Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 13745, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215802

ABSTRACT

Tomato (Solanum lycopersicum L.) is an important vegetable cultivated around the world. Under field conditions, tomato can be negatively affected by water scarcity in arid and semiarid regions. The application of native plant growth-promoting rhizobacteria (PGPR) isolated from arid environments has been proposed as an inoculant to mitigate abiotic stresses in plants. In this study, we evaluated rhizobacteria from Cistanthe longiscapa (syn Calandrinia litoralis and Calandrinia longiscapa), a representative native plant of flowering desert (FD) events (Atacama Desert, Chile), to determine their ability to reduce water scarcity stress on tomato seedlings. The isolated bacterial strains were characterized with respect to their PGPR traits, including P solubilization, 1-aminocyclopropane-1-carboxylate deaminase activity, and tryptophan-induced auxin and exopolysaccharide production. Three PGPR consortia were formulated with isolated Bacillus strains and then applied to tomato seeds, and then, the seedlings were exposed to different levels of water limitations. In general, tomato seeds and seedlings inoculated with the PGPR consortia presented significantly (P ≤ 0.05) greater plant growth (48 to 60 cm of height and 171 to 214 g of weight) and recovery rates (88 to 100%) compared with those without inoculation (37 to 51 cm of height; 146 to 197 g of fresh weight; 54 to 92% of recovery) after exposure to a lack of irrigation over different time intervals (24, 72 and 120 h) before transplantation. Our results revealed the effectiveness of the formulated PGPR consortia from FD to improve the performance of inoculated seeds and seedlings subjected to water scarcity; thus, the use of these consortia can represent an alternative approach for farmers facing drought events and water scarcity associated with climate change in semiarid and arid regions worldwide.


Subject(s)
Burkholderiales/metabolism , Plant Development , Seedlings/growth & development , Solanum lycopersicum/growth & development , Burkholderiales/growth & development , Chile , Droughts , Germination/physiology , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Plant Roots/microbiology , Seeds/growth & development , Soil Microbiology , Water Insecurity
2.
Arch Microbiol ; 203(6): 3183-3189, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33825935

ABSTRACT

A yellow-colored bacterial strain, designated S2T was isolated from soil in South Korea. Cells of strain S2T were strictly aerobic, Gram-stain-negative, motile with single polar flagellum, rod-shaped, oxidase and catalase-negative. Growth occurs at 10-37 °C (optimum, 28 °C), pH 5.0-9.0 (optimum, pH 6.5-7.0) and 0-3% NaCl (w/v). Strain S2T consisted of summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c), C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as major fatty acids. The sole respiratory quinone was Q-8. The polar lipid profile consisted of phosphatidylethanolamine and an unidentified lipid. The 16S rRNA gene sequence analysis showed that strain S2T is phylogenetically closest to Aquabacterium pictum W35T (98.4% sequence similarity). The genome of strain S2T was 8,039,486 bp with 56 scaffolds. The genome consisted of 10 putative biosynthetic gene clusters that are responsible for various secondary metabolites. Genomic DNA G + C content of strain S2T was 69.4%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain S2T and phylogenetically related taxa were ≤ 77.9 and ≤ 21.4%, and respectively. The results of genotypic and phenotypic data showed that strain S2T could be distinguished from its phylogenetically related species and represents a novel species in the genus Aquabacterium, for which the name Aquabacterium terrae sp. nov. is proposed. The type strain is S2T (= KCTC 72741 T = NBRC 114609 T).


Subject(s)
Burkholderiales , Phylogeny , Burkholderiales/classification , Burkholderiales/genetics , Burkholderiales/growth & development , Fatty Acids/analysis , Genome, Bacterial/genetics , Phospholipids/analysis , RNA, Ribosomal, 16S/genetics , Republic of Korea , Soil Microbiology , Species Specificity
3.
Microb Genom ; 6(10)2020 10.
Article in English | MEDLINE | ID: mdl-33034553

ABSTRACT

Thiomonas bacteria are ubiquitous at acid mine drainage sites and play key roles in the remediation of water at these locations by oxidizing arsenite to arsenate, favouring the sorption of arsenic by iron oxides and their coprecipitation. Understanding the adaptive capacities of these bacteria is crucial to revealing how they persist and remain active in such extreme conditions. Interestingly, it was previously observed that after exposure to arsenite, when grown in a biofilm, some strains of Thiomonas bacteria develop variants that are more resistant to arsenic. Here, we identified the mechanisms involved in the emergence of such variants in biofilms. We found that the percentage of variants generated increased in the presence of high concentrations of arsenite (5.33 mM), especially in the detached cells after growth under biofilm-forming conditions. Analysis of gene expression in the parent strain CB2 revealed that genes involved in DNA repair were upregulated in the conditions where variants were observed. Finally, we assessed the phenotypes and genomes of the subsequent variants generated to evaluate the number of mutations compared to the parent strain. We determined that multiple point mutations accumulated after exposure to arsenite when cells were grown under biofilm conditions. Some of these mutations were found in what is referred to as ICE19, a genomic island (GI) carrying arsenic-resistance genes, also harbouring characteristics of an integrative and conjugative element (ICE). The mutations likely favoured the excision and duplication of this GI. This research aids in understanding how Thiomonas bacteria adapt to highly toxic environments, and, more generally, provides a window to bacterial genome evolution in extreme environments.


Subject(s)
Arsenites/metabolism , Biofilms/growth & development , Burkholderiales , Genome, Bacterial/genetics , Adaptation, Physiological/genetics , Arsenates/metabolism , Arsenic/metabolism , Burkholderiales/genetics , Burkholderiales/growth & development , Burkholderiales/metabolism , DNA Repair/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Gene Expression Profiling , Genetic Variation/genetics , Genomic Islands/genetics , Mining , Whole Genome Sequencing
4.
Environ Microbiol Rep ; 12(5): 578-582, 2020 10.
Article in English | MEDLINE | ID: mdl-32783383

ABSTRACT

Ideonella sakaiensis produces an enzyme, PETase, that is capable of hydrolyzing polyethylene terephthalate (PET) plastic. We demonstrate that although I. sakaiensis can grow on amorphous plastic, it does not grow on highly crystalline plastic under otherwise identical conditions. Both amorphous film and amorphous plastic obtained from commercial food containers support the growth of the bacteria, whereas highly crystalline film and the highly crystalline body of a plastic water bottle do not support growth. Highly crystalline PET can be melted and rapidly cooled to make amorphous plastic which then supports bacterial growth, whereas the same plastic can be melted and slowly cooled to make crystalline plastic which does not support growth. We further subject a plastic water bottle to a top-to-bottom analysis, finding that only amorphous sections are degraded, namely the finish (threading), the topmost portion of the shoulder which connects to the finish, and the area immediately surrounding the centre of the base. Finally, we use these results to estimate that the percentage of non-degradable plastic in plastic water bottles ranges from 52% to 82% (depending on size), demonstrating that most of the plastic found in PET water bottles will not be degraded by I. sakaiensis.


Subject(s)
Bacterial Proteins/metabolism , Burkholderiales/enzymology , Burkholderiales/growth & development , Polyethylene Terephthalates/metabolism , Bacterial Proteins/genetics , Biodegradation, Environmental , Burkholderiales/genetics , Burkholderiales/metabolism , Plastics/chemistry , Plastics/metabolism , Polyethylene Terephthalates/chemistry
5.
NPJ Biofilms Microbiomes ; 6(1): 20, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350263

ABSTRACT

The perplexity of the complex multispecies community interactions is one of the many reasons why majority of the microorganisms are still uncultivated. We analyzed the entire co-occurrence networks between the OTUs of Tibet and Yunnan hot spring samples, and found that less abundant OTUs such as genus Tepidimonas (relative abundant <1%) had high-degree centricity (key nodes), while dominant OTUs particularly genus Chloroflexus (relative abundant, 13.9%) formed the peripheral vertexes. A preliminary growth-promotion assay determined that Tepidimonas sp. strain SYSU G00190W enhanced the growth of Chloroflexus sp. SYSU G00190R. Exploiting this result, an ameliorated isolation medium containing 10% spent-culture supernatant of Tepidimonas sp. strain SYSU G00190W was prepared for targeted isolation of Chloroflexi in the Tibet and Yunnan hot spring samples. 16S rRNA gene fingerprinting characterized majority of the colonies isolated from these media as previously uncultivated Chloroflexi, of which 36 are potential novel species (16S rRNA sequence identity <98.5%). Metabolomes studies indicated that the spent-culture supernatant comprises several low-molecular-weight organic substrates that can be utilized as potential nutrients for the growth of these bacteria. These findings suggested that limited knowledge on the interaction of microbes provide threshold to traditional isolation method.


Subject(s)
Burkholderiales/isolation & purification , Chloroflexi/isolation & purification , Hot Springs/microbiology , Bacteriological Techniques , Burkholderiales/growth & development , China , Chloroflexi/genetics , Chloroflexi/growth & development , Culture Media/chemistry , DNA Fingerprinting , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics
6.
Chemosphere ; 240: 124908, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31726596

ABSTRACT

Organosilicon compounds are the most undesirable compounds for the energy recovery of biogas. These compounds are still resistant to biodegradation when biotechnologies are considered for biogas purification. Herein we isolated 52 bacterial species from anaerobic batch enrichment cultures (BEC) saturated with D4 and from an anaerobic lab-scale biotrickling filter (BTF) fed with a gas flow containing D4 as unique carbon source. Among those Methylibium sp. and Pseudomonas aeruginosa showed the highest capacity to remove D4 (53.04% ±â€¯0.03 and 24.42% ±â€¯0.02, respectively). Contrarily, co-culture evaluation treatment for the biodegradation of siloxanes together with volatile organic compounds removed a lower concentration of D4 compared to toluene and limonene, which were completely removed. Remarkably, the siloxane D5 proved to be more biodegradable than D4. Substrates removal values achieved by Methylibium sp. suggested that this bacterial isolate could be used in biological removal technologies of siloxanes.


Subject(s)
Biofuels/analysis , Bioreactors/microbiology , Burkholderiales/growth & development , Organosilicon Compounds/analysis , Volatile Organic Compounds/analysis , Anaerobiosis , Biodegradation, Environmental , Water Purification/methods
7.
Biotechnol Lett ; 41(6-7): 813-822, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31069568

ABSTRACT

OBJECTIVE: To explore the secondary metabolite biosynthetic potential of Rubrivivax benzoatilyticus JA2 using a new metabolite mining strategy. RESULTS: Combination of precursor-feeding and altered growth conditions were used to mine new biomolecules. Strain JA2 utilised L-phenylalanine as sole source of nitrogen and showed pigments production only under phenylalanine-amended aerobic cultures. Stable isotope based precursor feeding studies indicated the blue pigment consists of 4-phenyl rings derived from L-phenylalanine. The purified blue pigment displayed characteristic visible-absorption and pH-dependent color variations. Precursor-feeding under altered growth conditions activated the plausible novel aromatic pigment production in strain JA2. CONCLUSION: Our approach unraveled the previously unknown pigment synthesis in strain JA2 and demonstrated the potential of mining strategy in discovering the hidden secondary metabolite repertoire in microorganisms.


Subject(s)
Burkholderiales/growth & development , Burkholderiales/metabolism , Pigments, Biological/biosynthesis , Aerobiosis , Bacteriological Techniques , Nitrogen/metabolism , Phenylalanine/metabolism , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification
8.
J Proteomics ; 194: 49-59, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30597313

ABSTRACT

Anoxygenic photosynthetic bacteria thrive under diverse habitats utilising an extended range of inorganic/organic compounds under different growth modes. Although they display incredible metabolic flexibility, their responses and adaptations to changing carbon regimes is largely unexplored. In the present study, we employed iTRAQ-based global proteomic profiling and physiological studies to uncover the adaptive strategies of a phototrophic bacterium, Rubrivivax benzoatilyticus JA2 to glucose. Strain JA2 displayed altered growth rates, reduced cell size and progressive loss of pigmentation when grown on glucose compared to malate under photoheterotrophic condition. A ten-fold increase in the saturated to unsaturated fatty acid ratio of glucose-grown cells indicates a possible membrane adaptation. Proteomic profiling revealed extensive metabolic remodelling in the glucose-grown cells wherein signal-transduction, selective-transcription, DNA-repair, transport and protein quality control processes were up-regulated to cope with the changing milieu. Proteins involved in DNA replication, translation, electron-transport, photosynthetic machinery were down-regulated possibly to conserve the energy. Glycolysis/gluconeogenesis, TCA cycle and pigment biosynthesis were also down-regulated. The cell has activated alternative energy metabolic pathways viz., fatty acid ß-oxidation, glyoxylate, acetate-switch and Entner-Doudoroff pathways. Overall, the present study deciphered the molecular/metabolic events associated with glucose-grown cells of strain JA2 and also unraveled how a carbon source modulates the metabolic phenotypes. SIGNIFICANCE: Anoxygenic photosynthetic bacteria (APB) exhibit incredible metabolic flexibility leading to diverse phenotypes. They thrive under diverse habitat using an array of inorganic/organic compounds as carbon sources, yet their metabolic adaptation to varying carbon regime is mostly unexplored. Present study uncovered the proteomic insights of the cellular responses of strain JA2 to changing carbon sources viz. malate and glucose under photoheterotrophic conditions. Our study suggests that carbon source can also determine the metabolic fate of the cells and reshape the energy dynamics of APB. Here, for the first time study highlighted the plausible carbon source (glucose) mediated regulation of photosynthesis in APB. The study sheds light on the plausible cellular events and adaptive metabolic strategies employed by strain JA2 in presence of non-preferred carbon source. It also revealed new insights into the metabolic plasticity of APB to the changing milieu.


Subject(s)
Burkholderiales/growth & development , Gene Expression Regulation, Bacterial/drug effects , Glucose/pharmacology , Metabolic Networks and Pathways/drug effects , Proteomics , Signal Transduction/drug effects
9.
Eur Biophys J ; 47(2): 139-149, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28685171

ABSTRACT

In response to environmental changes, the photosynthetic bacterium Rubrivivax gelatinosus (Rvx.) can switch from a planktonic lifestyle to a phototrophic biofilm. Like in critical phenomena, the colonization and sedimentation of the cells is abrupt and hard to predict causally, and the underlying biophysics of the mechanisms involved is not known. Herein, we report basic experimental observations and quantitative explanations as keys to understanding microbial turnover of aggregates. (1) The moment of sedimentation can be controlled by the height of the tube of cultivation, by the concentrations of externally added Ficoll (a highly branched polymer) and/or of internally produced polysaccharides (constituents of the biofilm). (2) The observed translational diffusion coefficient of the planktonic bacteria is the sum of diffusion coefficients coming from random Brownian and twitching movements of the bacteria and amounts to 14 (µm)2/s. (3) This value drops hyperbolically with the association number of the cell aggregates and with the concentration of the exopolysaccharides in the biofilm. In the experiments described herein, their effects could be separated. (4) The critical conditions of colonization and sinking of the cells will be achieved if the height of the tube meets the scale height that is proportional to the ratio of the diffusion coefficient and the net mass of the bacterium. The decisive role of the web-like structure of a biofilm, the organization of bacteria from loose cooperativity to solid aggregation, and the possible importance of similar controls in other phototrophic microorganisms are discussed.


Subject(s)
Biofilms/growth & development , Burkholderiales/physiology , Photosynthesis , Burkholderiales/cytology , Burkholderiales/growth & development , Burkholderiales/metabolism , Culture Techniques , Diffusion , Extracellular Space/metabolism , Polysaccharides, Bacterial/metabolism
10.
J R Soc Interface ; 14(137)2017 12.
Article in English | MEDLINE | ID: mdl-29263125

ABSTRACT

Microbial communities are accompanied by a diverse array of viruses. Through infections of abundant microbes, these viruses have the potential to mediate competition within the community, effectively weakening competitive interactions and promoting coexistence. This is of particular relevance for host-associated microbial communities, because the diversity of the microbiota has been linked to host health and functioning. Here, we study the interaction between two key members of the microbiota of the freshwater metazoan Hydra vulgaris The two commensal bacteria Curvibacter sp. and Duganella sp. protect their host from fungal infections, but only if both of them are present. Coexistence of the two bacteria is thus beneficial for Hydra Intriguingly, Duganella sp. appears to be the superior competitor in vitro due to its higher growth rate when both bacteria are grown separately, but in co-culture the outcome of competition depends on the relative initial abundances of the two species. The presence of an inducible prophage in the Curvibacter sp. genome, which is able to lytically infect Duganella sp., led us to hypothesize that the phage modulates the interaction between these two key members of the Hydra microbiota. Using a mathematical model, we show that the interplay of the lysogenic life cycle of the Curvibacter phage and the lytic life cycle on Duganella sp. can explain the observed complex competitive interaction between the two bacteria. Our results highlight the importance of taking lysogeny into account for understanding microbe-virus interactions and show the complex role phages can play in promoting coexistence of their bacterial hosts.


Subject(s)
Burkholderiales/virology , Hydra/microbiology , Microbiota , Animals , Burkholderiales/growth & development , Burkholderiales/physiology , Lysogeny , Models, Biological , Prophages
SELECTION OF CITATIONS
SEARCH DETAIL
...