Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 291(7): 3411-22, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26677217

ABSTRACT

Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease.


Subject(s)
Antiviral Agents/pharmacology , Bunyamwera virus/drug effects , Bunyaviridae Infections/drug therapy , Host-Pathogen Interactions/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Virus Integration/drug effects , Aedes , Animals , Bunyamwera virus/growth & development , Bunyamwera virus/physiology , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Cell Line , Chlorocebus aethiops , Gene Expression Regulation, Bacterial/drug effects , Humans , Mesocricetus , Nairovirus/drug effects , Nairovirus/growth & development , Nairovirus/physiology , Orthobunyavirus/drug effects , Orthobunyavirus/growth & development , Orthobunyavirus/physiology , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Vero Cells
2.
Virology ; 281(1): 67-74, 2001 Mar 01.
Article in English | MEDLINE | ID: mdl-11222097

ABSTRACT

The small (S) genomic segment of Bunyamwera virus (family Bunyaviridae, genus Bunyavirus) encodes the nucleocapsid protein, N, and a nonstructural protein, NSs, in overlapping reading frames. In order to elucidate the function of NSs, we established a plasmid-based minireplicon system using mammalian cells that express large amounts of T7 RNA polymerase. Expression of N, the viral polymerase protein (L), and a minireplicon containing a reporter gene was sufficient to reconstitute functional virus nucleocapsids. Coexpression of NSs, however, led to a dose-dependent decrease in reporter activity without affecting expression of controls. The inhibition could not be reversed by overexpression of N, L or the minireplicon, indicating that the NSs effect was not caused by a reduction in virus gene expression. The NSs proteins of two other members of the Bunyavirus genus, Guaroa virus and Lumbo virus, were also inhibitory in our system. The intracellular localisation of Bunyamwera virus NSs was investigated and found to be predominantly cytoplasmic, but intranuclear inclusion was also detected. Taken together, these data suggest that, in mammalian cells, the bunyavirus NSs protein controls the activity of the viral polymerase by a highly conserved mechanism.


Subject(s)
Bunyamwera virus/genetics , Bunyamwera virus/physiology , RNA, Viral/biosynthesis , Replicon/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication , Amino Acid Sequence , Animals , Blotting, Western , Bunyamwera virus/drug effects , Bunyamwera virus/enzymology , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/virology , Cricetinae , Cytoplasm/metabolism , Cytoplasm/virology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Dose-Response Relationship, Drug , Fluorescent Antibody Technique , Genes, Reporter/genetics , Molecular Sequence Data , Nucleocapsid/biosynthesis , Nucleocapsid/genetics , Protein Transport , RNA, Viral/genetics , Replicon/drug effects , Sequence Alignment , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/pharmacology , Viral Proteins , Virus Replication/drug effects
3.
J Gen Virol ; 73 ( Pt 2): 407-11, 1992 Feb.
Article in English | MEDLINE | ID: mdl-1311362

ABSTRACT

The effect of cicloxolone sodium (CCX) on the replication of typical representatives of different virus families [adenovirus type 5 (Ad-5), reovirus type 3 (Reo-3), Bunyamwera and Germiston viruses, poliovirus type 1 (Polio-1) and Semliki Forest virus (SFV)] in tissue culture was investigated. The Golgi apparatus inhibitor monensin (Mon) and CCX were shown to have analogous effects on some aspects of virus replication. Although the Mon-like effect of CCX played no role in the antiviral activity against Ad-5, Reo-3 or Polio-1, it could entirely account for the antiviral activity against the Bunyamwera and Germiston viruses, for which inhibition of glycoprotein processing was responsible for the antiviral activity. In the case of SFV, the Mon-like activity of CCX caused cytoplasmic assembly of fully infectious SFV within vacuoles and thus impaired virus release without altering total infectious virus yield. Fewer Ad-5 and Reo-3 progeny were produced in the presence of the drug. CCX had a dose-dependent biphasic effect on the particle:p.f.u. ratio of the Reo-3 yield. At low CCX concentration (less than 50 microM) the virus yield contained poor quality, non-infectious virus, but at higher CCX concentration (greater than or equal to 100 microM) low quality virus could no longer be successfully assembled. We conclude that the antiviral effect can be manifested in three ways: (i) by a reduction in the virus particle yield produced; (ii) by a loss of quality (relative infectivity); (iii) by a virucidal effect of the drug. We have previously defined three CCX sensitivity classes. Mechanisms (i), (ii) and (iii) operate against viruses belonging to class CCXs-1 [herpes simplex virus (HSV) type 1, HSV-2 and vesicular stomatitis virus], but essentially only (i) and (ii) affect Reo-3 (CCXs-2), whereas (i) and possibly (iii) affect Ad-5 (CCXs-2). In the case of SFV (CCXs-3) none of these mechanisms operate, but relocation of assembled virus is found.


Subject(s)
Antiviral Agents/pharmacology , Carbenoxolone/analogs & derivatives , Virus Replication/drug effects , Adenoviridae/drug effects , Adenoviridae/physiology , Adenoviridae/ultrastructure , Animals , Bunyamwera virus/drug effects , Bunyamwera virus/physiology , Bunyamwera virus/ultrastructure , Carbenoxolone/pharmacology , Cell Line , Dose-Response Relationship, Drug , Golgi Apparatus/drug effects , HeLa Cells , Humans , Mammalian orthoreovirus 3/drug effects , Mammalian orthoreovirus 3/physiology , Mammalian orthoreovirus 3/ultrastructure , Microscopy, Electron , Monensin/pharmacology , Poliovirus/drug effects , Poliovirus/physiology , Poliovirus/ultrastructure , Semliki forest virus/drug effects , Semliki forest virus/physiology , Semliki forest virus/ultrastructure
4.
J Virol ; 37(1): 383-94, 1981 Jan.
Article in English | MEDLINE | ID: mdl-7218427

ABSTRACT

Seventy-seven temperature-sensitive (ts) mutants belonging to three antigenically distinct and geographically isolated members of the Bunyamwera complex--Batai virus, Bunyamwera virus, and Maguari virus--have been isolated after 5-fluorouracil treatment. High-frequency recombination was observed, and the mutants of each virus were classified into two groups, which were shown to be equivalent by heterologous recombination experiments. In most combinations heterologous recombination was less efficient than homologous recombination, but all crosses of group I and II mutants yielded viable recombinants. Recombination was an early event. Analysis by polyacrylamide gel electrophoresis of the proteins of the wild-type viruses and recombinant clones obtained from the six possible heterologous combinations of group I and II mutants indicated that recombination occurred by reassortment of genome subunits. Group I appeared to correspond to the genome subunit coding for the N protein, and group II corresponded to the G1/G2 determinant. The G1 (or G2 or both) protein was associated with neutralization specificity and plaque diameter, and the N protein was associated with plaque opacity. Complementation was observed between two nonrecombining mutants of Maguari virus belonging to group I, which may indicate that the N genome subunit codes for an additional protein. There appeared to be no genetic barrier to exchange of genetic material between Batai, Bunyamwera, and Maguari viruses in vitro, and it is concluded that the Bunyamwera complex is potentially a single gene pool if geographical and ecological constraints are discounted.


Subject(s)
Bunyamwera virus/genetics , Bunyaviridae/genetics , Mutation , Bunyamwera virus/classification , Bunyamwera virus/drug effects , Electrophoresis, Polyacrylamide Gel , Fluorouracil/pharmacology , Genetic Complementation Test , Recombination, Genetic , Temperature , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...