Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 609
Filter
1.
Arch Virol ; 169(6): 133, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829449

ABSTRACT

Akabane virus (AKAV), Aino virus, Peaton virus, Sathuperi virus, and Shamonda virus are arthropod-borne viruses belonging to the order Elliovirales, family Peribunyaviridae, genus Orthobunyavirus. These viruses cause or may cause congenital malformations in ruminants, including hydranencephaly, poliomyelitis, and arthrogryposis, although their pathogenicity may vary among field cases. AKAV may cause relatively severe congenital lesions such as hydranencephaly in calves. Furthermore, strains of AKAV genogroups I and II exhibit different disease courses. Genogroup I strains predominantly cause postnatal viral encephalomyelitis, while genogroup II strains are primarily detected in cases of congenital malformation. However, the biological properties of AKAV and other orthobunyaviruses are insufficiently investigated in hosts in the field and in vitro. Here, we used an immortalized bovine brain cell line (FBBC-1) to investigate viral replication efficiency, cytopathogenicity, and host innate immune responses. AKAV genogroup II and Shamonda virus replicated to higher titers in FBBC-1 cells compared with the other viruses, and only AKAV caused cytopathic effects. These results may be associated with the severe congenital lesions in the brain caused by AKAV genogroup II. AKAV genogroup II strains replicated to higher titers in FBBC-1 cells than AKAV genogroup I strains, suggesting that genogroup II strains replicated more efficiently in fetal brain cells, accounting for the detection of the latter strains mainly in fetal infection cases. Therefore, FBBC-1 cells may serve as a valuable tool for investigating the virulence and tropism of the orthobunyaviruses for bovine neonatal brain tissues in vitro.


Subject(s)
Brain , Bunyaviridae Infections , Orthobunyavirus , Virus Replication , Animals , Cattle , Orthobunyavirus/pathogenicity , Orthobunyavirus/genetics , Orthobunyavirus/physiology , Orthobunyavirus/classification , Brain/virology , Brain/pathology , Cell Line , Bunyaviridae Infections/virology , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/pathology , Cattle Diseases/virology , Fetus/virology , Cytopathogenic Effect, Viral , Immunity, Innate
2.
BMC Vet Res ; 20(1): 183, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720324

ABSTRACT

BACKGROUND: Pigs are susceptible to several ruminant pathogens, including Coxiella burnetti, Schmallenberg virus (SBV) and bovine viral diarrhea virus (BVDV). These pathogens have already been described in the pig population, although the dynamics of the infection and the impact on pig farms are currently unclear. The aim of this work was to evaluate the presence of these infections in the pig population of the Campania region, southern Italy, and to evaluate the risk factors associated with a greater risk of exposure. RESULTS: A total of 414 serum samples belonging to 32 herds were tested for the presence of antibodies against SBV, Coxiella, and BVD using commercial multispecies ELISA kits. SBV (5.3%) was the most prevalent pathogen, followed by Coxiella (4.1%) and BVD (3%). The risk factors included in the study (age, sex, province, farming system, ruminant density and major ruminant species) had no influence on the probability of being exposed to BVD and Coxiella, except for the location, in fact more pigs seropositive to Coxiella were found in the province of Caserta. However, the univariate analysis highlighted the influence of age, location, and sex on exposure to SBV. The subsequent multivariate analysis statistically confirmed the importance of these factors. The presence of neutralizing antibodies for SBV and BVDV, or antibodies directed towards a specific phase of infection for Coxiella was further confirmed with virus-neutralization assays and phase-specific ELISAs in a large proportion of positive samples. The presence of high neutralizing antibody titers (especially for SBV) could indicate recent exposures. Twelve of the 17 positive samples tested positive for antibodies against Coxiella phase I or II antigens, indicating the presence of both acute and chronic infections (one animal tested positive for both phases antibodies). CONCLUSIONS: Our study indicates a non-negligible exposure of pigs from southern Italy to the above pathogens. Further studies are necessary to fully understand the dynamics of these infections in pigs, the impact on productivity, and the public health consequences in the case of Coxiella.


Subject(s)
Antibodies, Viral , Q Fever , Swine Diseases , Animals , Italy/epidemiology , Seroepidemiologic Studies , Swine , Risk Factors , Swine Diseases/epidemiology , Swine Diseases/microbiology , Swine Diseases/virology , Q Fever/epidemiology , Q Fever/veterinary , Female , Male , Antibodies, Viral/blood , Diarrhea Viruses, Bovine Viral/immunology , Antibodies, Bacterial/blood , Orthobunyavirus/immunology , Orthobunyavirus/isolation & purification , Coxiella burnetii/immunology , Coxiella burnetii/isolation & purification , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Pseudorabies/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary
6.
Viruses ; 16(2)2024 02 15.
Article in English | MEDLINE | ID: mdl-38400069

ABSTRACT

Orthobunyaviruses (order Bunyavirales, family Peribunyaviridae) in the Simbu serogroup have been responsible for widespread epidemics of congenital disease in ruminants. Australia has a national program to monitor arboviruses of veterinary importance. While monitoring for Akabane virus, a novel orthobunyavirus was detected. To inform the priority that should be given to this detection, a scoping review was undertaken to (1) characterise the associated disease presentations and establish which of the Simbu group viruses are of veterinary importance; (2) examine the diagnostic assays that have undergone development and validation for this group of viruses; and (3) describe the methods used to monitor the distribution of these viruses. Two search strategies identified 224 peer-reviewed publications for 33 viruses in the serogroup. Viruses in this group may cause severe animal health impacts, but only those phylogenetically arranged in clade B are associated with animal disease. Six viruses (Akabane, Schmallenberg, Aino, Shuni, Peaton, and Shamonda) were associated with congenital malformations, neurological signs, and reproductive disease. Diagnostic test interpretation is complicated by cross-reactivity, the timing of foetal immunocompetence, and sample type. Serological testing in surveys remains a mainstay of the methods used to monitor the distribution of SGVs. Given significant differences in survey designs, only broad mean seroprevalence estimates could be provided. Further research is required to determine the disease risk posed by novel orthobunyaviruses and how they could challenge current diagnostic and surveillance capabilities.


Subject(s)
Bunyaviridae Infections , Cattle Diseases , Orthobunyavirus , Simbu virus , Cattle , Animals , Livestock , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Seroepidemiologic Studies , Serogroup , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Diagnostic Tests, Routine
7.
Vector Borne Zoonotic Dis ; 24(5): 249-264, 2024 May.
Article in English | MEDLINE | ID: mdl-38206763

ABSTRACT

Background: Mosquito-borne orthobunyaviruses in Canada are a growing public health concern. Orthobunyaviral diseases are commonly underdiagnosed and in Canada, likely underreported as surveillance is passive. No vaccines or specific treatments exist for these disease agents. Further, climate change is facilitating habitat expansion for relevant reservoirs and vectors, and it is likely that the majority of the Canadian population is susceptible to these viruses. Methods: A scoping review was conducted to describe the current state of knowledge on orthobunyavirus epidemiology in Canada. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guideline was used. Literature searches were conducted in six databases and in gray literature. The epidemiology of orthobunyaviruses was characterized for studies focusing on host species, including spatiotemporal patterns, risk factors, and climate change impact. Results: A total of 172 relevant studies were identified from 1734 citations from which 95 addressed host species, including humans, wildlife, and domestic animals including livestock. The orthobunyaviruses-Cache Valley virus (CVV), Jamestown Canyon virus (JCV), Snowshoe Hare virus (SHV), and La Crosse virus (LACV)-were identified, and prevalence was widespread across vertebrate species. CVV, JCV, and SHV were detected across Canada and the United States. LACV was reported only in the United States, predominantly the Mid-Atlantic and Appalachian regions. Disease varied by orthobunyavirus and was associated with age, environment, preexisting compromised immune systems, or livestock breeding schedule. Conclusion: Knowledge gaps included seroprevalence data in Canada, risk factor analyses, particularly for livestock, and disease projections in the context of climate change. Additional surveillance and mitigation strategies, especially accounting for climate change, are needed to guide future public health efforts to prevent orthobunyavirus exposure and disease.


Subject(s)
Animals, Wild , Orthobunyavirus , Animals , Animals, Wild/virology , Canada/epidemiology , Humans , Orthobunyavirus/isolation & purification , Animals, Domestic/virology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , Bunyaviridae Infections/veterinary
8.
J Vet Med Sci ; 86(2): 211-220, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38171741

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a potentially fatal tick-borne zoonotic disease, endemic to Asian regions, including western Japan. Cats appear to suffer a particularly severe form of the disease; however, feline SFTS is not clinically well characterized. Accordingly, in this study, we investigated the associations of, demographic, hematological and biochemical, immunological, and virological parameters with clinical outcome (fatal cases vs. survivors) in SFTSV-positive cats. Viral genomic analysis was also performed. Viral load in blood, total bilirubin, creatine phosphokinase, serum amyloid A, interleukin-6, tumor necrotic factor-α, and virus-specific IgM and IgG differed significantly between survivors and fatal cases, and thus may have utility as prognosticators. Furthermore, survivor profiling revealed high-level of viremia with multiple parameters (white blood cells, platelet, total bilirubin, glucose, and serum amyloid A) beyond the reference range in the 7-day acute phase, and signs of clinical recovery in the post-acute phase (parameters returning to, or tending toward, the reference range). However, SFTSV was still detectable from some survived cats even 14 days after onset of disease, indicating the risk of infection posed by close-contact exposure may persist through the post-acute phase. This study provides useful information for prognostic assessments of acute feline SFTS, and may contribute to early treatment plans for cats with SFTS. Our findings also alert pet owners and animal health professionals to the need for prolonged vigilance against animal-to-human transmission when handling cats that have been diagnosed with SFTS.


Subject(s)
Bunyaviridae Infections , Cat Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Tick-Borne Diseases , Animals , Humans , Cats , Severe Fever with Thrombocytopenia Syndrome/veterinary , Prognosis , Phlebovirus/genetics , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/epidemiology , Serum Amyloid A Protein , Tick-Borne Diseases/veterinary , Bilirubin
9.
Vet Res Commun ; 48(1): 449-457, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37831381

ABSTRACT

Akabane virus (AKAV) is known as a major teratogenic agent of ruminant fetuses. In this study, we investigated the relationship between porcine abnormal deliveries and AKAV by serology, pathology, and virology investigations using specimens from 16 stillborn fetuses delivered in southern Japan between 2013 and 2015. The major clinical manifestations in stillborn fetuses were hydranencephaly, arthrogryposis, spinal curvature, and both skeletal muscle and subcutaneous edema. Histologic examination of the specimens identified atrophy of skeletal muscle fibers accompanied by adipose replacement. Nonsuppurative encephalomyelitis and decreased neuronal density in the ventral horn of the spinal cord were shown in two separate fetuses, respectively. Neutralizing antibody titers to AKAV were detected in most of the tested fetuses (13/16). The AKAV sequences detected in the affected fetuses in 2013 and 2015 were highly identical and closely related to Japanese AKAV isolates which were isolated in 2013 and sorted into genogroup I of AKAV. Immunohistochemistry visualized AKAV antigens in the neuronal cells of the central nervous system of the fetuses. These findings indicate that AKAV was involved in the birth of abnormal piglets at the affected farm. The clinical manifestations and histopathological features in the stillborn fetuses were very similar to those in ruminant neonates affected by AKAV. To avoid misdiagnosis and to evaluate the precise impact of AKAV on pig reproduction, AKAV should be considered in differential diagnoses of reproductive failures in pigs.


Subject(s)
Bunyaviridae Infections , Orthobunyavirus , Swine Diseases , Animals , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/pathology , Fetus/pathology , Japan/epidemiology , Ruminants , Swine , Swine Diseases/diagnosis
10.
Ticks Tick Borne Dis ; 15(1): 102277, 2024 01.
Article in English | MEDLINE | ID: mdl-37981467

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerged tick-borne viral zoonosis and widely prevalent in China, Japan and South Korea. Most reported SFTS cases have been identified in mountainous and hilly areas, with a few in island areas. In this study, we conducted a systematic investigation about natural infection of SFTS virus (SFTSV) among humans, animals and ticks in a coastal endemic prefecture, containing island, plains and mountain settings, in Zhejiang Province, Southeastern China. From July 2020 to June 2021, 1117 participants completed a survey with questionnaire interview and serum testing. Meanwhile, 862 serum samples of domestic animals, 275 spleen tissue samples of wild animals and 829 ticks representing five species (predominantly Haemaphysalis longicornis and Rhipicephalus sanguineus sensu lato) were collected. The seroprevalence of anti-SFTSV total antibody and IgM antibody among the participants was 4.8 % (54/1117) and 0.6 % (7/1117), respectively. Multivariate logistic regression analysis indicated that living in the island area (OR=2.66; 95 %CI: 1.04-6.80; P = 0.041) was significantly associated with seropositivity of total antibody to SFTSV. Furthermore, a higher seroprevalence was observed in domestic animals (36.1 %), while the SFTSV-RNA infection rate was 0.4 % in wild animals and the minimum infection rate (MIR) was 0.8 % for all tick species combined. The only tick species infected with SFTSV was H. longicornis. The prevalence of SFTSV infection in the island area, manifested by anti-SFTSV total antibody (P = 0.012) and IgM antibody (P = 0.004) among humans, anti-SFTSV total antibody (P<0.001) among domestic animals, and SFTSV-RNA among ticks (P = 0.022), was significantly higher than that in the mountainous area and the plain area. Furthermore, phylogenetic analysis showed that SFTSV sequences obtained from ticks in the island area were clustered with reported strains in Japan and South Korea. These results suggest that islands in the study area might be an important natural focus of SFTSV.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Rhipicephalus sanguineus , Severe Fever with Thrombocytopenia Syndrome , Animals , Humans , Phylogeny , Seroepidemiologic Studies , Phlebovirus/genetics , Animals, Domestic , Animals, Wild , China/epidemiology , RNA , Rhipicephalus sanguineus/genetics , Immunoglobulin M , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary
11.
J Vet Med Sci ; 86(2): 228-238, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38143087

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease caused by a tick-borne virus called severe fever with thrombocytopenia syndrome virus (SFTSV). In recent years, human infections through contact with ticks and through contact with the bodily fluids of infected dogs and cats have been reported; however, no vaccine is currently available. SFTSV has two glycoproteins (Gn and Gc) on its envelope, which are vaccine-target antigens involved in immunogenicity. In the present study, we constructed novel SFTS vaccine candidates using an adeno-associated virus (AAV) vector to transport the SFTSV glycoprotein genome. AAV vectors are widely used in gene therapy and their safety has been confirmed in clinical trials. Recently, AAV vectors have been used to develop influenza and SARS-CoV-2 vaccines. Two types of vaccines (AAV9-SFTSV Gn and AAV9-SFTSV Gc) carrying SFTSV Gn and Gc genes were produced. The expression of Gn and Gc proteins in HEK293T cells was confirmed by infection with vaccines. These vaccines were inoculated into mice, and the collected sera produced anti-SFTS antibodies. Furthermore, sera from AAV9-SFTSV Gn infected mice showed a potent neutralizing ability, similar to previously reported SFTS vaccine candidates that protected animals from SFTSV infection. These findings suggest that this vaccine is a promising candidate for a new SFTS vaccine.


Subject(s)
Bunyaviridae Infections , Cat Diseases , Dog Diseases , Phlebovirus , Rodent Diseases , Severe Fever with Thrombocytopenia Syndrome , Thrombocytopenia , Animals , Humans , Cats , Mice , Dogs , Severe Fever with Thrombocytopenia Syndrome/veterinary , Dependovirus/genetics , Dependovirus/metabolism , Phlebovirus/genetics , Bunyaviridae Infections/veterinary , COVID-19 Vaccines , HEK293 Cells , Glycoproteins , Thrombocytopenia/veterinary
12.
Arch Virol ; 169(1): 7, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082138

ABSTRACT

Akabane virus (AKAV) is a member of the genus Orthobunyavirus, family Peribunyaviridae. In addition to AKAV strains that cause fetal Akabane disease, which is characterized by abortion in ruminants, some AKAV strains cause postnatal infection characterized by nonsuppurative encephalomyelitis in ruminants. Here, we focused on the NSs protein, a virulence factor for most viruses belonging to the genus Orthobunyavirus, and we hypothesized that this protein would act as a neurovirulence factor in AKAV strains causing postnatal encephalomyelitis. We generated AKAV strains that were unable to produce the NSs protein, derived from two different genogroups, genogroups I and II, and then examined the role of their NSs proteins by inoculating mice intracerebrally with these modified viruses. Our results revealed that the neurovirulence of genogroup II strains is dependent on the NSs protein, whereas that of genogroup I strains is independent of this protein. Notably, infection of primary cultured bovine cells with these viruses suggested that the NSs proteins of both genogroups suppress innate immune-related gene expression with equal efficiency. These results indicate differences in the determinants of virulence of orthobunyaviruses.


Subject(s)
Bunyaviridae Infections , Encephalomyelitis , Orthobunyavirus , Pregnancy , Female , Cattle , Animals , Mice , Bunyaviridae Infections/veterinary , Orthobunyavirus/genetics , Genotype , Ruminants
13.
Viruses ; 15(12)2023 11 28.
Article in English | MEDLINE | ID: mdl-38140579

ABSTRACT

Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by the SFTS Virus (SFTSV), is a global health threat. SFTSV in Taiwan has only been reported in ruminants and wild animals. Thus, we aimed to investigate the infection statuses of dogs and cats, the animals with closer human interactions. Overall, the SFTSV RNA prevalence was 23% (170/735), with dogs showing a 25.9% (111/429) prevalence and cats at 19.3% (59/306) prevalence. Noticeably, the prevalence in stray animals (39.8% 77/193) was significantly higher than in domesticated ones (17.2%, 93/542). Among the four categories analyzed, the highest SFTSV prevalence was found in the stray dogs at 53.9% (120/193), significantly higher than the 24.2% prevalence noted in stray cats. In contrast, domesticated animals exhibited similar prevalence rates, with 17.1% for dogs and 17.2% for cats. It is noteworthy that in the domesticated animal groups, a significantly elevated prevalence (45%, 9/20) was observed among cats exhibiting thrombocytopenia compared to those platelet counts in the reference range (4.8%, 1/21). The high infection rate in stray animals, especially stray dogs, indicated that exposure to various outdoor environments influences the prevalence of infections. Given the higher human interaction with dogs and cats, there is a need for proactive measures to reduce the risk associated with the infection of SFTSV in both animals and humans.


Subject(s)
Bunyaviridae Infections , Cat Diseases , Dog Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Cats , Humans , Dogs , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Taiwan/epidemiology , Cat Diseases/epidemiology , Dog Diseases/epidemiology , Phlebovirus/genetics , Animals, Wild , Animals, Domestic
14.
Viruses ; 15(12)2023 12 11.
Article in English | MEDLINE | ID: mdl-38140644

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne zoonotic disease caused by the SFTS virus (SFTSV). In Thailand, three human cases of SFTS were reported in 2019 and 2020, but there was no report of SFTSV infection in animals. Our study revealed that at least 16.6% of dogs in Thailand were seropositive for SFTSV infection, and the SFTSV-positive dogs were found in several districts in Thailand. Additionally, more than 70% of the serum samples collected at one shelter possessed virus-neutralization antibodies against SFTSV and the near-complete genome sequences of the SFTSV were determined from one dog in the shelter. The dog SFTSV was genetically close to those from Thailand and Chinese patients and belonged to genotype J3. These results indicated that SFTSV has already spread among animals in Thailand.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Tick-Borne Diseases , Animals , Humans , Dogs , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Seroepidemiologic Studies , Thailand/epidemiology , Antibodies, Viral , Phlebovirus/genetics
15.
Viruses ; 15(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005905

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infection caused by the SFTS virus (SFTSV), with a high fatality rate of approximately 30% in humans. In recent years, cases of contact infection with SFTSV via bodily fluids of infected dogs and cats have been reported. In this study, clinical and virological analyses were performed in two dogs in which SFTSV infection was confirmed for the first time in the Toyama prefecture. Both dogs recovered; however, one was severely ill and the other mildly ill. The amount of the SFTSV gene was reduced to almost similar levels in both dogs. In the dogs' sera, the SFTSV gene was detected at a low level but fell below the detection limit approximately 2 weeks after onset. Notably, the SFTSV gene was detected at levels several thousand times higher in urine than in other specimens from both dogs. Furthermore, the gene was detected in the urine for a long period of >2 months. The clinical signs disappeared on days 1 or 6 after onset, but infectious SFTSV was detected in the urine up to 3 weeks later. Therefore, it is necessary to be careful about contact with bodily fluids, especially urine, even after symptoms have disappeared.


Subject(s)
Bunyaviridae Infections , Cat Diseases , Dog Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Humans , Animals , Dogs , Cats , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Severe Fever with Thrombocytopenia Syndrome/veterinary , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/veterinary , Dog Diseases/diagnosis , Phlebovirus/genetics
16.
J Vet Med Sci ; 85(12): 1324-1326, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37926512

ABSTRACT

Sathuperi virus (SATV) and Shamonda virus (SHAV) (family Peribunyaviridae, genus Orthobunyavirus, species Schmallenberg orthobunyavirus) have been suggested to cause congenital abnormalities in ruminants. In this study, we determined the complete genome sequences of SATV KSB-6/C/02 and SHAV KSB-2/C/08 strains, which were obtained from Culicoides biting midges in Japan, by next-generation sequencing and Sanger sequencing. The 3'- and 5'-untranslated region sequences of the M segment of SHAV KSB-2/C/08 strains are distinctly different from those of SATV KSB-6/C/02 and Schmallenberg viruses. This study provides the genome characterization of Japanese strains of SATV and SHAV and presented the genetic variation in the untranslated regions of Schmallenberg orthobunyavirus M segments.


Subject(s)
Bunyaviridae Infections , Orthobunyavirus , Animals , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Japan
18.
Vector Borne Zoonotic Dis ; 23(12): 662-669, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37788402

ABSTRACT

Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by Dabie bandavirus, which belongs to the genus Bandavirus, family Phenuiviridae, and order Bunyavirales. It has been found in tick species, various animals, and humans. The aim of this study was to detect RNA of antigens and antibodies against SFTS virus (SFTSV) among poultry such as chickens, ducks, and wild geese from five provinces in the Republic of Korea (ROK). Materials and Methods: A one-step reverse transcriptase (RT)-PCR and nested PCR were performed after viral RNA extraction. The phylogenetic tree was constructed after sequencing data were analyzed and aligned. An indirect enzyme-linked immunosorbent assay (ELISA) and a neutralization test (NT) were performed to test for IgG antibodies of SFTSV. Results: Of a total of 606 poultry serum samples collected, 568 and 539 serum samples were used to perform ELISA and NT, respectively. Of a total of 606 serum samples tested by RT-PCR targeting the S segment, 15 (2.5%) were positive for SFTSV. From the 15 positive serum samples for the SFTSV antigen, three from chickens, three from ducks, and one from wild geese were classified as genotype B-2; one from chickens was classified as genotype B-3; and three from chickens and four from wild geese were classified as genotype D. Of the 568 serum samples tested by ELISA, 83 (28.0%) from chickens, 81 (32.9%) from ducks, and 8 (30.8%) from wild geese were seropositive. Of the 539 serum samples for which an NT was performed, 113 (38.6%) from chickens and 75 (30.5%) from ducks were positive for SFTSV antibodies. Conclusions: The results of this study provide useful information regarding detection of SFTSV RNA and antibodies among poultry and the possibility of SFTSV transmission in various types of poultry, including chickens, ducks, and wild geese, in the ROK.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Humans , Animals , Severe Fever with Thrombocytopenia Syndrome/veterinary , Poultry/genetics , Prevalence , Phylogeny , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Chickens , Phlebovirus/genetics , Ducks , RNA, Viral/genetics , Republic of Korea/epidemiology
19.
J Med Entomol ; 60(6): 1230-1241, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37862064

ABSTRACT

Cache Valley virus (CVV) is a mosquito-borne virus in the genus Orthobunyavirus (Bunyavirales: Peribunyaviridae) that has been identified as a teratogen in ruminants causing fetal death and severe malformations during epizootics in the U.S. CVV has recently emerged as a viral pathogen causing severe disease in humans. Despite its emergence as a public health and agricultural concern, CVV has yet to be significantly studied by the scientific community. Limited information exists on CVV's geographic distribution, ecological cycle, seroprevalence in humans and animals, and spectrum of disease, including its potential as a human teratogen. Here, we present what is known of CVV's virology, ecology, and clinical disease in ruminants and humans. We discuss the current diagnostic techniques available and highlight gaps in our current knowledge and considerations for future research.


Subject(s)
Arboviruses , Bunyamwera virus , Bunyaviridae Infections , Humans , Animals , Seroepidemiologic Studies , Teratogens , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Ruminants , Sheep
20.
Vector Borne Zoonotic Dis ; 23(11): 595-603, 2023 11.
Article in English | MEDLINE | ID: mdl-37682292

ABSTRACT

Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging zoonotic tick-borne disease in East Asia caused by the SFTS virus (SFTSV). It is to investigate the presence of SFTSV RNA and antibodies in horses from a slaughterhouse and equestrian centers in the Republic of Korea (ROK). A prevalence study of SFTSV-specific RNA and antibodies was designed from 889 horses in the ROK. Materials and Methods: Serum samples were collected from horses at a slaughterhouse and equestrian centers from 2018 to 2020. To detect the presence of SFTSV, RNA was extracted from the serum samples, and a nested reverse transcription-polymerase chain reaction (RT-PCR) was conducted. Sequencing data were analyzed, and a phylogenetic tree was constructed using the maximum-likelihood method with Molecular Evolutionary Genetics Analysis Version 7.0 software. The horse sera were also tested for SFTSV-specific immunoglobulin G antibodies using enzyme-linked immunosorbent assay (ELISA). Results: Twelve of 889 (1.3%) horse sera were positive for SFTSV RNA, and 452 of 887 (51.0%) horse sera were seropositive by ELISA. Among the RT-PCR-positive samples, 12 of the SFTSV S-segment sequences were classified as sub-genotypes B-2 (n = 6) and B-3 (n = 6). ELISA analysis was evaluated by comparison with neutralization test. We investigated SFTSV infection in horses over a 3-year period, but sampling was not performed evenly by season; continuous surveillance of SFTSV in horses is needed. Conclusions: We report the detection of SFTSV RNA and provide serological data on SFTSV prevalence in horses in the ROK. The detection of SFTSV-specific RNA and antibodies in horses, which are in close proximity to humans, suggests that SFTS is an emerging and important health issue, indicating that more attention to its relevance for equestrian workers is needed.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Horses , Humans , Animals , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Phylogeny , Phlebovirus/genetics , Republic of Korea/epidemiology , RNA, Viral/genetics , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...