Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.319
Filter
1.
Nanoscale ; 16(17): 8479-8494, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38590261

ABSTRACT

Catalytic generation of toxic hydroxyl radicals (˙OH) from hydrogen peroxide (H2O2) is an effective strategy for tumor treatment in chemodynamic therapy (CDT). However, the intrinsic features of the microenvironment in solid tumors, characterized by limited H2O2 and overexpressed glutathione (GSH), severely impede the accumulation of intracellular ˙OH, posing significant challenges. To circumvent these critical issues, in this work, a CaO2-based multifunctional nanocomposite with a surface coating of Cu2+ and L-buthionine sulfoximine (BSO) (named CaO2@Cu-BSO) is designed for enhanced CDT. Taking advantage of the weakly acidic environment of the tumor, the nanocomposite gradually disintegrates, and the exposed CaO2 nanoparticles subsequently decompose to produce H2O2, alleviating the insufficient supply of endogenous H2O2 in the tumor microenvironment (TME). Furthermore, Cu2+ detached from the surface of CaO2 is reduced by H2O2 and GSH to Cu+ and ROS. Then, Cu+ catalyzes H2O2 to generate highly cytotoxic ˙OH and Cu2+, forming a cyclic catalysis effect for effective CDT. Meanwhile, GSH is depleted by Cu2+ ions to eliminate possible ˙OH scavenging. In addition, the decomposition of CaO2 by TME releases a large amount of free Ca2+, resulting in the accumulation and overload of Ca2+ and mitochondrial damage in tumor cells, further improving CDT efficacy and accelerating tumor apoptosis. Besides, BSO, a molecular inhibitor, decreases GSH production by blocking γ-glutamyl cysteine synthetase. Together, this strategy allows for enhanced CDT efficiency via a ROS storm generation strategy in tumor therapy. The experimental results confirm and demonstrate the satisfactory tumor inhibition effect both in vitro and in vivo.


Subject(s)
Calcium , Copper , Glutathione , Hydrogen Peroxide , Nanocomposites , Tumor Microenvironment , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Glutathione/metabolism , Glutathione/chemistry , Animals , Humans , Mice , Calcium/metabolism , Calcium/chemistry , Copper/chemistry , Copper/pharmacology , Tumor Microenvironment/drug effects , Cell Line, Tumor , Buthionine Sulfoximine/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Reactive Oxygen Species/metabolism , Hydroxyl Radical/metabolism , Hydroxyl Radical/chemistry , Mice, Inbred BALB C
2.
Free Radic Biol Med ; 218: 57-67, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574976

ABSTRACT

Understanding the tumor redox status is important for efficient cancer treatment. Here, we noninvasively detected changes in the redox environment of tumors before and after cancer treatment in the same individuals using a novel compact and portable electron paramagnetic resonance imaging (EPRI) device and compared the results with glycolytic information obtained through autoradiography using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Human colon cancer HCT116 xenografts were used in the mice. We used 3-carbamoyl-PROXYL (3CP) as a paramagnetic and redox status probe for the EPRI of tumors. The first EPRI was followed by the intraperitoneal administration of buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, or X-ray irradiation of the tumor. A second EPRI was performed on the following day. Autoradiography was performed after the second EPRI. After imaging, the tumor sections were evaluated by histological analysis and the amount of reducing substances in the tumor was measured. BSO treatment and X-ray irradiation significantly decreased the rate of 3CP reduction in tumors. Redox maps of tumors obtained from EPRI can be compared with tissue sections of approximately the same cross section. BSO treatment reduced glutathione levels in tumors, whereas X-ray irradiation did not alter the levels of any of the reducing substances. Comparison of the redox map with the autoradiography of [18F]FDG revealed that regions with high reducing power in the tumor were active in glucose metabolism; however, this correlation disappeared after X-ray irradiation. These results suggest that the novel compact and portable EPRI device is suitable for multimodal imaging, which can be used to study tumor redox status and therapeutic efficacy in cancer, and for combined analysis with other imaging modalities.


Subject(s)
Feasibility Studies , Fluorodeoxyglucose F18 , Glucose , Multimodal Imaging , Oxidation-Reduction , Animals , Humans , Mice , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Multimodal Imaging/methods , Electron Spin Resonance Spectroscopy/methods , Buthionine Sulfoximine/pharmacology , Autoradiography , HCT116 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/pathology , Radiopharmaceuticals/metabolism , Positron-Emission Tomography/methods , Xenograft Model Antitumor Assays , Glutathione/metabolism , Mice, Nude
3.
Sci Rep ; 14(1): 5375, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38438412

ABSTRACT

Propyl gallate (PG) exhibits an anti-growth effect on various cell types. The present study investigated the impact of PG on the levels of reactive oxygen species (ROS) and glutathione (GSH) in primary human pulmonary fibroblast (HPF) cells. Moreover, the effects of N-acetyl cysteine (NAC, an antioxidant), L-buthionine sulfoximine (BSO, a GSH synthesis inhibitor), and small interfering RNA (siRNAs) against various antioxidant genes on ROS and GSH levels and cell death were examined in PG-treated HPF cells. PG (100-800 µM) increased the levels of total ROS and O2·- at early time points of 30-180 min and 24 h, whereas PG (800-1600 µM) increased GSH-depleted cell number at 24 h and reduced GSH levels at 30-180 min. PG downregulated the activity of superoxide dismutase (SOD) and upregulated the activity of catalase in HPF cells. Treatment with 800 µM PG increased the number of apoptotic cells and cells that lost mitochondrial membrane potential (MMP; ΔΨm). NAC treatment attenuated HPF cell death and MMP (ΔΨm) loss induced by PG, accompanied by a decrease in GSH depletion, whereas BSO exacerbated the cell death and MMP (ΔΨm) loss without altering ROS and GSH depletion levels. Furthermore, siRNA against SOD1, SOD2, or catalase attenuated cell death in PG-treated HPF cells, whereas siRNA against GSH peroxidase enhanced cell death. In conclusion, PG induced cell death in HPF cells by increasing ROS levels and depleting GSH. NAC was found to decrease HPF cell death induced by PG, while BSO enhanced cell death. The findings shed light on how manipulating the antioxidant system influence the cytotoxic effects of PG in HPF cells.


Subject(s)
Chrysanthemum , Propyl Gallate , Humans , Propyl Gallate/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species , Catalase , Cell Death , Fibroblasts , Glutathione , Buthionine Sulfoximine/pharmacology , RNA, Small Interfering/genetics
4.
Radiat Res ; 201(2): 174-187, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38329819

ABSTRACT

Resistance to radiation remains a significant clinical challenge in non-small cell lung carcinoma (NSCLC). It is therefore important to identify the underlying molecular and cellular features that drive acquired resistance. We generated genetically matched NSCLC cell lines to investigate characteristics of acquired resistance. Murine Lewis lung carcinoma (LLC) and human A549 cells acquired an approximate 1.5-2.5-fold increase in radiation resistance as compared to their parental match, which each had unique intrinsic radio-sensitivities. The radiation resistance (RR) was reflected in higher levels of DNA damage and repair marker γH2AX and reduced apoptosis induction after radiation. Morphologically, we found that radiation resistance A549 (A549-RR) cells exhibited a greater nucleus-to-cytosol (N/C) ratio as compared to its parental counterpart. Since the N/C ratio is linked to the differentiation state, we next investigated the epithelial-to-mesenchymal transition (EMT) phenotype and cellular plasticity. We found that A549 cells had a greater radiation-induced plasticity, as measured by E-cadherin, vimentin and double-positive (DP) modulation, as compared to LLC. Additionally, migration was suppressed in A549-RR cells, as compared to A549 cells. Subsequently, we confirmed in vivo that the LLC-RR and A549-RR cells are also more resistance to radiation than their isogenic-matched counterpart. Moreover, we found that the acquired radiation resistance also induced resistance to cisplatin, but not carboplatin or oxaliplatin. This cross-resistance was attributed to induced elevation of thiol levels. Gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine (BSO) sensitized the resistant cells to cisplatin by decreasing the amount of thiols to levels prior to obtaining acquired radiation resistance. By generating radiation-resistance genetically matched NSCLC we were able to identify and overcome cisplatin cross-resistance. This is an important finding arguing for combinatorial treatment regimens including glutathione pathway disruptors in patients with the potential of improving clinical outcomes in the future.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carboplatin , Buthionine Sulfoximine/pharmacology , Buthionine Sulfoximine/therapeutic use , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
5.
Am J Pathol ; 194(6): 912-926, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38417695

ABSTRACT

This study was designed to discern the effect of heavy scavenger metallothionein on glutathione (GSH) deprivation-evoked cardiac anomalies and mechanisms involved with an emphasis on ferroptosis. Wild-type and cardiac metallothionein transgenic mice received GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mmol/L in drinking water) for 14 days before assessment of myocardial morphology and function. BSO evoked cardiac remodeling and contractile anomalies, including cardiac hypertrophy, interstitial fibrosis, enlarged left ventricular chambers, deranged ejection fraction, fraction shortening, cardiomyocyte contractile capacity, intracellular Ca2+ handling, sarcoplasmic reticulum Ca2+ reuptake, loss of mitochondrial integrity (mitochondrial swelling, loss of aconitase activity), mitochondrial energy deficit, carbonyl damage, lipid peroxidation, ferroptosis, and apoptosis. Metallothionein itself did not affect myocardial morphology and function, although it mitigated BSO-provoked myocardial anomalies, loss of mitochondrial integrity and energy, and ferroptosis. Immunoblotting revealed down-regulated sarco(endo)plasmic reticulum Ca2+-ATPase 2a, glutathione peroxidase 4, ferroptosis-suppressing CDGSH iron-sulfur domain 1 (CISD1), and mitochondrial regulating glycogen synthase kinase-3ß phosphorylation with elevated p53, myosin heavy chain-ß isozyme, IκB phosphorylation, and solute carrier family 7 member 11 (SLC7A11) as well as unchanged SLC39A1, SLC1A5, and ferroptosis-suppressing protein 1 following BSO challenge, all of which, except glutamine transporter SLC7A11 and p53, were abrogated by metallothionein. Inhibition of CISD1 using pioglitazone nullified GSH-offered benefit against BSO-induced cardiomyocyte ferroptosis and contractile and intracellular Ca2+ derangement. Taken together, these findings support a regulatory modality for CISD1 in the impedance of ferroptosis in metallothionein-offered protection against GSH depletion-evoked cardiac aberration.


Subject(s)
Cardiomyopathies , Ferroptosis , Glutathione , Metallothionein , Mice, Transgenic , Animals , Ferroptosis/drug effects , Metallothionein/metabolism , Mice , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Glutathione/metabolism , Oxidative Stress/drug effects , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Male , Buthionine Sulfoximine/pharmacology
6.
Chemosphere ; 352: 141500, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38373444

ABSTRACT

Aspergillus was found to be a vital hyperaccumulation species for heavy metal removal with admirable tolerance capacity. But the potential tolerance mechanism has not been completely studied. This study quantified the amounts of total cadmium (Cd), Cd2+, glutathione (GSH), and reactive oxygen species (ROS) in the protoplasts and vacuoles of mycelium. We modulated GSH synthesis using buthionine sulfoximine (BSO) and 2-oxothiazolidine-4-carboxylic acid (OTC) to investigate the subcellular regulatory mechanisms of GSH in the accumulation of Cd. The results confirmed that GSH plays a crucial role in vacuolar compartmentalization under Cd stress. GSH and GSSG as a redox buffer to keep the cellular redox state in balance and GSH as a metal chelating agent to reduce toxicity. When regulating the decreased GSH content with BSO, and increased GSH content with OTC, the system of Cd-GSH-ROS can change accordingly, this also supported that vacuolar compartmentalization is a detoxification strategy that can modulate the transport and storage of substances inside and outside the vacuole reasonably. Interestingly, GSH tended to be distributed in the cytoplasm, the battleground of redox takes place in the cytoplasm but not in the vacuole. These finding potentially has implications for the understanding of tolerance behavior and detoxification mechanisms of cells. In the future bioremediation of Cd in soil, the efficiency of soil remediation can be improved by developing organisms with high GSH production capacity.


Subject(s)
Cadmium , Vacuoles , Cadmium/toxicity , Reactive Oxygen Species , Glutathione , Buthionine Sulfoximine/pharmacology , Aspergillus , Soil
7.
J Biol Chem ; 300(2): 105645, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218225

ABSTRACT

Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are associated with inborn errors of metabolism, cancer, and neurodegenerative disorders, studying the limiting role of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus thermophilus (GshF), which possesses both glutamate-cysteine ligase and glutathione synthase activities. GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis induction, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes further revealed genes required for cell proliferation under cellular and mitochondrial GSH depletion. Among these, we identified the glutamate-cysteine ligase modifier subunit, GCLM, as a requirement for cellular sensitivity to buthionine sulfoximine, a glutathione synthesis inhibitor. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the limiting role of GSH in physiology and disease.


Subject(s)
Glutamate-Cysteine Ligase , Glutathione , Animals , Mice , Buthionine Sulfoximine/pharmacology , Disease Models, Animal , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Cell Line, Tumor , Humans
8.
J Appl Genet ; 65(1): 95-101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37917375

ABSTRACT

Burkitt lymphoma (BL) is a highly aggressive lymphoma that mainly affects children and young adults. Chemotherapy is effective in young BL patients but the outcome in adults is less satisfactory. Therefore, there is a need to enhance the cytotoxic effect of drugs used in BL treatment. Glutathione (GSH) is an important antioxidant involved in processes such as regulation of oxidative stress and drug detoxification. Elevated GSH levels have been observed in many cancers and were associated with chemoresistance. We previously identified GCLC, encoding an enzyme involved in GSH biosynthesis, as an essential gene in BL. We now confirm that knockout of GCLC decreases viability of BL cells and that the GCLC protein is overexpressed in BL tissues. Moreover, we demonstrate that buthionine sulfoximine (BSO), a known inhibitor of GCLC, decreases growth of BL cells but does not affect control B cells. Furthermore, we show for the first time that BSO enhances the cytotoxicity of compounds commonly used in BL treatment, doxorubicin, and cyclophosphamide. Given the fact that BSO itself was not toxic to control cells and well-tolerated in clinical trials, combination of chemotherapy with BSO may allow reduction of the doses of cytotoxic drugs required to obtain effective responses in BL patients.


Subject(s)
Burkitt Lymphoma , Glutamate-Cysteine Ligase , Child , Humans , Buthionine Sulfoximine/pharmacology , Buthionine Sulfoximine/therapeutic use , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/genetics , Catalytic Domain , Cyclophosphamide/pharmacology , Doxorubicin/pharmacology , Glutathione/metabolism
9.
Blood Adv ; 8(1): 56-69, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37906522

ABSTRACT

ABSTRACT: Cysteine is a nonessential amino acid required for protein synthesis, the generation of the antioxidant glutathione, and for synthesizing the nonproteinogenic amino acid taurine. Here, we highlight the broad sensitivity of leukemic stem and progenitor cells to cysteine depletion. By CRISPR/CRISPR-associated protein 9-mediated knockout of cystathionine-γ-lyase, the cystathionine-to-cysteine converting enzyme, and by metabolite supplementation studies upstream of cysteine, we functionally prove that cysteine is not synthesized from methionine in acute myeloid leukemia (AML) cells. Therefore, although perhaps nutritionally nonessential, cysteine must be imported for survival of these specific cell types. Depletion of cyst(e)ine increased reactive oxygen species (ROS) levels, and cell death was induced predominantly as a consequence of glutathione deprivation. nicotinamide adenine dinucleotide phosphate hydrogen oxidase inhibition strongly rescued viability after cysteine depletion, highlighting this as an important source of ROS in AML. ROS-induced cell death was mediated via ferroptosis, and inhibition of glutathione peroxidase 4 (GPX4), which functions in reducing lipid peroxides, was also highly toxic. We therefore propose that GPX4 is likely key in mediating the antioxidant activity of glutathione. In line, inhibition of the ROS scavenger thioredoxin reductase with auranofin also impaired cell viability, whereby we find that oxidative phosphorylation-driven AML subtypes, in particular, are highly dependent on thioredoxin-mediated protection against ferroptosis. Although inhibition of the cystine-glutamine antiporter by sulfasalazine was ineffective as a monotherapy, its combination with L-buthionine-sulfoximine (BSO) further improved AML ferroptosis induction. We propose the combination of either sulfasalazine or antioxidant machinery inhibitors along with ROS inducers such as BSO or chemotherapy for further preclinical testing.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Humans , Cysteine/metabolism , Cysteine/pharmacology , Reactive Oxygen Species/metabolism , Antioxidants , Cystathionine/pharmacology , Sulfasalazine/pharmacology , Amino Acids/pharmacology , Glutathione/metabolism , Glutathione/pharmacology , Buthionine Sulfoximine/pharmacology , Leukemia, Myeloid, Acute/drug therapy
10.
Cells ; 12(23)2023 11 27.
Article in English | MEDLINE | ID: mdl-38067148

ABSTRACT

The aim of this study is to investigate the role of cellular sulfhydryl and glutathione (GSH) status in cellular cadmium (Cd) accumulation using cultures of the rainbow trout cell line RTG-2. In a first set of experiments, the time course of Cd accumulation in RTG-2 cells exposed to a non-cytotoxic CdCl2 concentration (25 µM) was determined, as were the associated changes in the cellular sulfhydryl status. The cellular levels of total GSH, oxidized glutathione (GSSG), and cysteine were determined with fluorometric high-performance liquid chromatography (HPLC), and the intracellular Cd concentrations were determined with inductively coupled plasma mass spectrometry (ICP-MS). The Cd uptake during the first 24 h of exposure was linear before it approached a plateau at 48 h. The metal accumulation did not cause an alteration in cellular GSH, GSSG, or cysteine levels. In a second set of experiments, we examined whether the cellular sulfhydryl status modulates Cd accumulation. To this end, the following approaches were used: (a) untreated RTG-2 cells as controls, and (b) RTG-2 cells that were either depleted of GSH through pre-exposure to 1 mM L-buthionine-SR-sulfoximine (BSO), an inhibitor of glutathione synthesis, or the cellular sulfhydryl groups were blocked through treatment with 2.5 µM N-ethylmaleimide (NEM). Compared to the control cells, the cells depleted of intracellular GSH showed a 25% reduction in Cd accumulation. Likewise, the Cd accumulation was reduced by 25% in the RTG-2 cells with blocked sulfhydryl groups. However, the 25% decrease in cellular Cd accumulation in the sulfhydryl-manipulated cells was statistically not significantly different from the Cd accumulation in the control cells. The findings of this study suggest that the intracellular sulfhydryl and GSH status, in contrast to their importance for Cd toxicodynamics, is of limited importance for the toxicokinetics of Cd in fish cells.


Subject(s)
Cadmium , Oncorhynchus mykiss , Animals , Cadmium/toxicity , Cadmium/metabolism , Glutathione Disulfide/metabolism , Oncorhynchus mykiss/metabolism , Cysteine/metabolism , Glutathione/metabolism , Buthionine Sulfoximine/pharmacology , Cell Line , Sulfhydryl Compounds/metabolism
11.
Redox Biol ; 67: 102895, 2023 11.
Article in English | MEDLINE | ID: mdl-37769522

ABSTRACT

Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.


Subject(s)
Glutathione , Zebrafish , Animals , Humans , Zebrafish/metabolism , Glutathione/metabolism , Glutamate-Cysteine Ligase/metabolism , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1 , Seizures/chemically induced , Seizures/drug therapy , Buthionine Sulfoximine/pharmacology , Mammals/metabolism
12.
J Toxicol Environ Health B Crit Rev ; 26(8): 417-441, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37606035

ABSTRACT

Buthionine sulfoximine (BSO) is a synthetic amino acid that blocks the biosynthesis of reduced glutathione (GSH), an endogenous antioxidant cellular component present in tumor cells. GSH levels have been associated with tumor cell resistance to chemotherapeutic drugs and platinum compounds. Consequently, by depleting GSH, BSO enhances the cytotoxicity of chemotherapeutic agents in drug-resistant tumors. Therefore, the aim of this study was to conduct a systematic review with meta-analysis of preclinical studies utilizing BSO in cancer treatments. The systematic search was carried out using the following databases: PubMed, Web of Science, Scopus, and EMBASE up until March 20, 2023, in order to collect preclinical studies that evaluated BSO, alone or in association, as a strategy for antineoplastic therapy. One hundred nine investigations were found to assess the cytotoxic potential of BSO alone or in combination with other compounds. Twenty-one of these met the criteria for performing the meta-analysis. The evidence gathered indicated that BSO alone exhibits cytotoxic activity. However, this compound is generally used in combination with other antineoplastic strategies, mainly chemotherapy ones, to improve cytotoxicity to carcinogenic cells and treatment efficacy. Finally, this review provides important considerations regarding BSO use in cancer treatment conditions, which might optimize future studies as a potential adjuvant antineoplastic therapeutic tool.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Buthionine Sulfoximine/pharmacology , Buthionine Sulfoximine/therapeutic use , Methionine Sulfoximine/therapeutic use , Methionine Sulfoximine/toxicity , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
13.
J Nanobiotechnology ; 21(1): 265, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563614

ABSTRACT

BACKGROUND: Emerging ferroptosis-driven therapies based on nanotechnology function either by increasing intracellular iron level or suppressing glutathione peroxidase 4 (GPX4) activity. Nevertheless, the therapeutic strategy of simultaneous iron delivery and GPX4 inhibition remains challenging and has significant scope for improvement. Moreover, current nanomedicine studies mainly use disulfide-thiol exchange to deplete glutathione (GSH) for GPX4 inactivation, which is unsatisfactory because of the compensatory effect of continuous GSH synthesis. METHODS: In this study, we design a two-in-one ferroptosis-inducing nanoplatform using iron-based metal-organic framework (MOF) that combines iron supply and GPX4 deactivation by loading the small molecule buthionine sulfoxide amine (BSO) to block de novo GSH biosynthesis, which can achieve sustainable GSH elimination and dual ferroptosis amplification. A coated lipid bilayer (L) can increase the stability of the nanoparticles and a modified tumor-homing peptide comprising arginine-glycine-aspartic acid (RGD/R) can achieve tumor-specific therapies. Moreover, as a decrease in GSH can alleviate resistance of cancer cells to chemotherapy drugs, oxaliplatin (OXA) was also loaded to obtain BSO&OXA@MOF-LR for enhanced cancer chemo-ferrotherapy in vivo. RESULTS: BSO&OXA@MOF-LR shows a robust tumor suppression effect and significantly improved the survival rate in 4T1 tumor xenograft mice, indicating a combined effect of dual amplified ferroptosis and GSH elimination sensitized apoptosis. CONCLUSION: BSO&OXA@MOF-LR is proven to be an efficient ferroptosis/apoptosis hybrid anti-cancer agent. This study is of great significance for the clinical development of novel drugs based on ferroptosis and apoptosis for enhanced cancer chemo-ferrotherapy.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Humans , Mice , Animals , Buthionine Sulfoximine/pharmacology , Oxaliplatin/pharmacology , Glutathione
14.
Am J Physiol Regul Integr Comp Physiol ; 325(2): R120-R132, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37212553

ABSTRACT

The effects of reduced glutathione (GSH) on skeletal muscle fatigue were investigated. GSH was depressed by buthionine sulfoximine (BSO) (100 mg/kg body wt/day) treatment for 5 days, which decreased GSH content to ∼10%. Male Wistar rats were assigned to the control (N = 18) and BSO groups (N = 17). Twelve hours after BSO treatment, the plantar flexor muscles were subjected to fatiguing stimulation (FS). Eight control and seven BSO rats were rested for 0.5 h (early stage of recovery), and the remaining were rested for 6 h (late stage of recovery). Forces were measured before FS and after rest, and physiological functions were estimated using mechanically skinned fibers. The force at 40 Hz decreased to a similar extent in both groups in the early stage of recovery and was restored in the control but not in the BSO group in the late stage of recovery. In the early stage of recovery, sarcoplasmic reticulum (SR) Ca2+ release was decreased in the control greater than in the BSO group, whereas myofibrillar Ca2+ sensitivity was increased in the control but not in the BSO group. In the late stage of recovery, SR Ca2+ release decreased and SR Ca2+ leakage increased in the BSO group but not in the control group. These results indicate that GSH depression alters the cellular mechanism of muscle fatigue in the early stage and delays force recovery in the late stage of recovery, due at least in part, to the prolonged Ca2+ leakage from the SR.


Subject(s)
Depression , Muscle Fatigue , Rats , Male , Animals , Muscle Fatigue/physiology , Rats, Wistar , Glutathione/pharmacology , Glutathione/physiology , Muscle, Skeletal , Buthionine Sulfoximine/pharmacology
15.
Toxicol Mech Methods ; 33(7): 596-606, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37051633

ABSTRACT

Fatty liver disease has been strongly associated with a low glutathione (GSH) level in hepatocytes with increased oxidative stress, which is critically involved in the initiation and progression of the disease. The study investigated whether the GSH deficiency induced by buthionine sulfoximine (BSO), an inhibitor of γ-glutamyl cysteine synthetase, can be restored by the administration of GSH ester. We showed that mice fed a diet with cholesterol plus sodium cholate developed steatosis followed by hepatic GSH reduction. Moreover, the GSH level in the cytosol and mitochondria of steatosis plus BSO decreased than that of steatosis alone. Subsequent studies with the liver tissues and plasma of BSO plus steatosis revealed the accumulation of cholesterol in the hepatocytes, downregulating the concentration of GSH, antioxidant enzymes, and GSH metabolizing enzymes with a significant rise in reactive oxygen species (ROS), blood glucose level and plasma lipid profile. The administration of GSH ester in BSO-administered mice, prevented the depletion of GSH by upregulating the GSH concentration, antioxidant enzymes, and GSH metabolizing enzymes, followed by a reduction in ROS and plasma lipid concentration. The histopathological analysis showed a marked increase in inflammation followed by hepatocytes ballooning in BSO-induced group and steatosis control group, which was ameliorated by GSH ester administration. In conclusion, our data suggest that the restoration of GSH in the cytosol and mitochondria through the injection with GSH ester plays a principal role in maintaining the GSH level in the liver, thereby delaying the progression of fatty liver disease.


Subject(s)
Antioxidants , Liver Diseases , Rats , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species , Glutathione/metabolism , Buthionine Sulfoximine/pharmacology , Oxidative Stress , Cholesterol
16.
Toxicol Lett ; 379: 20-34, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36905973

ABSTRACT

Columbin (CLB) is the most abundant (>1.0%) furan-containing diterpenoid lactone in herbal medicine Tinospora sagittate (Oliv.) Gagnep. The furano-terpenoid was found to be hepatotoxic, but the exact mechanisms remain unknown. The present study demonstrated that administration of CLB at 50 mg/kg induced hepatotoxicity, DNA damage and up-regulation of PARP-1 in vivo. Exposure to CLB (10 µM) induced GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1 and cell death in cultured mouse primary hepatocytes in vitro. Co-treatment of mouse primary hepatocytes with ketoconazole (10 µM) or glutathione ethyl ester (200 µM) attenuated the GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1, and cell death induced by CLB, while co-exposure to L-buthionine sulfoximine (BSO, 1000 µM) intensified such adverse effects resulting from CLB exposure. These results suggest that the metabolic activation of CLB by CYP3A resulted in the depletion of GSH and increase of ROS formation. The resultant over-production of ROS subsequently disrupted the DNA integrity and up-regulated the expression of PARP-1 in response to DNA damage, and ROS-induced DNA damage was involved in the hepatotoxicity of CLB.


Subject(s)
Chemical and Drug Induced Liver Injury , Diterpenes , Animals , Mice , Buthionine Sulfoximine/pharmacology , DNA Damage , Glutathione/metabolism , Lactones , Poly(ADP-ribose) Polymerase Inhibitors/toxicity , Reactive Oxygen Species/metabolism , Up-Regulation
17.
Sci Rep ; 13(1): 2218, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36755060

ABSTRACT

Exogenous glutathione (GSH) promotes the proliferation of embryogenic callus (EC) cells in Korean pine in the course of somatic embryogenesis, and reactive oxygen species (ROS) may play an important role in regulating the proliferation of EC cells by exogenous GSH. However, the concrete metabolic response of ROS is unclear. In this study, two cell lines of Korean pine with high proliferative potential 001#-001 (F, Fast proliferative potential cell line is abbreviated as F) and low proliferative potential 001#-010 (S, Slow proliferative potential cell line is abbreviated as S) were used as test materials. The responses of ROS-related enzymes and substances to exogenous GSH and L-Buthionine-sulfoximine (BSO) were investigated in EC cells. The results showed that the exogenous addition of GSH increased the number of early somatic embryogenesis (SEs) in EC cells of both F and S cell lines, decreased the amount of cell death in both cell lines. Exogenous addition of GSH promoted cell division in both cell lines, increased intracellular superoxide dismutase (SOD) and catalase (CAT) activities, inhibited intracellular hydrogen peroxide (H2O2), malondialdehyde (MDA) and nitric oxide (NO) production, and increased NO/ROS ratio. In conclusion, the exogenous GSH promoting the proliferation of Korean pine EC cells, the activity of intracellular antioxidant enzymes was enhanced, the ROS level was reduced, and the resistance of cells to stress was enhanced.


Subject(s)
Glutathione , Hydrogen Peroxide , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Glutathione/metabolism , Antioxidants/metabolism , Buthionine Sulfoximine/pharmacology , Cell Division , Nitric Oxide/metabolism , Republic of Korea , Oxygen
18.
Adv Healthc Mater ; 12(3): e2202045, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36239177

ABSTRACT

Doxorubicin (Dox)-mediated generation of reactive oxygen radicals (ROS) for mitochondrial apoptosis is identified as a new cytotoxic mechanism in addition to the well-established one via nuclear DNA replication interference. However, this mechanism contributes far less than the latter to Dox therapy. This newly identified pathway to make Dox therapy function like the combination of chemodynamic therapy (CDT) and chemotherapy-mediated by Dox alone would be amplified. One-pot nanoconstruction (HEBD) is fabricated based on the chemical reactions driven assemblies among epigallocatechin gallate (EGCG), buthionine sulfoximine (BSO) and formaldehyde in aqueous mediums followed by Dox adsorption. Acid tumor microenvironments allow the liberation of EGCG, BSO, and Dox due to the breakage of Schiff base bonds. EGCG component in HEBD is responsible for targeting mitochondria and disrupting mitochondrial electron transport chain (mETC) to compel electrons leakage in favor of their capture by Dox to produce more ROS. EGCG-induced mETC disruption results in mitochondrial respiration inhibition with alleviated hypoxia in tumor cells while BSO inhibits glutathione biosynthesis to protect ROS from redox depletion, further boosting Dox-induced CDT. This strategy of amplifying CDT pathway for the Dox-mediated combined therapy could largely improve antitumor effect, extend lifespan of tumor-bearing mice, reduce risks of cardiotoxicity and metastasis.


Subject(s)
Apoptosis , Doxorubicin , Mice , Animals , Reactive Oxygen Species/metabolism , Doxorubicin/pharmacology , Buthionine Sulfoximine/metabolism , Buthionine Sulfoximine/pharmacology , Mitochondria
19.
Sci Rep ; 12(1): 17883, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284177

ABSTRACT

Alzheimer's disease (AD) is a type of dementia that affects memory, thinking and behavior. Symptoms eventually become severe enough to interfere with daily tasks. Understanding the etiology and pathogenesis of AD is necessary for the development of strategies for AD prevention and/or treatment, and modeling of this pathology is an important step in achieving this goal. ß-amyloid peptide (Aß) injection is a widely used approach for modeling AD. Nevertheless, it has been reported that the model constructed by injection of Aß in combination with a prooxidant cocktail (ferrous sulfate, Aß, and buthionine sulfoximine (BSO) (FAB)) best reflects the natural development of this disease. The relationship between oxidative stress and Aß deposition and their respective roles in Aß-induced pathology in different animal models of AD have been thoroughly investigated. In the current paper, we compared the effects of Aß 1-42 alone with that of Aß-associated oxidative stress induced by the FAB cocktail on the neurodegeneration of hippocampal cells in vitro. We constructed a FAB-induced AD model using rat primary hippocampal cells and analyzed the contribution of each compound. The study mainly focused on the prooxidant aspects of AD pathogenesis. Moreover, cellular bioenergetics was assessed and routine metabolic tests were performed to determine the usefulness of this model. The data clearly show that aggregated Aß1-42 alone is significantly less toxic to hippocampal cells. Aggregated Aß damages neurons, and glial cells proliferate to remove Aß from the hippocampus. External prooxidant agents (Fe2+) or inhibition of internal antioxidant defense by BSO has more toxic effects on hippocampal cells than aggregated Aß alone. Moreover, hippocampal cells fight against Aß-induced damage more effectively than against oxidative damage. However, the combination of Aß with external oxidative damage and inhibition of internal antioxidant defense is even more toxic, impairs cellular defense systems, and may mimic the late phase of AD-associated cell damage. Our findings strongly indicate a critical role for the combination of Aß and oxidative stress in the development of neurodegeneration in vitro.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Rats , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Buthionine Sulfoximine/pharmacology , Hippocampus/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Disease Models, Animal , Peptide Fragments/metabolism
20.
Life Sci ; 309: 120964, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36115584

ABSTRACT

INTRODUCTION AND AIM: Purpurin, a naturally occurring anthraquinone isolated from the roots of Rubia cordifolia, exhibits anti-cancer, anti-genotoxic, anti-microbial, neuromodulatory and photodynamic activity. However, purpurin's in vivo and in vitro antioxidant mechanism remains unexplored. The present study explores the anti-oxidative mechanism of purpurin under the influence of alcohol using in vivo and in vitro test systems. METHODS: Mice hepatocytes and alcohol-induced liver toxicity model were used to evaluate the effect of purpurin. The non-enzymatic and enzymatic oxidative stress markers were estimated by the colorimetric method. The reactive oxygen species (ROS) were quantified in mitochondria and cells using flow cytometer. Real-time PCR and western blotting were used to quantify cytochrome 450 subtype 2E1 (CYP2E1) and Nrf2 expression in the liver tissue of mice. In silico studies were performed through receptor-ligand binding interaction. KEY FINDINGS: Purpurin effectively reduced total cellular and mitochondrial ROS in primary hepatocytes and WRL-68 cells. It prevented alcohol-induced ROS-dependent biochemical and cellular insults observed by analysing the serum glutamic pyruvic transaminase (SGPT), glutamic-oxaloacetic transaminase (SGOT) levels and CYP2E1 expression in liver tissue of alcohol-administered mice. Moreover, it also restored the activity of antioxidant enzymes. Its antioxidant effect was established by glutathione and ROS-dependent mechanisms using buthionine sulfoximine and N-acetyl cysteine. Along with alcohol, purpurin up-regulated Nrf2 expression in hepatocytes. SIGNIFICANCE: This work confirmed the ameliorative effect of purpurin for alcohol-induced hepatotoxicity by drabbing free radicals and curbing oxidative stress via activation of antioxidant signalling pathways.


Subject(s)
Anthraquinones , Chemical and Drug Induced Liver Injury , Ethanol , NF-E2-Related Factor 2 , Animals , Mice , Alanine Transaminase/metabolism , Anthraquinones/pharmacology , Antioxidants/pharmacology , Aspartate Aminotransferases/metabolism , Buthionine Sulfoximine/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Cysteine/pharmacology , Cytochrome P-450 CYP2E1/metabolism , Ethanol/toxicity , Glutathione/metabolism , Ligands , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...