of the double row of tentacles.


Subject(s)
Bryozoa , Nerve Tissue , Animals , Invertebrates/anatomy & histology , Bryozoa/anatomy & histology , Muscles , Epithelium
7.
J Morphol ; 285(2): e21679, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329427

ABSTRACT

Bryozoan colonies consist of zooids, which can differ in structure and function. Most heteromorphic zooids are unable to feed and autozooids supply them with nutrients. The structure of the tissues providing nutrient transfer is poorly investigated. Here, I present a detailed description of the colonial system of integration (CSI) and communication pores in autozooids and avicularia of the cheilosome bryozoan Terminoflustra membranaceotruncata. The CSI is the nutrient transport and distribution system in the colony. In both autozooids and avicularia it consists of a single cell type, that is, elongated cells, and has a variable branching pattern, except for the presence of a peripheral cord. The general similarity in the CSI structure in avicularia and autozooids is probably due to the interzooidal type of the avicularium. Interzooidal avicularia are likely to consume only a part of the nutrients delivered to them by the CSI, and they transit the rest of the nutrients further. The variability and irregularity of branching pattern of the CSI may be explained by the presence of single communication pores and their varying number. The structure of communication pores is similar regardless of their location (in the transverse or lateral wall) and the type of zooid in contact. Rosette complexes include a cincture cell, a few special cells, and a few limiting cells. Along each zooidal wall, there are communication pores with both unidirectional and bidirectional polarity of special cells. However, the total number of nucleus-containing lobes of special cells is approximately the same on each side of any zooidal wall. Supposing the polarity of special cells reflects the direction of nutrient transport, the pattern of special cells polarity is probably related to the need for bidirectional transport through each zooidal wall. The possibility for such transport is important in large perennial colonies with wide zones of autozooids undergoing polypide degeneration.


Subject(s)
Bryozoa , Animals , Bryozoa/physiology
8.
Science ; 383(6685): 849-854, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38386756

ABSTRACT

Securines and securamines are cytotoxic alkaloids that contain reactive alkene and heterocyclic residues embedded in skeletons comprising four to six oxidized rings. This structural complexity imparts a rich chemistry to the isolates but has impeded synthetic access to the structures in the nearly three decades since their isolation. We present a flexible route to eight isolates that exemplify the three skeletal classes of metabolites. The route proceeds by the modular assembly of the advanced azides 38 and 49 (13 steps, 6 to 10% yield), sequential oxidative photocyclizations, and late-stage functional group manipulations. With this approach, the targets were obtained in 17 to 19 steps, 12 to 13 purifications, and 0.5 to 3.5% overall yield. The structure of an advanced intermediate was elucidated by microcrystal electron diffraction (MicroED) analysis. The route will support structure-function and target identification studies of the securamines.


Subject(s)
Alkaloids , Bryozoa , Alkaloids/chemical synthesis , Alkenes/chemistry , Azides/chemistry , Electrons , Animals , Catalysis , Oxidation-Reduction
9.
J Morphol ; 285(2): e21678, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361263

ABSTRACT

Ctenostome bryozoans are a small group of gymnolaemates comprising less than 400 recent species. They are paraphyletic and ctenostome-grade ancestors gave rise to Cheilostomata, the most dominant and speciose taxon of Bryozoa in the present day. Investigations into ctenostomes are important for reconstructing character evolution among Gymnolaemata. As a continuation of studies on a morphological series of ctenostome bryozoans, we herein investigate six species of hislopiids, a small clade of three genera occurring in freshwater habitats. The general morphology of all species is similar in having primarily uniserial chains of encrusting zooids, which are mostly oval to ellipsoid and have a flattened frontobasal axis. Hislopia prolixa and Echinella placoides often have more slender zooids with a higher frontobasal axis. Apertures of hislopiids are quadrangular, lined by a thickened cuticle. Apertural spines are present in various lengths in E. placoides, Hislopia lacustris and Hislopia corderoi. The remaining cuticle is rather thin except at lateral areas, close to the pore-plates which are prominent in hislopiids because of abundant special and limiting cells. All species except H. corderoi and Timwoodiellina natans have a prominent collar obstructing the vestibulum, whereas the latter two species instead have an 'external collar' as cuticular, outer folds projecting over the aperture. Hislopiid lophophores carry eight, or more commonly 12-18 tentacles. The digestive tract is distinguished by an often highly elongated esophagus and/or cardia, with the latter always having a prominent bulbous part in the form of a proventriculus-or gizzard in E. placoides. The caecum is extensive in all species. In Hislopia the intestine is characteristically two-chambered with a proximal and distal part before entering an anal tube of various length. The latter is present in all species except T. natans and terminates in mid-lophophoral area. Oocytes in E. placoides are large and macrolecithal indicating brooding and the production of lecithotrophic larvae. Hislopia species produce small, oligolecithal ones, which suggests zygote spawning and planktotrophy. In general, the morphology is similar among the different hislopiids with characters of the gut aiding in delineating the genera Echinella and Timwoodiellina.


Subject(s)
Bryozoa , Animals , Bryozoa/anatomy & histology , Anal Canal , Larva , Oocytes , Fresh Water
10.
PeerJ ; 12: e16969, 2024.
Article in English | MEDLINE | ID: mdl-38410796

ABSTRACT

Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.


Subject(s)
Bryozoa , Urochordata , Animals , Polymerase Chain Reaction/methods , Biological Monitoring , Seawater , Urochordata/genetics
11.
Mar Environ Res ; 193: 106255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976842

ABSTRACT

Coastal infrastructure replaces complex and heterogeneous natural habitats with flat, two-dimensional concrete walls, reducing refuges against predation, which modifies the composition and identity of the dominant species in sessile communities. This modification in the community structure can also change the reproductive propagules available in plankton, affecting the recruitment dynamics in communities from natural habitats nearby. Here, we tested the combined effects of the habitat type (simple vs. complex with holes) and predation on the diversity, larval production, and structure of sessile communities from a recreational marina. Complex substrates showed a larger biomass and a greater abundance of solitary organisms, mainly ascidians and bivalves, that benefited from refuges. Barnacles and calcified encrusting bryozoans dominated simple, flat substrates. The difference in dominance affected the pool of larvae produced by the communities. After eight months, communities growing on flat substrates produced more barnacle larvae than those from complex substrates, where larvae of ascidians were more abundant. However, this difference disappeared after 18 months of community development. The difference in the pool of larvae between simple and complex substrates did not affect the structure of the community on flat substrates nearby, which was determined by the predation regime. In the studied region, communities in artificial environments are under intense predation control, suppressing eventual recruitment differences in communities developing in flat substrates. Large interventions that modify habitat topography, creating refuges in the subtidal zone, can change the dynamic of the sessile communities in artificial habitats and, consequently, the larval supply in the vicinities. However, differences in larval supply will only translate in distinct sessile communities when the scale of intervention encompasses large areas, and other processes do not buffer the differences in recruitment.


Subject(s)
Bryozoa , Urochordata , Animals , Larva , Ecosystem , Biomass
12.
Mar Environ Res ; 193: 106256, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006852

ABSTRACT

Widespread habitat-forming invaders inhabiting marinas, such as the spaghetti bryozoan Amathia verticillata, allow exploring facilitation processes across spatiotemporal contexts. Here we investigate the role of this bryozoan as habitat for native and exotic macrofaunal assemblages across different ecoregions of Western Mediterranean and East Atlantic coasts, and a monthly variation over a year. While only 7 (all peracarid crustaceans) of the 54 associated species were NIS, they dominated macrofaunal assemblages in terms of abundance, raising the potential for invasional meltdown. NIS richness and community structure differed among marinas but not among ecoregions, highlighting the importance of marina singularities in modulating facilitation at spatial scale. Despite facilitation did not depend on bryozoan abundance fluctuations, it was affected by its deciduous pattern, peaking in summer and disappearing in late winter. Monitoring A. verticillata in marinas, especially in summer periods, may improve the detection and management of multiple associated NIS.


Subject(s)
Bryozoa , Animals , Introduced Species , Ecosystem , Crustacea , Food
13.
Mar Pollut Bull ; 199: 115938, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141584

ABSTRACT

Today, the world is increasingly concerned about marine litter and its interaction with marine biodiversity. However, knowledge concerning the fouling organisms associated with marine litter is very limited in many of the world's marine environments. In this survey, we investigated biofouling on different types of marine litter washed up on all the coasts of the central Atlantic of Morocco. The findings revealed 21 fouling species belonging to 9 phyla (Arthropoda, Mollusca, Echinodermata, Annelida, Bryozoa, Porifera, Chlorophyta, Ochrophyta, and Ascomycota). More specifically, frequently observed fouling species include Mytilus galloprovincialis, Balanus laevis, Megabalanus coccopoma, and Pollicipes pollicipes species. Large marine litter items recorded the highest colonization of marine organisms in comparison to small ones. The frequency of occurrence (FO) of the species most commonly fouled on all coasts was Perforatus perforatus (FO = 48.60), followed by Mytilus galloprovincialis (FO = 45.80), Balanus trigonus (FO = 32.05), Balanus laevis (FO = 30.25), Megabalanus coccopoma (FO = 25.25), Bryozoa species (FO = 19.40), Spirobranchus triqueter (FO = 18.18), Lepas pectinata (FO = 14.45), and Pollicipes pollicipes (FO = 13.05). The majority of the species registered in this study are sessile. Substrate coverage by fouling taxa was significantly different between plastic substrate and other types of marine litter. Likewise, this study revealed that the proportion of fouling organisms is higher on rough surfaces. Overall, this research could be crucial to understanding the little-known subject of marine litter and its colonization by marine biota. Given that these marine litters can act as vectors and cause ecological, biogeographical, and conservation issues in the marine environment, minimizing the quantity of anthropogenic litter reaching the Moroccan Atlantic could significantly reduce its accumulation on the sea surface and seabed, thereby reducing the risk of invasion by non-indigenous species.


Subject(s)
Biofouling , Bryozoa , Animals , Morocco , Plastics/chemistry , Biodiversity , Mollusca , Environmental Monitoring , Waste Products/analysis
14.
Proc Biol Sci ; 290(2010): 20231458, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37909081

ABSTRACT

Parental care is considered crucial for the enhanced survival of offspring and evolutionary success of many metazoan groups. Most bryozoans incubate their young in brood chambers or intracoelomically. Based on the drastic morphological differences in incubation chambers across members of the order Cheilostomatida (class Gymnolaemata), multiple origins of incubation were predicted in this group. This hypothesis was tested by constructing a molecular phylogeny based on mitogenome data and nuclear rRNA genes 18S and 28S with the most complete sampling of taxa with various incubation devices to date. Ancestral character estimation suggested that distinct types of brood chambers evolved at least 10 times in Cheilostomatida. In Eucratea loricata and Aetea spp. brooding evolved unambiguously from a zygote-spawning ancestral state, as it probably did in Tendra zostericola, Neocheilostomata, and 'Carbasea' indivisa. In two further instances, brooders with different incubation chamber types, skeletal and non-skeletal, formed clades (Scruparia spp., Leiosalpinx australis) and (Catenicula corbulifera (Steginoporella spp. (Labioporella spp., Thalamoporella californica))), each also probably evolved from a zygote-spawning ancestral state. The modular nature of bryozoans probably contributed to the evolution of such a diverse array of embryonic incubation chambers, which included complex constructions made of polymorphic heterozooids, and maternal zooidal invaginations and outgrowths.


Subject(s)
Bryozoa , Invertebrates , Animals , Phylogeny , Reproduction/genetics
15.
Mar Drugs ; 21(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37888459

ABSTRACT

Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.


Subject(s)
Anthozoa , Bryozoa , Scyphozoa , Seaweed , Animals , Arachis , Aquatic Organisms , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Shellfish
16.
Biofouling ; 39(7): 748-762, 2023.
Article in English | MEDLINE | ID: mdl-37791479

ABSTRACT

Bryozoans are commonly associated with various artificial structures in marine environments and have been responsible for several bioinvasion events worldwide. Understanding the interactions between bryozoans and artificial structures is therefore essential to prevent the establishment and spread of potential bioinvaders. This study investigated bryozoan recruitment on four different substrates (PET, nautical ropes, metal, and PVC) placed in three orientations (vertical, horizontal facing down and facing up) in an area of the Western Atlantic. In total, 15 species of bryozoans were found. The results revealed significant variations in assemblages' richness, with bryozoans showing a preference for settling on PVC (14 species found) and on the underside of horizontal substrates (15 species found), resulting in the higher representativity observed in this study. Cryptogenic (nine species) and exotic (five species) bryozoans dominated the assemblages in all treatments, indicating that the type of substrate (especially artificial) and its orientation can favor the settlement of bryozoans, particularly non-native species. Therefore, the availability of multiple types of artificial substrates in marine environments should be treated as a cause for concern.


Subject(s)
Biofilms , Bryozoa , Animals
17.
PeerJ ; 11: e16004, 2023.
Article in English | MEDLINE | ID: mdl-37701841

ABSTRACT

There is a lack of cost-effective, environmentally-friendly tools available to manage marine biofouling accumulation on static artificial structures such as drilling rigs, wind turbines, marine farms, and port and marina infrastructure. For there to be uptake and refinement of tools, emerging technologies need to be tested and proven at an operational scale. This study aimed to see whether biofouling accumulation could be suppressed on marine infrastructure under real-world conditions through the delivery of continuous bubble streams. Submerged surfaces of a floating marina pontoon were cleaned in-situ by divers, and the subsequent colonisation by biofouling organisms was monitored on treated (bubbles applied) and untreated sections. Continuous bubble streams proved highly effective (>95%) in controlling macrofouling accumulation on the underside surface of the marina pontoon for the first 2 months after deployment, but efficacy dropped off rapidly once bubble stream delivery was partially obscured due to biofouling accumulation on the diffuser itself. Although extensive macrofouling cover by mussels, bryozoans and hydroids was observed on treated surfaces by 4 months (27.5%, SE = 4.8%), biofouling % cover and diversity was significantly higher on untreated surfaces (79.6%, SE = 2.9%). While this study demonstrates that continuous bubble streams greatly restrict biofouling accumulation over short-to-medium timescales, improved system design, especially the incorporation of diffusers resistant to fouling, is needed for the approach to be considered a viable long-term option for biofouling management on static artificial structures.


Subject(s)
Biofouling , Bryozoa , Fabaceae , Animals , Biofouling/prevention & control , Biological Transport , Farms
18.
Mar Pollut Bull ; 195: 115469, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37703630

ABSTRACT

Increasing amount of anthropogenic litter in the marine environment has provided an enormous number of substrates for a wide range of marine organisms, thus serving as a potential vector for the transport of fouling organisms. Here, we examined the fouling organisms on different types of stranded litter (plastic, glass, rubber, foam sponge, cloth, metal and wood) on eight beaches along the southeast coast of India. In total, 17 encrusting species belonging to seven phyla (Arthropoda, Bryozoa, Mollusca, Annelida, Cnidaria, Chlorophyta and Foraminifera) were identified on 367 items, with one invasive species, the mussel Mytella strigata, detected. The most common species associated with marine litter were the cosmopolitan bryozoans Jellyella tuberculata (%O = 31.64 %) and J. eburnea (28.61 %), the barnacle species Lepas anserifera (29.97 %), Amphibalanus amphitrite (22.34 %) and Amphibalanus sp. (14.16 %), and the oyster species Saccostrea cucullata (13.62 %) and Magallana bilineata (5.44 %). We also reported the first records on stranded litter of four species: the gastropod species Pirenella cingulata and Umbonium vestiarium, the foraminiferan Ammonia beccarii, and the oyster M. bilineata. This study is thus the first documentation of marine litter as a vector for species dispersal in India, where the production and consumption of plastic rank among the highest in the world. We also highlight the increasing risk of invasions by non-indigenous organisms attached to debris along the southeast coast of India. Comprehensive monitoring efforts are thus needed to elucidate the type of vectors responsible for the arrival of invasive species in this region. Raising awareness and promoting education are vital components in fostering sustainable solutions to combat plastic pollution in the country and globally.


Subject(s)
Bryozoa , Ostreidae , Animals , Environmental Monitoring , Plastics/chemistry , Wood/chemistry , Textiles , Introduced Species , Waste Products/analysis , Bathing Beaches
19.
Sci Rep ; 13(1): 15516, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726371

ABSTRACT

Adverse event (AE) management is important to improve anti-cancer treatment outcomes, but it is known that some AE signals can be missed during clinical visits. In particular, AEs that affect patients' activities of daily living (ADL) need careful monitoring as they may require immediate medical intervention. This study aimed to build deep-learning (DL) models for extracting signals of AEs limiting ADL from patients' narratives. The data source was blog posts written in Japanese by breast cancer patients. After pre-processing and annotation for AE signals, three DL models (BERT, ELECTRA, and T5) were trained and tested in three different approaches for AE signal identification. The performances of the trained models were evaluated in terms of precision, recall, and F1 scores. From 2,272 blog posts, 191 and 702 articles were identified as describing AEs limiting ADL or not limiting ADL, respectively. Among tested DL modes and approaches, T5 showed the best F1 scores to identify articles with AE limiting ADL or all AE: 0.557 and 0.811, respectively. The most frequent AE signals were "pain or numbness", "fatigue" and "nausea". Our results suggest that this AE monitoring scheme focusing on patients' ADL has potential to reinforce current AE management provided by medical staff.


Subject(s)
Breast Neoplasms , Bryozoa , Humans , Animals , Female , Activities of Daily Living , Hypesthesia , Medical Staff
20.
J Morphol ; 284(9): e21620, 2023 09.
Article in English | MEDLINE | ID: mdl-37585229

ABSTRACT

Bryozoans are colonial, suspension-feeding lophotrochozoans. The phylum consists of the large group of chiefly marine Myolaemata and the exclusively limnic Phylactolaemata. Each colony consists of individual zooids that comprise the protective cystid and the retractable polypide. Phylactolaemates are a small group of approximately 90 species in 6 families. They feature a body wall, that can either be gelatinous, as in the families Stephanellidae, Lophopodidae, Cristatellidae and Pectinatellidae, or encrusted, as in Plumatellidae and Fredericellidae. Morphological investigations of the most specious plumatellids are rare and focus on few species. Plumatella fruticosa is of particular interest in this regard, as it shows a mosaic of plumatellid and fredericellids characters. The most recent phylogeny clusters P. fruticosa with cristatellids and pectinatellids as sister groups to fredericellids. Hence, there is considerable doubt, whether P. fruticosa is truly a plumatellid. Therefore, this study aims to reinvestigate the morphology of P. fruticosa with confocal microscopy and section-based three-dimensional reconstruction. The new data show that P. fruticosa has numerous conspicuous stumps from fragmented proliferation buds, which are otherwise only known from fredericellids. Like fredericellids, P. fruticosa grows erect, but in contrast, has a horseshoe-shaped lophophore and floatoblasts. Besides the proportions of the lophophore, the tentacle sheath and digestive tract resemble a fredericellid-like situation. Myoanatomical details like the pronounced longitudinal muscles of the vestibular wall and tentacle sheath differ from plumatellids and favour the recently proposed scenario, which places P. fruticosa next to Pectinatellidae and Cristatellidae. In addition, the intertentacular membrane of P. fruticosa shows structural similarity to cristatellids as it is attached to the tentacles via lamellae. Taking all aspects into account, we erect a new family: Hirosellidae fam. nov. including the new genus Hirosella gen. nov.


Subject(s)
Bryozoa , Phylogeny , Fresh Water , Bryozoa/anatomy & histology , Bryozoa/classification , Microscopy, Confocal , Species Specificity , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...