Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Drug Des Devel Ther ; 15: 2679-2694, 2021.
Article in English | MEDLINE | ID: mdl-34188447

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative illness described predominantly by dementia. Even though Alzheimer's disease has been known for over a century, its origin remains a mystery, and researchers are exploring many therapy options, including the cholinesterase technique. A decreased acetylcholine ACh neurotransmitter level is believed to be among the important factors in the progression of Alzheimer's disease. METHODS: In continuation of synthesizing potential anti-Alzheimer agents and known appreciative pharmacological potential of amide-containing compounds, this study presents the synthesis of two novel amide-based transition metal zinc (II) complexes, AAZ7 and AAZ8, attached with a heterocyclic pyridine ring, which was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, 1H_NMR, and 13C_NMR. FT-IR spectroscopic records showed the development of bidentate ligand as Δν value was decreased in both complexes when compared with the free ligand. Both of the synthesized complexes were analyzed for acetylcholinesterase and butyrylcholinesterase inhibitory potential along with the antioxidizing activity. RESULTS: Importantly, the complex of AAZ8 exhibited more potent activity giving IC50 values of 14 µg/mL and 18µg/mL as AChE and BChE cholinesterase inhibitors, respectively, when compared with standard positive control galantamine. Interestingly, AAZ8 also displayed promising antioxidant potential by showing IC50 values of 35 µg/mL for DPPH and 29 µg/mL for ABTS in comparison with positive control ascorbic acid. CONCLUSION: Herein, we report two new amide carboxylate zinc (II) complexes which were potentially analyzed for various biological applications like acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory potentials, and antioxidant assays. Computational docking studies also simulated results to understand the interactions. Additionally, thermodynamic parameters utilizing molecular dynamic simulation were performed to determine the ligand protein stability and flexibility that supported the results. Studies have shown that these compounds have the potential to be good anti-Alzheimer candidates for future studies due to inhibition of cholinesterase enzymes and display of free radical scavenging potential against DPPH as well as ABTS free radicals.


Subject(s)
Alzheimer Disease/drug therapy , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/drug effects , Alzheimer Disease/physiopathology , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Butyrylcholinesterase/drug effects , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Electrophorus , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Horses , Inhibitory Concentration 50 , Molecular Docking Simulation , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Zinc/chemistry
2.
Arch Pharm (Weinheim) ; 354(7): e2000453, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33872422

ABSTRACT

Inspired by the structures of donepezil and rivastigmine, a novel series of indanone-carbamate hybrids was synthesized using the pharmacophore hybridization-based design strategy, and their biological activities toward acetylcholinesterase (AChE) and butyrylcholinesterase were evaluated. Among the synthesized compounds, 4d and 4b showed the highest AChE inhibitory activities with IC50 values in the micromolar range (compound 4d: IC50 = 3.04 µM; compound 4b: IC50 = 4.64 µM). Moreover, the results of the Aß1-40 aggregation assay revealed that compound 4b is a potent Aß1-40 aggregation inhibitor. The kinetics of AChE enzymatic activity in the presence of 4b was investigated, and the results were indicative of a reversible partial noncompetitive type of inhibition. A molecular docking study was conducted to determine the possible allosteric binding mode of 4b with the enzyme. The allosteric nature of AChE inhibition by these compounds provides the opportunity for the design of subtype-selective enzyme inhibitors. The presented indanone-carbamate scaffold can be structurally modified and optimized through medicinal chemistry-based approaches for designing novel multitargeted anti-Alzheimer agents.


Subject(s)
Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Indans/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Animals , Butyrylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Carbamates/chemistry , Chemistry, Pharmaceutical/methods , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Drug Design , Electrophorus , Horses , Indans/chemical synthesis , Indans/chemistry , Inhibitory Concentration 50 , Molecular Docking Simulation , Structure-Activity Relationship
3.
Arch Pharm (Weinheim) ; 354(7): e2000496, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33749025

ABSTRACT

A series of novel dopamine analogs incorporating urea and sulfonamide functional groups was synthesized from 3,4-dimethoxyphenethylamine. The reaction of 3,4-dimethoxyphenethylamine with N,N-dimethylcarbamoyl chloride, followed by the sulfonyl chlorination of the urea derivative, gave benzene-1-sulfonyl chloride 9, which was reacted with NH3 (aq) or N-alkyl amines to give related sulfonamides. The O-demethylation reaction of the subsequent compounds with BBr3 afforded four novel phenolic dopamine analogs including sulfonamide and urea in the same structure. The anticholinergic and antioxidant effects of the synthesized compounds were examined. Compound 13 exhibited inhibition at the micromolar level for both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The IC50 value of 13 was calculated as 298 ± 43 µM for AChE and 321 ± 29 µM for BChE. The antioxidant and antiradical effects of the molecules were investigated by five different methods. Among the synthesized compounds 10-18, the best antioxidant and antiradical activities belong to the phenolic compounds 15-18. Compounds 16 and 18 have a higher reducing power than the standards used, that is, butylated hydroxytoluene, butylated hydroxyanisole, Trolox, and α-tocopherol, for Fe3+ -Fe2+ and Cu2+ -Cu+ reducing activities. For the DPPH• radical scavenging method, compounds 16-18 have a much better scavenging power than the standard molecules. In addition, it has been determined by the induced-fit docking method that compound 13 is well-fitted in the active site of the enzymes. ADME studies reveal that the pharmacokinetic and physicochemical properties of all synthesized compounds are within an acceptable range.


Subject(s)
Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Dopamine/pharmacology , Sulfonamides/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Antioxidants/chemical synthesis , Antioxidants/classification , Butyrylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Caco-2 Cells , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dopamine/analogs & derivatives , Dopamine/chemical synthesis , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Phenols/chemical synthesis , Phenols/chemistry , Phenols/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
4.
Curr Comput Aided Drug Des ; 17(3): 360-377, 2021.
Article in English | MEDLINE | ID: mdl-32116197

ABSTRACT

OBJECTIVE: The present study is carried out to screen the anticholinesterase effect of the total alkaloids of L. sativum seeds and other plants, and studied the ability of Lepidine B & E to inhibit AChE, BuChE, BACE, and MAGL. Hence, determining the main interactions in the inhibitorenzyme complex. METHODS: Inhibitory effect of Lepidium sativum, Juniperus phoenicea and Juniperus oxycedrus extracts on acetylcholinesterase using the Ellman method was investigated with Donepezil as the positive control. A molecular docking study is achieved using Autodock Vina. The structures of target molecules Lepidine B & E and the four enzymes were obtained from the PubChem database and Protein databank. RESULTS: Alkaloidal extract of Lepidium sativum and ethyl acetate extracts of Juniperus phoenicea and Juniperus oxycedrus exhibit a strong acetylcholinesterase inhibitory activity with IC50 values of 0.59 ± 0.04, 0.57 ± 0.00 and 0.49 ± 0.00 mg/mL, respectively using Donepezil <0.25 mg/mL as a positive control. The major components of alkaloids of L. sativum, Lepidine B & E bind tightly to AChE and BuChE as much as galantamine and donepezil. We suggest that Lepidine B is a noncompetitive inhibitory by interacting with PAS of AChE and BuChE, therefore it is capable to prevent the HuAChE-induced Aß aggregation. All the complexes of Lepidine B &E with the four enzymes show significant, several and different interactions. CONCLUSION: Our current study indicates that Lepidine B & E are promising anti-AD drugs and might become drug candidates to prevent Alzheimer's disease due to their multiple roles as potent inhibitors for AChE, BuChE, BACE, and MAGL. Indeed, they could inhibit Aß fibrillogenesis. No previous results about the inhibitory effect of Lepidine B & E on the AChE, BuChE, ß secretase, and monoacylglycerol lipase were reported.


Subject(s)
Alkaloids/pharmacology , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Imidazoles/therapeutic use , Plant Extracts/pharmacology , Acetylcholinesterase/drug effects , Alkaloids/chemistry , Alkaloids/isolation & purification , Alkaloids/therapeutic use , Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Donepezil/pharmacology , Humans , Imidazoles/chemistry , Imidazoles/isolation & purification , Inhibitory Concentration 50 , Juniperus/chemistry , Lepidium sativum/chemistry , Molecular Docking Simulation , Monoacylglycerol Lipases/antagonists & inhibitors , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Seeds
5.
Arch Pharm (Weinheim) ; 354(1): e2000161, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32886410

ABSTRACT

A new series of pyrazole, phenylpyrazole, and pyrazoline analogs of diarylpentanoids (excluding compounds 3a, 4a, 5a, and 5b) was pan-assay interference compounds-filtered and synthesized via the reaction of diarylpentanoids with hydrazine monohydrate and phenylhydrazine. Each analog was evaluated for its anti-inflammatory ability via the suppression of nitric oxide (NO) on IFN-γ/LPS-activated RAW264.7 macrophage cells. The compounds were also investigated for their inhibitory capability toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), using a modification of Ellman's spectrophotometric method. The most potent NO inhibitor was found to be phenylpyrazole analog 4c, followed by 4e, when compared with curcumin. In contrast, pyrazole 3a and pyrazoline 5a were found to be the most selective and effective BChE inhibitors over AChE. The data collected from the single-crystal X-ray diffraction analysis of compound 5a were then applied in a docking simulation to determine the potential binding interactions that were responsible for the anti-BChE activity. The results obtained signify the potential of these pyrazole and pyrazoline scaffolds to be developed as therapeutic agents against inflammatory conditions and Alzheimer's disease.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Curcumin/pharmacology , Nitric Oxide/antagonists & inhibitors , Pyrazoles/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Butyrylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Computer Simulation , Curcumin/analogs & derivatives , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Docking Simulation , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , RAW 264.7 Cells , Structure-Activity Relationship
6.
Biomolecules ; 11(1)2020 12 22.
Article in English | MEDLINE | ID: mdl-33375115

ABSTRACT

Alzheimer's disease (AD) is a complex disorder with unknown etiology. Currently, only symptomatic therapy of AD is available, comprising cholinesterase inhibitors and N-methyl-d-aspartate (NMDA) receptor antagonists. Drugs targeting only one pathological condition have generated only limited efficacy. Thus, combining two or more therapeutic interventions into one molecule is believed to provide higher benefit for the treatment of AD. In the presented study, we designed, synthesized, and biologically evaluated 15 novel fluoren-9-amine derivatives. The in silico prediction suggested both the oral availability and permeation through the blood-brain barrier (BBB). An initial assessment of the biological profile included determination of the cholinesterase inhibition and NMDA receptor antagonism at the GluN1/GluN2A and GluN1/GluN2B subunits, along with a low cytotoxicity profile in the CHO-K1 cell line. Interestingly, compounds revealed a selective butyrylcholinesterase (BChE) inhibition pattern with antagonistic activity on the NMDARs. Their interaction with butyrylcholinesterase was elucidated by studying enzyme kinetics for compound 3c in tandem with the in silico docking simulation. The docking study showed the interaction of the tricyclic core of new derivatives with Trp82 within the anionic site of the enzyme in a similar way as the template drug tacrine. From the kinetic analysis, it is apparent that 3c is a competitive inhibitor of BChE.


Subject(s)
Alzheimer Disease/drug therapy , Butyrylcholinesterase/genetics , Cholinesterase Inhibitors/pharmacology , Receptors, N-Methyl-D-Aspartate/genetics , Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Blood-Brain Barrier/drug effects , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/drug effects , CHO Cells , Cholinesterase Inhibitors/chemistry , Computer Simulation , Cricetulus , Enzyme Inhibitors/pharmacology , Fluorenes/chemistry , Fluorenes/pharmacology , Humans , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
7.
Molecules ; 25(20)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092223

ABSTRACT

We synthesized 10 analogs of benzimidazole-based thiosemicarbazide 1 (a-j) and 13 benzimidazole-based Schiff bases 2 (a-m), and characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) inhibition activities. All the synthesized analogs showed varying degrees of acetylcholinesterase and butyrylcholinesterase inhibitory potentials in comparison to the standard drug (IC50 = 0.016 and 4.5 µM. Amongst these analogs 1 (a-j), compounds 1b, 1c, and 1g having IC50 values 1.30, 0.60, and 2.40 µM, respectively, showed good acetylcholinesterase inhibition when compared with the standard. These compounds also showed moderate butyrylcholinesterase inhibition having IC50 values of 2.40, 1.50, and 2.40 µM, respectively. The rest of the compounds of this series also showed moderate to weak inhibition. While amongst the second series of analogs 2 (a-m), compounds 2c, 2e, and 2h having IC50 values of 1.50, 0.60, and 0.90 µM, respectively, showed moderate acetylcholinesterase inhibition when compared to donepezil. Structure Aactivity Relation of both synthesized series has been carried out. The binding interactions between the synthesized analogs and the enzymes were identified through molecular docking simulations.


Subject(s)
Alzheimer Disease/drug therapy , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/drug effects , Alzheimer Disease/enzymology , Benzimidazoles/chemistry , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Schiff Bases/chemistry , Structure-Activity Relationship
8.
Bioorg Chem ; 101: 104001, 2020 08.
Article in English | MEDLINE | ID: mdl-32683137

ABSTRACT

In this study, a series of A-ring azepano- and 3-amino-3,4-seco-derivatives were synthesized from betulin, oleanolic, ursolic and glycyrrhetinic acids aiming to develop new cholinesterase inhibitors. Azepanobetulin, azepanoerythrodiol and azepanouvaol were modified to give amide and tosyl derivatives, while azepano-anhydrobetulines and azepano-glycyrrhetols were obtained for the first time. Oleanane and ursane type 3-amino-3,4-seco-4(23)-en triterpenic alcohols were synthesized by reducing the corresponding 2-cyano-derivatives accessible from Beckmann type 2 rearrangements. The compounds were screened in colorimetric Ellman's assays to determine their ability to act as inhibitors for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum). While most of these compounds were only moderate inhibitors for AChE, several of them were shown to be inhibitors for BChE acting as mixed-type inhibitors. Azepanobetulin 1, its C28-amide derivatives 7 and 8, azepano-11-deoxo-glycyrrhetol 12 and azepanouvaol 18 held inhibition constants Ki ranging between 0.21 ± 0.06 to 0.68 ± 0.19 µM. Thus, they were approximately 4 to 10 times more active than standard galantamine hydrobromide. For all of the compounds reasonably high docking scores for BChE were obtained being in good agreement with the experimental results from the enzymatic studies. As a result, A-ring azepano-triterpenoids were found to be new scaffolds for the development of BChE inhibitors.


Subject(s)
Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Triterpenes/chemical synthesis , Triterpenes/pharmacology , Acetylcholinesterase/drug effects , Animals , Binding Sites , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/chemistry , Electrophorus/metabolism , Horses/blood , Molecular Docking Simulation , Triterpenes/chemistry
9.
Arch Pharm (Weinheim) ; 353(10): e2000101, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32657467

ABSTRACT

In search of safer tacrine analogs, various thieno[2,3-b]pyridine amine derivatives were synthesized and evaluated for their inhibitory activity against cholinesterases (ChEs). Among the synthesized compounds, compounds 5e and 5d showed the highest activity towards acetylcholinesterase and butyrylcholinesterase, with IC50 values of 1.55 and 0.23 µM, respectively. The most active ChE inhibitors (5e and 5d) were also candidates for further complementary assays, such as kinetic and molecular docking studies as well as studies on inhibitory activity towards amyloid-beta (ßA) aggregation and ß-secretase 1, neuroprotectivity, and cytotoxicity against HepG2 cells. Our results indicated efficient anti-Alzheimer's activity of the synthesized compounds.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Pyridines/pharmacology , Tacrine/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amines/chemical synthesis , Amines/chemistry , Amines/pharmacology , Butyrylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Pyridines/chemical synthesis , Pyridines/chemistry , Tacrine/chemical synthesis , Tacrine/chemistry
10.
J Complement Integr Med ; 18(1): 67-74, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32554834

ABSTRACT

BACKGROUND: Dietary phenolic compounds intake have been reported to have an inverse relationship to the prevalence of hypercholesterolemia. The objective of this study is to determine the effect of caffeic acid (CFA) and chlorogenic acid (CGA) on rats fed with high cholesterol diet (HCD). METHODS: Experimental animals were fed with high cholesterol diet (HCD) for a period of 21 days while simvastatin (0.2 mg/kg BWT), CFA and CGA (10 and 15 mg/kg BWT) were administered daily. RESULTS: Activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and arginase were significantly (P<0.05) higher in the rats fed with HCD alone. Also, level of malondiadehyde equivalent compounds (MDA) was significantly (P<0.05) elevated in hypercholesterolemic rats. Nevertheless, treatment with simvastatin, CFA and CGA normalized altered AChE, BChE and arginase activities as well as improved antioxidant status in hypercholesterolemic rats. CONCLUSION: CFA and CGA could offer protective role in hypercholeseterolemic rats via their antioxidant potentials as well as restoring altered activity of acetylcholinesterase, butrylcholinesterase and arginase. Based on our findings chlorogenic acid exhibits better attribute.


Subject(s)
Caffeic Acids/administration & dosage , Chlorogenic Acid/administration & dosage , Enzyme Inhibitors/administration & dosage , Hypercholesterolemia/prevention & control , Phenols/administration & dosage , Acetylcholinesterase/drug effects , Animals , Antioxidants/metabolism , Arginase/antagonists & inhibitors , Butyrylcholinesterase/drug effects , Cholesterol/adverse effects , Diet/adverse effects , Disease Models, Animal , Hypercholesterolemia/etiology , Rats , Simvastatin/administration & dosage
11.
Arch Pharm (Weinheim) ; 353(9): e2000036, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32573008

ABSTRACT

The dual inhibition of fatty acid amide hydrolase (FAAH) and cholinesterases (ChEs) has recently egressed as a novel strategy for the management of neurodegeneration. In the present work, a library of 3-hydroxy-3-phenacyloxindole analogs was screened for FAAH and ChEs (acetylcholinesterase [AChE]/butyrylcholinesterase [BuChE]) inhibition. 1-Benzyl-3-hydroxy-3-(2',4'-dibromophenacyl)oxindole (16), the most promising compound, showed a balanced multifunctional profile with FAAH (IC50 = 8.7 ± 0.3 nM, competitive and reversible), AChE (IC50 = 28 ± 3 nM, mixed and reversible), and BuChE (IC50 = 65 ± 8 nM, mixed and reversible) inhibition. The structure-activity relationship study predicted multifarious fundamental aspects crucial for the potency of these analogs. Furthermore, the structural geometry and rigidness bestowed by the oxindole moiety resulted in improved adherence of the compounds within the binding pockets of the target enzymes. Molecular docking studies of the docked conformations acknowledged numerous interactions for trenchant stabilization of inhibitor-enzyme complexes. Binding interaction and conformational alignment studies of stereoisomers of the lead inhibitors highlighted the importance of the (S)-stereochemistry at C-3 of the oxindole scaffold for potency and selectivity. Compound 16 also displayed an antioxidant potential surpassing that of ascorbic acid, and it was non-neurotoxic. In silico molecular and ADMET properties anticipated druglikeness of the test compounds for oral use. Thus, compound 16 emerged as a new and interesting multifaceted candidate that could further be explored for its potential multitargeted role in the discovery of drugs for the treatment of Alzheimer's disease.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Cholinesterase Inhibitors/pharmacology , Oxindoles/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Butyrylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Oxindoles/chemical synthesis , Oxindoles/chemistry , Rats , Structure-Activity Relationship
12.
Z Naturforsch C J Biosci ; 75(11-12): 467-471, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-32469335

ABSTRACT

Chemical composition and anticholinesterase activity of the essential oil of Pavetta graciliflora Wall. ex Ridl. (Rubiaceae) was examined for the first time. The essential oil was obtained by hydrodistillation and was fully characterized by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). A total of 20 components were identified in the essential oil, which made up 92.85% of the total oil. The essential oil is composed mainly of ß-caryophyllene (42.52%), caryophyllene oxide (25.33%), ß-pinene (8.67%), and α-pinene (6.52%). The essential oil showed weak inhibitory activity against acetylcholinesterase (AChE) (I%: 62.5%) and butyrylcholinesterase (BChE) (I%: 65.4%) assays. Our findings were shown to be very useful for the characterization, pharmaceutical, and therapeutic applications of the essential oil from P. graciliflora.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Oils, Volatile/chemistry , Rubiaceae/chemistry , Acetylcholinesterase/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/chemistry , Gas Chromatography-Mass Spectrometry , Oils, Volatile/pharmacology
13.
J Enzyme Inhib Med Chem ; 35(1): 1215-1223, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32401067

ABSTRACT

A series of novel calix[4]azacrown substituted sulphonamide Schiff bases was synthesised by the reaction of calix[4]azacrown aldehydes with different substituted primary and secondary sulphonamides. The obtained novel compounds were investigated as inhibitors of six human (h) isoforms of carbonic anhydrases (CA, EC 4.2.1.1). Their antioxidant profile was assayed by various bioanalytical methods. The calix[4]azacrown substituted sulphonamide Schiff bases were also investigated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes, associated with several diseases such as Alzheimer, Parkinson, and pigmentation disorders. The new sulphonamides showed low to moderate inhibition against hCAs, AChE, BChE, and tyrosinase enzymes. However, some of them possessed relevant antioxidant activity, comparable with standard antioxidants used in the study.


Subject(s)
Acetylcholinesterase/drug effects , Antioxidants/chemical synthesis , Butyrylcholinesterase/drug effects , Calixarenes/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemical synthesis , Crown Ethers/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Sulfonamides/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Humans , Molecular Structure , Proton Magnetic Resonance Spectroscopy , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
14.
Biomed Pharmacother ; 127: 110161, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32380389

ABSTRACT

In addition to antibacterial and antitumor effects, synthetic ruthenium complexes have been reported to inhibit several medicinally important enzymes, including acetylcholinesterase (AChE). They may also interact with muscle-type nicotinic acetylcholine receptors (nAChRs) and thus affect the neuromuscular transmission and muscle function. In the present study, the effects of the organometallic ruthenium complex of 5-nitro-1,10-phenanthroline (nitrophen) were evaluated on these systems. The organoruthenium-nitrophen complex [(η6-p-cymene)Ru(nitrophen)Cl]Cl; C22H21Cl2N3O2Ru (C1-Cl) was synthesized, structurally characterized and evaluated in vitro for its inhibitory activity against electric eel acetylcholinesterase (eeAChE), human recombinant acetylcholinesterase (hrAChE), horse serum butyrylcholinesterase (hsBChE) and horse liver glutathione-S-transferase. The physiological effects of C1-Cl were then studied on isolated mouse phrenic nerve-hemidiaphragm muscle preparations, by means of single twitch measurements and electrophysiological recordings. The compound C1-Cl acted as a competitive inhibitor of eeAChE, hrAChE and hsBChE with concentrations producing 50 % inhibition (IC50) of enzyme activity ranging from 16 to 26 µM. Moreover, C1-Cl inhibited the nerve-evoked isometric muscle contraction (IC50 = 19.44 µM), without affecting the directly-evoked muscle single twitch up to 40 µM. The blocking effect of C1-Cl was rapid and almost completely reversed by neostigmine, a reversible cholinesterase inhibitor. The endplate potentials were also inhibited by C1-Cl in a concentration-dependent manner (IC50 = 7.6 µM) without any significant change in the resting membrane potential of muscle fibers up to 40 µM. Finally, C1-Cl (5-40 µM) decreased (i) the amplitude of miniature endplate potentials until a complete block by concentrations higher than 25 µM and (ii) their frequency at 10 µM or higher concentrations. The compound C1-Cl reversibly blocked the neuromuscular transmission in vitro by a non-depolarizing mechanism and mainly through an action on postsynaptic nAChRs. The compound C1-Cl may be therefore interesting for further preclinical testing as a new competitive neuromuscular blocking, and thus myorelaxant, drug.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Muscle Contraction/drug effects , Organometallic Compounds/pharmacology , Ruthenium Compounds/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/chemistry , Electrophorus , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glutathione Transferase/antagonists & inhibitors , Horses , Humans , Inhibitory Concentration 50 , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred BALB C , Muscle Relaxation/drug effects , Organometallic Compounds/administration & dosage , Organometallic Compounds/chemistry , Ruthenium Compounds/administration & dosage , Ruthenium Compounds/chemistry
15.
J Ethnopharmacol ; 260: 112983, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32442589

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia suffruticosa Andr. has been widely used in traditional Chinese medicine as an anti-tumour, anti-oxidant, anti-inflammatory and neuroprotective agent. Resveratrol oligomers are the main components of the seed coat extracts of Paeonia suffruticosa (PSCE) and have DPPH free radical scavenging and ß-secretase inhibitory activity. However, studies of its effect on ameliorating cognitive deficits are limited, and analyses of the underlying mechanisms are insufficient. AIM OF STUDY: This study aimed to investigate the cholinesterase inhibitory activities of resveratrol oligomers from P. suffruticosa in vitro and their effects on diminishing the oxygen-glucose deprivation/reoxygenation (OGD/R) -induced cytotoxicity in PC12 cells and scopolamine-induced cognitive deficits in mice. Moreover, the underlying mechanisms were further explored. MATERIALS AND METHODS: In vitro, the inhibitory effects of PSCE and its 10 stilbenes on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were evaluated using the Ellman's assay, and its protective effects on normal and OGD/R-injured PC12 cells were evaluated using the MTT assay. For the in vivo assay, C57BL/6 mice were orally administered with PSCE at doses of 150 and 600 mg/kg for 28 days, and injected with scopolamine (1.5 mg/kg) to induce cognitive deficits. The memory behaviours were evaluated using the novel object recognition, Morris water maze and inhibitory avoidance test. Levels of various biochemical markers were also examined, including AChE, choline acetyltransferase (ChAT), acetylcholine (ACh), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) in the mouse brain and interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), interleukin-4 (IL-4) in serum. RESULTS: PSCE and its 10 stilbenes display good inhibition of AChE and BuChE activities and significantly increase the viability of normal and OGD/R-injured PC12 cells. PSCE improves the cognitive performance of scopolamine-treated mice in behavioural tests. Meanwhile, PSCE increases AChE, ChAT, SOD, and CAT activities and ACh, GSH, IL-4 levels, and decreases IL-1ß, IL-6, TNF-α levels in the model animals. CONCLUSIONS: Resveratrol oligomers from P. suffruticosa show neuroprotective effect in vitro and in vivo by regulating cholinergic, antioxidant and anti-inflammatory pathways, may have promising application in the treatment of Alzheimer's disease.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Cognitive Dysfunction/prevention & control , Paeonia/chemistry , Resveratrol/pharmacology , Acetylcholinesterase/drug effects , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antioxidants/administration & dosage , Antioxidants/isolation & purification , Antioxidants/pharmacology , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/isolation & purification , Male , Maze Learning/drug effects , Memory Disorders/drug therapy , Mice , Mice, Inbred C57BL , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , PC12 Cells , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Rats , Resveratrol/administration & dosage , Resveratrol/isolation & purification , Scopolamine
16.
Curr Alzheimer Res ; 17(3): 269-284, 2020.
Article in English | MEDLINE | ID: mdl-32329687

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD) is one of the most prevalent causes of dementia in the world, and no drugs available that can provide a complete cure. Cholinergic neurons of the cerebral cortex of AD patients are lost due to increased activity of cholinesterase enzymes. OBJECTIVE: Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE) are the two major classes of cholinesterases in the mammalian brain. The involvement of oxidative stress in the progression of AD is known. Thus, the objective of this study is to determine strong ChE inhibitors with anti-oxidant activity. METHODS: In this study, 41 abietane diterpenoids have been assayed for antioxidant and anticholinesterase (both for AChE and BuChE) properties in vitro, which were previously isolated from Salvia species, and structurally determined by spectroscopic methods, particularly intensive 1D- and 2DNMR and mass experiments. Molecular modeling studies were performed to rationalize the in vitro ChE inhibitory activity of several abietane diterpenoids compared with galantamine. RESULTS: Thirteen out of the tested 41 abietane diterpenoids exhibited at least 50% inhibition on either AChE or BuChE. The strongest inhibitory activity was obtained for Bractealine against BuChE (3.43 µM) and AChE (33.21 µM) while the most selective ligand was found to be Hypargenin E against BuChE enzyme (6.93 µM). A full correlation was not found between anticholinesterase and antioxidant activities. The results obtained from molecular modelling studies of Hypargenin E and Bractealine on AChE and BuChE were found to be in accordance with the in vitro anti-cholinesterase activity tests. CONCLUSION: Abietane diterpenoids are promising molecules for the treatment of mild-moderate AD.


Subject(s)
Abietanes/pharmacology , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/drug effects , Butyrylcholinesterase/drug effects , Camphanes , Drug Discovery , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , Panax notoginseng , Salvia miltiorrhiza
17.
J Nat Prod ; 83(5): 1359-1367, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32309949

ABSTRACT

A total of 20 derivatives (1-20) of the crinane-type alkaloid ambelline were synthesized. These semisynthetic derivatives were assessed for their potency to inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). To predict central nervous system (CNS) availability, logBB was calculated, and the data correlated well with those obtained from the parallel artificial membrane permeability assay (PAMPA). All compounds should be able to permeate the blood-brain barrier (BBB) according to the obtained results. A total of 7 aromatic derivatives (5, 6, 7, 9, 10, 12, and 16) with different substitution patterns showed inhibitory potency against human serum BuChE (IC50 < 5 µM), highlighting the three top-ranked compounds as follows: 11-O-(1-naphthoyl)ambelline (16), 11-O-(2-methylbenzoyl)ambelline (6), and 11-O-(2-methoxybenzoyl)ambelline (9) with IC50 values of 0.10 ± 0.01, 0.28 ± 0.02, and 0.43 ± 0.04 µM, respectively. Notably, derivatives 6, 7, 9, and 16 displayed selective human BuChE (hBuChE) inhibition profiles with a selectivity index > 100. The in vitro results were supported by computational studies predicting plausible binding modes of the compounds in the active sites of hBuChE.


Subject(s)
Amaryllidaceae Alkaloids/chemical synthesis , Amaryllidaceae Alkaloids/pharmacology , Amaryllidaceae/chemistry , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Amaryllidaceae Alkaloids/pharmacokinetics , Blood-Brain Barrier , Cholinesterase Inhibitors/pharmacokinetics , Esters , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Substrate Specificity
18.
J Enzyme Inhib Med Chem ; 35(1): 478-488, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31910701

ABSTRACT

The series of symmetrical and unsymmetrical isoquinolinium-5-carbaldoximes was designed and prepared for cholinesterase reactivation purposes. The novel compounds were evaluated for intrinsic acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) inhibition, when the majority of novel compounds resulted with high inhibition of both enzymes and only weak inhibitors were selected for reactivation experiments on human AChE or BChE inhibited by sarin, VX, or paraoxon. The AChE reactivation for all used organophosphates was found negligible if compared to the reactivation ability of obidoxime. Importantly, two compounds were found to reactivate BChE inhibited by sarin or VX better to obidoxime at human attainable concentration. One compound resulted as better reactivator of NEMP (VX surrogate)-inhibited BChE than obidoxime. The in vitro results were further rationalized by molecular docking studies showing future directions on designing potent BChE reactivators.


Subject(s)
Acetylcholinesterase/drug effects , Butyrylcholinesterase/drug effects , Cholinesterase Reactivators/pharmacology , Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , Cholinesterase Inhibitors/pharmacology , Humans , Isoquinolines/chemistry , Molecular Docking Simulation
19.
J Enzyme Inhib Med Chem ; 35(1): 460-467, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31899981

ABSTRACT

The enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are primary targets in attenuating the symptoms of neurodegenerative diseases. Their inhibition results in elevated concentrations of the neurotransmitter acetylcholine which supports communication among nerve cells. It was previously shown for trans-4/5-arylethenyloxazole compounds to have moderate AChE and BChE inhibitory properties. A preliminary docking study showed that elongating oxazole molecules and adding a new NH group could make them more prone to bind to the active site of both enzymes. Therefore, new trans-amino-4-/5-arylethenyl-oxazoles were designed and synthesised by the Buchwald-Hartwig amination of a previously synthesised trans-chloro-arylethenyloxazole derivative. Additionally, naphthoxazole benzylamine photoproducts were obtained by efficient photochemical electrocyclization reaction. Novel compounds were tested as inhibitors of both AChE and BChE. All of the compounds exhibited binding preference for BChE over AChE, especially for trans-amino-4-/5-arylethenyl-oxazole derivatives which inhibited BChE potently (IC50 in µM range) and AChE poorly (IC50≫100 µM). Therefore, due to the selectivity of all of the tested compounds for binding to BChE, these compounds could be applied for further development of cholinesterase selective inhibitors.HIGHLIGHTSSeries of oxazole benzylamines were designed and synthesisedThe tested compounds showed binding selectivity for BChENaphthoxazoles were more potent AChE inhibitors.


Subject(s)
Benzylamines/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Drug Design , Oxazoles/chemistry , Acetylcholinesterase/drug effects , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/chemical synthesis , Electrochemical Techniques , Inhibitory Concentration 50 , Molecular Docking Simulation , Photochemical Processes , Structure-Activity Relationship
20.
J Enzyme Inhib Med Chem ; 35(1): 424-431, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31899985

ABSTRACT

A series of 16 novel benzenesulfonamides incorporating 1,3,5-triazine moieties substituted with aromatic amines, dimethylamine, morpholine and piperidine were investigated. These compounds were assayed for antioxidant properties by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, 2,2`-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical decolarisation assay and metal chelating methods. They were also investigated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase, which are associated with several diseases such as Alzheimer, Parkinson and pigmentation disorders. These benzenesulfonamides showed moderate DPPH radical scavenging and metal chelating activity, and low ABTS cation radical scavenging activity. Compounds 2 b, 3d and 3 h showed inhibitory potency against AChE with % inhibition values of >90. BChE was also effectively inhibited by most of the synthesised compounds with >90% inhibition potency. Tyrosinase was less inhibited by these compounds.


Subject(s)
Acetylcholinesterase/drug effects , Antioxidants/pharmacology , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/pharmacology , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Sulfonamides/chemistry , Sulfonamides/pharmacology , Triazines/chemistry , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Picrates/chemistry , Sulfonic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...