Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.917
Filter
1.
Sci Rep ; 14(1): 12899, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839853

ABSTRACT

While volatile organic compounds (VOCs) impair various organs, their influence on hearing loss (HL) has not been extensively researched. We aimed to identify the association between VOCs and HL or high-frequency hearing loss (HFHL). We extracted data on age, sex, pure tone audiometry, hypertension, occupational noise exposure, and creatinine-corrected urine VOC metabolite concentrations from the eighth Korea National Health and Nutrition Survey. Among the VOC metabolites, N-acetyl-S-(benzyl)-L-cysteine (BMA, P = 0.004), N-acetyl-S-(phenyl)-L-cysteine (SPMA, P = 0.027), and N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA, P < 0.001) showed associations with HL. Additionally, HFHL exhibited significant associations with BMA (P = 0.005), 3- and 4-methylhippuric acid (3, 4 MHA, P = 0.049), mandelic acid (MA, P = 0.015), SPMA (P < 0.001), N-acetyl-S-(3-hydroxypropyl)-L-cysteine (3-HPMA, P < 0.001), and DHBMA (P < 0.001). After controlling other factors, DHBMA were associated with HL (P = 0.021) and HFHL (P = 0.014) and exhibited a linear association with the mean hearing level (ß = 0.054, P = 0.024) and high-frequency hearing level (ß = 0.045, P = 0.037). Since 1,3-butadiene may act as an ototoxic material, early screening for workers exposed to 1,3-butadiene and reducing exposure to 1,3-butadiene in everyday life may be helpful to prevent further HL.


Subject(s)
Butadienes , Hearing Loss , Volatile Organic Compounds , Humans , Female , Male , Middle Aged , Hearing Loss/chemically induced , Hearing Loss/etiology , Volatile Organic Compounds/urine , Volatile Organic Compounds/adverse effects , Republic of Korea/epidemiology , Adult , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Aged , Nutrition Surveys , Audiometry, Pure-Tone
2.
PLoS One ; 19(5): e0302398, 2024.
Article in English | MEDLINE | ID: mdl-38748648

ABSTRACT

Latex clearing proteins (Lcps) catalyze the oxidative cleavage of the C = C bonds in cis-1,4-polyisoprene (natural rubber), producing oligomeric compounds that can be repurposed to other materials. The active catalytic site of Lcps is buried inside the protein structure, thus raising the question of how the large hydrophobic rubber chains can access the catalytic center. To improve our understanding of hydrophobic polymeric substrate binding to Lcps and subsequent catalysis, we investigated the interaction of a substrate model containing ten carbon-carbon double bonds with the structurally characterized LcpK30, using multiple computational tools. Prediction of the putative tunnels and cavities in the LcpK30 structure, using CAVER-Pymol plugin 3.0.3, fpocket and Molecular Dynamic (MD) simulations provided valuable insights on how substrate enters from the surface to the buried active site. Two dominant tunnels were discovered that provided feasible routes for substrate binding, and the presence of two hydrophobic pockets was predicted near the heme cofactor. The larger of these pockets is likely to accommodate the substrate and to determine the size distribution of the oligomers. Protein-ligand docking was carried out using GOLD software to predict the conformations and interactions of the substrate within the protein active site. Deeper insight into the protein-substrate interactions, including close-contacts, binding energies and potential cleavage sites in the cis-1,4-polyisoprene, were obtained from MD simulations. Our findings provide further justification that the protein-substrate complexation in LcpK30 is mainly driven by the hydrophobic interactions accompanied by mutual conformational changes of both molecules. Two potential binding modes were identified, with the substrate in either extended or folded conformations. Whilst binding in the extended conformation was most favorable, the folded conformation suggested a preference for cleavage of a central double bond, leading to a preference for oligomers with 5 to 6 C = C bonds. The results provide insight into further enzyme engineering studies to improve catalytic activity and diversify the substrate and product scope of Lcps.


Subject(s)
Hemiterpenes , Latex , Molecular Dynamics Simulation , Protein Binding , Hemiterpenes/metabolism , Hemiterpenes/chemistry , Latex/chemistry , Latex/metabolism , Molecular Docking Simulation , Plant Proteins/metabolism , Plant Proteins/chemistry , Catalytic Domain , Hydrophobic and Hydrophilic Interactions , Binding Sites , Butadienes/chemistry , Butadienes/metabolism
3.
Sci Rep ; 14(1): 12311, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811652

ABSTRACT

The leaves of many trees emit volatile organic compounds (abbreviated as BVOCs), which protect them from various damages, such as herbivory, pathogens, and heat stress. For example, isoprene is highly volatile and is known to enhance the resistance to heat stress. In this study, we analyze the optimal seasonal schedule for producing isoprene in leaves to mitigate damage. We assume that photosynthetic rate, heat stress, and the stress-suppressing effect of isoprene may vary throughout the season. We seek the seasonal schedule of isoprene production that maximizes the total net photosynthesis using Pontryagin's maximum principle. The isoprene production rate is determined by the changing balance between the cost and benefit of enhanced leaf protection over time. If heat stress peaks in midsummer, isoprene production can reach its highest levels during the summer. However, if a large portion of leaves is lost due to heat stress in a short period, the optimal schedule involves peaking isoprene production after the peak of heat stress. Both high photosynthetic rate and high isoprene volatility in midsummer make the peak of isoprene production in spring. These results can be clearly understood by distinguishing immediate impacts and the impacts of future expectations.


Subject(s)
Butadienes , Hemiterpenes , Photosynthesis , Plant Leaves , Seasons , Volatile Organic Compounds , Butadienes/metabolism , Butadienes/analysis , Hemiterpenes/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Plant Leaves/metabolism , Trees/metabolism , Heat-Shock Response , Pentanes/metabolism , Pentanes/analysis
4.
Int J Biol Macromol ; 270(Pt 1): 132405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754661

ABSTRACT

Eucommia ulmoides rubber (EUR) is a high-quality natural rubber resource, which can be extracted from different organs of the Eucommia ulmoides tree. In this study, EUR was isolated from the leaves, barks, and pericarps, and the structural characteristics and physicochemical properties of EUR were systematically determined. The accumulation and distribution of EUR in different tissues were assessed through in situ observations combined with cellular and subcellular scales. The preliminary analyses indicated that the variations in the physicochemical properties of EUR across different tissues were associated with its accumulation microstructure. Further analyses by SEM and TEM showed that the initial cell differentiation and fusion resulted in the formation of tubular structures without any nucleus. A limited number of rubber particles were generated within the cytoplasm, concurrent with aggregation and fusion. Eventually, rubber particles filled the entire cytoplasm, and organelles disappeared to form highly aggregated filamentous structures. In addition, the number and area of EUR-containing cells were closely related to the organization sizes of barks and leaves. This study provided valuable insights into Eucommia ulmoides histology and the rubber industry.


Subject(s)
Eucommiaceae , Hemiterpenes , Rubber , Eucommiaceae/chemistry , Hemiterpenes/chemistry , Rubber/chemistry , Rubber/metabolism , Plant Leaves/chemistry , Plant Bark/chemistry , Butadienes/metabolism , Butadienes/chemistry
5.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673766

ABSTRACT

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.


Subject(s)
Erythritol , Erythritol/analogs & derivatives , Populus , Sugar Phosphates , Transferases , Populus/genetics , Populus/metabolism , Populus/enzymology , Erythritol/metabolism , Sugar Phosphates/metabolism , Transferases/metabolism , Transferases/genetics , Hemiterpenes/metabolism , Butadienes/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Pentanes/metabolism , Plants, Genetically Modified
6.
Sci Total Environ ; 928: 172512, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38636853

ABSTRACT

Volatile organic compounds (VOCs) are ubiquitous in both indoor and outdoor environments. Evidence on the associations of individual and joint VOC exposure with all-cause and cause-specific mortality is limited. Measurements of 15 urinary VOC metabolites were available to estimate exposure to 12 VOCs in the National Health and Nutritional Examination Survey (NHANES) 2005-2006 and 2011-2018. The environment risk score (ERS) was calculated using LASSO regression to reflect joint exposure to VOCs. Follow-up data on death were obtained from the NHANES Public-Use Linked Mortality File through December 31, 2019. Cox proportional hazard models and restricted cubic spline models were applied to evaluate the associations of individual and joint VOC exposures with all-cause and cause-specific mortality. Population attributable fractions were calculated to assess the death burden attributable to VOC exposure. During a median follow-up of 6.17 years, 734 (8.34 %) deaths occurred among 8799 adults. Urinary metabolites of acrolein, acrylonitrile, 1,3-butadiene, and ethylbenzene/styrene were significantly associated with all-cause, cardiovascular disease (CVD), respiratory disease (RD), and cancer mortality in a linear dose-response manner. Linear and robust dose-response relationships were also observed between ERS and all-cause and cause-specific mortality. Each 1-unit increase in ERS was associated with a 33.6 %, 39.1 %, 109.8 %, and 67.8 % increase for all-cause, CVD, RD, and cancer mortality risk, respectively. Moreover, joint exposure to VOCs contributed to 17.95 % of all-cause deaths, 13.49 % of CVD deaths, 35.65 % of RD deaths, and 33.85 % of cancer deaths. Individual and joint exposure to VOCs may enhance the risk of all-cause and cause-specific mortality. Reducing exposure to VOCs may alleviate the all-cause and cause-specific death burden.


Subject(s)
Air Pollutants , Benzene Derivatives , Environmental Exposure , Volatile Organic Compounds , Humans , Prospective Studies , Male , United States/epidemiology , Adult , Environmental Exposure/statistics & numerical data , Female , Middle Aged , Air Pollutants/analysis , Nutrition Surveys , Cardiovascular Diseases/mortality , Butadienes , Neoplasms/mortality , Respiratory Tract Diseases/mortality , Mortality
7.
Sci Rep ; 14(1): 9440, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658799

ABSTRACT

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Subject(s)
Melanins , Pteridines , Ribosomal Protein S6 Kinases, 90-kDa , Signal Transduction , alpha-MSH , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Melanins/biosynthesis , Melanins/metabolism , Animals , alpha-MSH/metabolism , alpha-MSH/pharmacology , Mice , Cell Line, Tumor , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Ultraviolet Rays , Morpholines/pharmacology , Chromones/pharmacology , Nitriles/pharmacology , Butadienes/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Melanoma, Experimental/metabolism , Melanogenesis
8.
Sci Total Environ ; 930: 172669, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38677435

ABSTRACT

Isoprenoids (including isoprene (ISO) and monoterpenes (MTs)) are the majority of biogenic volatile organic compounds (BVOCs) which are important carbon-containing secondary metabolites biosynthesized by organisms, especially plant in terrestrial ecosystem. Results of the warming effects on isoprenoid emissions vary within species and warming facilities, and thus conclusions remain controversial. In this study, two typical subtropical tree species seedlings of Schima superba and Cunninghamia lanceolata were cultivated under three conditions, namely no warming (CK) and two warming facilities (with infrared radiators (IR) and heating wires (HW)) in open top chamber (OTC), and the isoprenoid emissions were measured with preconcentor-GC-MS system after warming for one, two and four months. The results showed that the isoprenoid emissions from S. superba and C. lanceolata exhibited uniformity in response to two warming facilities. IR and HW both stimulated isoprenoid emissions in two plants after one month of treatment, with increased ratios of 16.3 % and 72.5 % for S. superba, and 2.47 and 5.96 times for C. lanceolata. However, the emissions were suppressed after four months, with more pronounced effect for HW. The variation in isoprenoid emissions was primarily associated with the levels of Pn, Tr, monoterpene synthase (MTPS) activity. C. lanceolata predominantly released MTs (mainly α-pinene, α-terpene, γ-terpene, and limonene), with 39.7 % to 99.6 % of the total isoprenoid but ISO was only a very minor constituent. For S. superba, MTs constituted 24.7 % to 96.1 % of total isoprenoid. It is noteworthy that HW generated a greater disturbance to physiology activity in plants. Our study provided more comprehensive and more convincing support for integrating temperature-elevation experiments of different ecosystems and assessing response and adaptation of forest carbon cycle to global warming.


Subject(s)
Cunninghamia , Terpenes , Terpenes/metabolism , Terpenes/analysis , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Global Warming , Asteraceae/metabolism , Asteraceae/physiology , Hot Temperature , Hemiterpenes , Butadienes
9.
Reprod Biol ; 24(2): 100883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643607

ABSTRACT

Fibroblast growth factor 10 (FGF10) plays critical roles in oocyte maturation and embryonic development; however, the specific pathway by which FGF10 promotes in vitro maturation of buffalo oocytes remains elusive. The present study was aimed at investigating the mechanism underlying effects of the FGF10-mediated extracellular regulated protein kinases (ERK) pathway on oocyte maturation and embryonic development in vitro. MEK1/2 (mitogen-activated protein kinase kinase) inhibitor U0126, alone or in combination with FGF10, was added to the maturation culture medium during maturation of the cumulus oocyte complex. Morphological observations, orcein staining, apoptosis detection, and quantitative real-time PCR were performed to evaluate oocyte maturation, embryonic development, and gene expression. U0126 affected oocyte maturation and embryonic development in vitro by substantially reducing the nuclear maturation of oocytes and expansion of the cumulus while increasing the apoptosis of cumulus cells. However, it did not have a considerable effect on glucose metabolism. These findings suggest that blocking the MEK/ERK pathway is detrimental to the maturation and embryonic development potential of buffalo oocytes. Overall, FGF10 may regulate the nuclear maturation of oocytes and cumulus cell expansion and apoptosis but not glucose metabolism through the MEK/ERK pathway. Our findings indicate that FGF10 regulates resumption of meiosis and expansion and survival of cumulus cells via MEK/ERK signaling during in vitro maturation of buffalo cumulus oocyte complexes. Elucidation of the mechanism of action of FGF10 and insights into oocyte maturation should advance buffalo breeding. Further studies should examine whether enhancement of MEK/ERK signaling improves embryonic development in buffalo.


Subject(s)
Buffaloes , Butadienes , Fibroblast Growth Factor 10 , In Vitro Oocyte Maturation Techniques , Nitriles , Oocytes , Animals , Buffaloes/embryology , Fibroblast Growth Factor 10/pharmacology , Butadienes/pharmacology , Oocytes/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , Nitriles/pharmacology , Female , Oogenesis/drug effects , Cumulus Cells/drug effects , Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Embryonic Development/drug effects , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism
10.
J Breath Res ; 18(3)2024 05 07.
Article in English | MEDLINE | ID: mdl-38663377

ABSTRACT

In the breath research community's search for volatile organic compounds that can act as non-invasive biomarkers for various diseases, hundreds of endogenous volatiles have been discovered. Whilst these systemic chemicals result from normal and abnormal metabolic activities or pathological disorders, to date very few are of any use for the development of clinical breath tests that could be used for disease diagnosis or to monitor therapeutic treatments. The reasons for this lack of application are manifold and complex, and these complications either limit or ultimately inhibit the analytical application of endogenous volatiles for use in the medical sciences. One such complication is a lack of knowledge on the biological origins of the endogenous volatiles. A major exception to this is isoprene. Since 1984, i.e. for 40 years, it has been generally accepted that the pathway to the production of human isoprene, and hence the origin of isoprene in exhaled breath, is through cholesterol biosynthesis via the mevalonate (MVA) pathway within the liver. However, various studies between 2001 and 2012 provide compelling evidence that human isoprene is produced in skeletal muscle tissue. A recent multi-omic investigation of genes and metabolites has revealed that this proposal is correct by showing that human isoprene predominantly results from muscular lipolytic cholesterol metabolism. Despite the overwhelming proof for a muscular pathway to isoprene production in the human body, breath research papers still reference the hepatic MVA pathway. The major aim of this perspective is to review the evidence that leads to a correct interpretation for the origins of human isoprene, so that the major pathway to human isoprene production is understood and appropriately disseminated. This is important, because an accurate attribution to the endogenous origins of isoprene is needed if exhaled isoprene levels are to be correctly interpreted and for assessing isoprene as a clinical biomarker.


Subject(s)
Breath Tests , Butadienes , Hemiterpenes , Pentanes , Humans , Hemiterpenes/analysis , Butadienes/analysis , Pentanes/analysis , Breath Tests/methods , Exhalation , Mevalonic Acid/metabolism , Cholesterol/metabolism , Cholesterol/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
11.
J Cell Mol Med ; 28(8): 1-11, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526036

ABSTRACT

Dysregulated angiogenesis leads to neovascularization, which can promote or exacerbate various diseases. Previous studies have proved that NEDD4L plays an important role in hypertension and atherosclerosis. Hence, we hypothesized that NEDD4L may be a critical regulator of endothelial cell (EC) function. This study aimed to define the role of NEDD4L in regulating EC angiogenesis and elucidate their underlying mechanisms. Loss- and gain-of-function of NEDD4L detected the angiogenesis and mobility role in human umbilical vein endothelial cells (HUVECs) using Matrigel tube formation assay, cell proliferation and migration. Pharmacological pathway inhibitors and western blot were used to determine the underlying mechanism of NEDD4L-regulated endothelial functions. Knockdown of NEDD4L suppressed tube formation, cell proliferation and cell migration in HUVECs, whereas NEDD4L overexpression promoted these functions. Moreover, NEDD4L-regulated angiogenesis and cell progression are associated with the phosphorylation of Akt, Erk1/2 and eNOS and the expression of VEGFR2 and cyclin D1 and D3. Mechanically, further evidence was confirmed by using Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Overexpression NEDD4L-promoted angiogenesis, cell migration and cell proliferation were restrained by these inhibitors. In addition, overexpression NEDD4L-promoted cell cycle-related proteins cyclin D1 and D3 were also suppressed by Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Our results demonstrated a novel finding that NEDD4L promotes angiogenesis and cell progression by regulating the Akt/Erk/eNOS pathways.


Subject(s)
Butadienes , Cyclin D1 , Nitriles , Signal Transduction , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Cyclin D1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , NG-Nitroarginine Methyl Ester , Angiogenesis , Neovascularization, Physiologic/genetics , Cell Proliferation , Cell Movement/genetics
12.
ACS Sens ; 9(3): 1575-1583, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38483350

ABSTRACT

Monitoring of isoprene in exhaled breath is expected to provide a noninvasive and painless method for dynamic monitoring of physiological and metabolic states during exercise. However, for real-time and portable detection of isoprene, gas sensors have become the best choice for gas detection technology, which are crucial to achieving the goal of anytime, anywhere, human-centered healthcare in the future. Here, we first report a mixed potential type isoprene sensor based on a Gd2Zr2O7 solid electrolyte and a CdSb2O6 sensing electrode, which enables sensitive detection for isoprene with sensitivities of -21.2 mV/ppm and -65.8 mV/decade in the range of 0.05-1 and 1-100 ppm. The sensing behavior of the sensor follows the mixed potential sensing mechanism and was further verified by the electrochemical polarization curves. The significant differentiation between the sensor response to exhaled breath of healthy individuals and simulated breath containing different concentrations of isoprene demonstrates the potential of the sensor for the detection of isoprene in exhaled breath. Simultaneously, monitoring of isoprene during exercise signifies the feasibility of the sensor in dynamic monitoring of physiological indicators, which is not only of great significance for optimizing training and guiding therapeutic exercise intervention in sporting scenarios but also expected to help further reveal the interaction between exercise, muscle, and organ metabolism in medicine.


Subject(s)
Breath Tests , Gases , Hemiterpenes , Humans , Breath Tests/methods , Butadienes , Biomarkers
13.
Sci Total Environ ; 926: 171928, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38531457

ABSTRACT

Styrene butadiene rubber is one of the main constituents of tire tread. During tire life, the tread material undergoes different stresses that impact its structure and chemical composition. Wear particles are then released into the environment as weathered material. To understand their fate, it is important to start with a better characterization of abiotic and biotic degradation of the elastomer material. A multi-disciplinary approach was implemented to study the photo- and thermo- degradation of non-vulcanized SBR films containing 15 w% styrene as well as their potential biodegradation by Rhodoccocus ruber and Gordonia polyisoprenivorans bacterial strains. Each ageing process leads to crosslinking reactions, much surface oxidation of the films and the production of hundreds of short chain compounds. These degradation products present a high level of unsaturation and oxidation and can be released into water to become potential substrates for microorganisms. Both strains were able to degrade from 0.2 to 1.2 % (% ThOD) of the aged SBR film after 30-day incubation while no biodegradation was observed on the pristine material. A 25-75 % decrease in the signal intensity of water extractable compounds was observed, suggesting that biomass production was linked to the consumption of low-molecular-weight degradation products. These results evidence the positive impact of abiotic degradation on the biodegradation process of styrene butadiene rubber.


Subject(s)
Butadienes , Elastomers , Rubber , Styrenes , Styrene , Water
14.
Anal Chim Acta ; 1301: 342468, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553125

ABSTRACT

BACKGROUND: Acetone, isoprene, and other volatile organic compounds (VOCs) in exhaled breath have been shown to be biomarkers for many medical conditions. Researchers use different techniques for VOC detection, including solid phase microextraction (SPME), to preconcentrate volatile analytes prior to instrumental analysis by gas chromatography-mass spectrometry (GC-MS). These techniques include a previously developed method to detect VOCs in breath directly using SPME, but it is uncommon for studies to quantify exhaled volatiles because it can be time consuming due to the need of many external/internal standards, and there is no standardized or widely accepted method. The objective of this study was to develop an accessible method to quantify acetone and isoprene in breath by SPME GC-MS. RESULTS: A system was developed to mimic human exhalation and expose VOCs to a SPME fiber in the gas phase at known concentrations. VOCs were bubbled/diluted with dry air at a fixed flow rate, duration, and volume that was comparable to a previously developed breath sampling method. Identification of acetone and isoprene through GC-MS was verified using standards and observing overlaps in chromatographic retention/mass spectral fragmentation. Calibration curves were developed for these two analytes, which showed a high degree of linear correlation. Acetone and isoprene displayed limits of detection/quantification equal to 12 ppb/37 ppb and 73 ppb/222 ppb respectively. Quantification results in healthy breath samples (n = 15) showed acetone concentrations spanned between 71 ppb and 294 ppb, and isoprene varied between 170 ppb and 990 ppb. Both concentration ranges for acetone and isoprene in this study overlap with those reported in existing literature. SIGNIFICANCE: Results indicate the development of a system to quantify acetone and isoprene in breath that can be adapted to diverse sampling methods and instrumental analyses beyond SPME GC-MS.


Subject(s)
Butadienes , Hemiterpenes , Solid Phase Microextraction , Volatile Organic Compounds , Humans , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Acetone/analysis , Exhalation , Breath Tests/methods , Volatile Organic Compounds/analysis
15.
FEBS Lett ; 598(8): 945-955, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472156

ABSTRACT

TG-interacting factor 1 (TGIF1) contributes to the differentiation of murine white preadipocyte and human adipose tissue-derived stem cells; however, its regulation is not well elucidated. Insulin is a component of the adipogenic cocktail that induces ERK signaling. TGIF1 phosphorylation and sustained stability in response to insulin were reduced through the use of specific MEK inhibitor U0126. Mutagenesis at T235 or T239 residue of TGIF1 in preadipocytes led to dephosphorylation of TGIF1. The reduced TGIF1 stability resulted in an increase in p27kip1 expression, a decrease in phosphorylated Rb expression and cellular proliferation, and a reduced accumulation of lipids compared to the TGIF1-overexpressed cells. These findings highlight that insulin/ERK-driven phosphorylation of the T235 or T239 residue at TGIF1 is crucial for adipocyte differentiation.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Differentiation , Homeodomain Proteins , Insulin , Animals , Mice , Phosphorylation/drug effects , Insulin/metabolism , Adipocytes/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Cell Differentiation/drug effects , Adipogenesis/drug effects , Adipogenesis/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Humans , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cell Proliferation/drug effects , Butadienes/pharmacology
16.
Macromol Rapid Commun ; 45(11): e2400032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471754

ABSTRACT

A versatile and robust end-group derivatization approach using oximes has been developed for the detection of oxidative degradation of synthetic polyisoprenes and polybutadiene. This method demonstrates broad applicability, effectively monitoring degradation across a wide molecular weight range through ultraviolet (UV)-detection coupled to gel permeation chromatography. Importantly, it enables the effective monitoring of degradation via derivatization-induced UV-maximum shifts, even in the presence of an excess of undegraded polyene, overcoming limitations previously reported with refractive index detectors. Notably, this oxime-based derivatization methodology is used in enzymatic degradation experiments of synthetic polyisoprenes characterized by a cis: trans ratio with the rubber oxygenase LcpK30. It reveals substantial UV absorption in derivatized enzymatic degradation products of polyisoprene with molecular weights exceeding 1000 g mol-1 - an unprecedented revelation for this enzyme's activity on such synthetic polyisoprenes. This innovative approach holds promise as a valuable tool for advancing research into the degradation of synthetic polyisoprenes and polybutadiene, particularly under conditions of low organocatalytic or enzymatic degradation activity. With its broad applicability and capacity to reveal previously hidden degradation processes, it represents a noteworthy contribution to sustainable polymer chemistry.


Subject(s)
Butadienes , Chromatography, Gel , Oxygenases , Ultraviolet Rays , Butadienes/chemistry , Oxygenases/chemistry , Oxygenases/metabolism , Rubber/chemistry , Elastomers/chemistry , Oximes/chemistry , Molecular Structure
17.
J Pharmacol Sci ; 154(3): 139-147, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395514

ABSTRACT

Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a G protein-coupled receptor that binds to Gαs, Gαi, and Gαq proteins to regulate various downstream signaling molecules, such as protein kinase A (PKA), phosphatidylinositol 3-kinase (PI3K), and phospholipase C. In this study, we examined the role of VIPR2 in cell cycle progression. KS-133, a newly developed VIPR2-selective antagonist peptide, attenuated VIP-induced cell proliferation in MCF-7 cells. The percentage of cells in the S-M phase was decreased in MCF-7 cells treated with KS-133. KS-133 in the presence of VIP decreased the phosphorylation of extracellular signal-regulated kinase (ERK), AKT, and glycogen synthase kinase-3ß (GSK3ß), resulting in a decrease in cyclin D1 levels. In MCF-7 cells stably-expressing VIPR2, KS-133 decreased PI3K activity and cAMP levels. Treatment with the ERK-specific kinase (MEK) inhibitor U0126 and the class I PI3K inhibitor ZSTK474 decreased the percentage of cells in the S phase. KS-133 reduced the percentage of cells in the S phase more than treatment with U0126 or ZSTK474 alone and did not affect the effect of the mixture of these inhibitors. Our findings suggest that VIPR2 signaling regulates cyclin D1 levels through the cAMP/PKA/ERK and PI3K/AKT/GSK3ß pathways, and mediates the G1/S transition to control cell proliferation.


Subject(s)
Butadienes , Cyclin D1 , Nitriles , Peptides, Cyclic , Proto-Oncogene Proteins c-akt , Humans , Cyclin D1/genetics , Proto-Oncogene Proteins c-akt/metabolism , MCF-7 Cells , Receptors, Vasoactive Intestinal Peptide, Type II , Phosphatidylinositol 3-Kinases/metabolism , Glycogen Synthase Kinase 3 beta , Cell Division , Extracellular Signal-Regulated MAP Kinases/metabolism , Cell Proliferation , Phosphatidylinositol 3-Kinase
18.
Chem Res Toxicol ; 37(2): 374-384, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38315500

ABSTRACT

Approximately 10% of smokers will develop lung cancer. Sensitive predictive biomarkers are needed to identify susceptible individuals. 1,3-Butadiene (BD) is among the most abundant tobacco smoke carcinogens. BD is metabolically activated to 3,4-epoxy-1-butene (EB), which is detoxified via the glutathione conjugation/mercapturic acid pathway to form monohydroxybutenyl mercapturic acid (MHBMA) and dihydroxybutyl mercapturic acid (DHBMA). Alternatively, EB can react with guanine nucleobases of DNA to form N7-(1-hydroxyl-3-buten-1-yl) guanine (EB-GII) adducts. We employed isotope dilution LC/ESI-HRMS/MS methodologies to quantify MHBMA, DHBMA, and EB-GII in urine of smokers who developed lung cancer (N = 260) and matched smoking controls (N = 259) from the Southern Community Cohort (white and African American). The concentrations of all three biomarkers were significantly higher in smokers that subsequently developed lung cancer as compared to matched smoker controls after adjusting for age, sex, and race/ethnicity (p < 0.0001 for EB-GII, p < 0.0001 for MHBMA, and p = 0.0007 for DHBMA). The odds ratio (OR) for lung cancer development was 1.63 for MHBMA, 1.37 for DHBMA, and 1.97 for EB-GII, with a higher OR in African American subjects than in whites. The association of urinary EB-GII, MHBMA, and DHBMA with lung cancer status did not remain upon adjustment for total nicotine equivalents. These findings reveal that urinary MHBMA, DHBMA, and EB-GII are directly correlated with the BD dose delivered via smoking and are associated with lung cancer risk.


Subject(s)
Lung Neoplasms , Tobacco Products , Humans , Smokers , Butadienes/metabolism , Acetylcysteine/metabolism , Lung Neoplasms/chemically induced , Guanine , Biomarkers/urine , DNA Adducts
19.
Biofabrication ; 16(2)2024 02 09.
Article in English | MEDLINE | ID: mdl-38331416

ABSTRACT

Fabrication of a biohybrid actuator requires muscle cells anisotropically aligned in a line, curve, or combination of lines and curves (similar to the microstructure of living muscle tissue) to replicate lifelike movements, in addition to considering the arrangement of skeletal structure or muscular structure with anisotropic straight patterns. Here, we report a UV laser-processed microstructure for freely directing cellular alignment to engineer a biohybrid actuator composed of poly(styrene-block-butadiene-block-styrene triblock copolymer) (SBS) thin film with tailor-made microgrooves (MGs) and skeletal myotubes aligned along these MGs. Specifically, straight, circular, or curved MGs were transferred to SBS thin films from a UV laser-processed template, allowing for the successful alignment of myotubes along MGs. The biohybrid actuator, composed of anisotropically aligned myotubes on a curved microgrooved SBS thin film, was contracted by electrical stimulation. Contraction of biohybrid actuators with curved aligned myotubes permits twisted-like behavior, unlike straight microgrooved films. Therefore, the UV laser-ablation system is a unique maskless and rapid microfabrication technique that provides intriguing opportunities for omni-directional microgrooved structures to achieve the complex motion of living organisms.


Subject(s)
Butadienes , Muscle Fibers, Skeletal , Polystyrenes , Anisotropy , Lasers
20.
Ecotoxicol Environ Saf ; 272: 116037, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38301581

ABSTRACT

BACKGROUND: In the plastics production sector, bisphenol S (BPS) has gained popularity as a replacement for bisphenol A (BPA). However, the mode of action (MOA) of female reproductive toxicity caused by BPS remains unclear and the safety of BPS is controversial. METHODS: Human normal ovarian epithelial cell line, IOSE80, were exposed to BPS at human-relevant levels for short-term exposure at 24 h or 48 h, or for long-term exposure at 28 days, either alone or together with five signaling pathway inhibitors: ICI 18,2780 (estrogen receptor [ER] antagonist), G15 (GPR30 specific inhibitor), U0126 (extracellular regulated protein kinase [ERK] 1/2 inhibitor), SP600125 (c-Jun N-terminal kinase [JNK] inhibitor) or SB203580 (p38 mitogen­activated protein kinase [p38MAPK] inhibitor). MOA through ERß-MAPK signaling pathway interruption was explored, and potential thresholds were estimated by the benchmark dose method. RESULTS: For short-term exposure, BPS exposure at human-relevant levels elevated the ESR2 and MAPK8 mRNA levels, along with the percentage of the G0/G1 phase. For long-term exposure, BPS raised the MAPK1 and EGFR mRNA levels, the ERß, p-ERK, and p-JNK protein levels, and the percentage of the G0/G1 phase, which was partly suppressed by U0126. The benchmark dose lower confidence limit (BMDL) of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 µM. CONCLUSIONS: The MOA of female reproductive toxicity caused by BPS at human-relevant levels might involve: molecular initiating event (MIE)-BPS binding to ERß receptor, key event (KE)1-the interrupted expression of GnRH, KE2-the activation of JNK (for short-term exposure) and ERK pathway (for long-term exposure), KE3-cell cycle arrest (the increased percentage of the G0/G1 phase), and KE4-interruption of cell proliferation (only for short-term exposure). The BMDL of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 µM.


Subject(s)
Butadienes , Estrogen Receptor beta , MAP Kinase Signaling System , Nitriles , Humans , Female , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Signal Transduction , Epithelial Cells/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...