Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 29(9): 3982-3992, 2019 08 14.
Article in English | MEDLINE | ID: mdl-30395185

ABSTRACT

Epidemiological and experimental studies suggest that maternal immune activation (MIA) leads to developmental brain disorders, but whether the pathogenic mechanism impacts neurons already at birth is not known. We now report that MIA abolishes in mice the oxytocin-mediated delivery γ-aminobutyric acid (GABA) shift from depolarizing to hyperpolarizing in CA3 pyramidal neurons, and this is restored by the NKCC1 chloride importer antagonist bumetanide. Furthermore, MIA hippocampal pyramidal neurons at birth have a more exuberant apical arbor organization and increased apical dendritic length than age-matched controls. The frequency of spontaneous glutamatergic postsynaptic currents is also increased in MIA offspring, as well as the pairwise correlation of the synchronized firing of active cells in CA3. These alterations produced by MIA persist, since at P14-15 GABA action remains depolarizing, produces excitatory action, and network activity remains elevated with a higher frequency of spontaneous glutamatergic postsynaptic currents. Therefore, the pathogenic actions of MIA lead to important morphophysiological and network alterations in the hippocampus already at birth.


Subject(s)
CA3 Region, Hippocampal/growth & development , CA3 Region, Hippocampal/immunology , Membrane Potentials , Pregnancy/immunology , Pyramidal Cells/immunology , gamma-Aminobutyric Acid/immunology , Animals , CA3 Region, Hippocampal/drug effects , Dendrites/drug effects , Dendrites/immunology , Female , Glutamic Acid/physiology , Membrane Potentials/drug effects , Mice, Inbred C57BL , Poly I-C/administration & dosage , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Solute Carrier Family 12, Member 2/immunology
2.
Biol Psychiatry ; 85(11): 891-903, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30219209

ABSTRACT

BACKGROUND: Although several studies have linked adolescent cannabis use to long-term cognitive dysfunction, there are negative reports as well. The fact that not all users develop cognitive impairment suggests a genetic vulnerability to adverse effects of cannabis, which are attributed to action of Δ9-tetrahydrocannabinol (Δ9-THC), a cannabis constituent and partial agonist of brain cannabinoid receptor 1. As both neurons and glial cells express cannabinoid receptor 1, genetic vulnerability could influence Δ9-THC-induced signaling in a cell type-specific manner. METHODS: Here we use an animal model of inducible expression of dominant-negative disrupted in schizophrenia 1 (DN-DISC1) selectively in astrocytes to evaluate the molecular mechanisms, whereby an astrocyte genetic vulnerability could interact with adolescent Δ9-THC exposure to impair recognition memory in adulthood. RESULTS: Selective expression of DN-DISC1 in astrocytes and adolescent treatment with Δ9-THC synergistically affected recognition memory in adult mice. Similar deficits in recognition memory were observed following knockdown of endogenous Disc1 in hippocampal astrocytes in mice treated with Δ9-THC during adolescence. At the molecular level, DN-DISC1 and Δ9-THC synergistically activated the nuclear factor-κB-cyclooxygenase-2 pathway in astrocytes and decreased immunoreactivity of parvalbumin-positive presynaptic inhibitory boutons around pyramidal neurons of the hippocampal CA3 area. The cognitive abnormalities were prevented in DN-DISC1 mice exposed to Δ9-THC by simultaneous adolescent treatment with the cyclooxygenase-2 inhibitor, NS398. CONCLUSIONS: Our data demonstrate that individual vulnerability to cannabis can be exclusively mediated by astrocytes. Results of this work suggest that genetic predisposition within astrocytes can exaggerate Δ9-THC-produced cognitive impairments via convergent inflammatory signaling, suggesting possible targets for preventing adverse effects of cannabis within susceptible individuals.


Subject(s)
Cyclooxygenase 2/metabolism , Dronabinol/adverse effects , Memory/drug effects , NF-kappa B/metabolism , Nerve Tissue Proteins/genetics , Recognition, Psychology/drug effects , Age Factors , Animals , Astrocytes/metabolism , CA3 Region, Hippocampal/immunology , Female , Gene Knockdown Techniques , Hippocampus/metabolism , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/biosynthesis , Nitrobenzenes/pharmacology , Parvalbumins/metabolism , Presynaptic Terminals/drug effects , Pyramidal Cells/immunology , Signal Transduction/drug effects , Sulfonamides/pharmacology
3.
World Neurosurg ; 100: 128-137, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28065873

ABSTRACT

OBJECTIVE: The aim of this study was to determine whether hyperbaric oxygen (HBO) therapy causes attenuation of traumatic brain injury (TBI)-induced depression-like behavior and its associated anti-neuroinflammatory effects after fluid percussion injury. METHODS: Anesthetized male Sprague-Dawley rats were divided into 3 groups: sham operation plus normobaric air (NBA) (21% oxygen at 1 absolute atmosphere [ATA]), TBI plus NBA, and TBI plus HBO (100% oxygen at 2.0 ATA). HBO was applied immediately for 60 min/d after TBI for 3 days. Depression-like behavior was tested by a forced swimming test, motor function was tested by an inclined plane test, and infarction volume was tested by triphenyltetrazolium chloride (TTC) staining on days 4, 8, and 15. Neuronal apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling assay), microglial (marker OX42) activation, and tumor necrosis factor (TNF)-α expression in microglia in the hippocampus CA3 were measured by immunofluorescence methods. RESULTS: Compared with the TBI controls, without significant changes in TTC staining or in the motor function test, TBI-induced depression-like behavior was significantly attenuated by HBO therapy by day 15 after TBI. Simultaneously, TBI-induced neuronal apoptosis, microglial (marker OX42) activation, and TNF-α expression in the microglia in the hippocampus CA3 were significantly reduced by HBO. CONCLUSIONS: Our results suggest that HBO treatment may ameliorate TBI-induced depression-like behavior in rats by attenuating neuroinflammation, representing one possible mechanism by which depression-like behavior recovery might occur. We also recommend HBO as a potential treatment for TBI-induced depression-like behavior if early intervention is possible.


Subject(s)
Brain Injuries, Traumatic/therapy , CA3 Region, Hippocampal/immunology , Depression/therapy , Hyperbaric Oxygenation , Animals , Apoptosis/physiology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/psychology , CA3 Region, Hippocampal/pathology , Depression/etiology , Depression/pathology , Depression/physiopathology , Disease Models, Animal , Male , Microglia/immunology , Microglia/pathology , Motor Activity/physiology , Neuroimmunomodulation/physiology , Neurons/immunology , Neurons/pathology , Random Allocation , Rats, Sprague-Dawley , Single-Blind Method , Tumor Necrosis Factor-alpha/metabolism
4.
Nature ; 534(7608): 538-43, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27337340

ABSTRACT

Over 50% of patients who survive neuroinvasive infection with West Nile virus (WNV) exhibit chronic cognitive sequelae. Although thousands of cases of WNV-mediated memory dysfunction accrue annually, the mechanisms responsible for these impairments are unknown. The classical complement cascade, a key component of innate immune pathogen defence, mediates synaptic pruning by microglia during early postnatal development. Here we show that viral infection of adult hippocampal neurons induces complement-mediated elimination of presynaptic terminals in a murine WNV neuroinvasive disease model. Inoculation of WNV-NS5-E218A, a WNV with a mutant NS5(E218A) protein leads to survival rates and cognitive dysfunction that mirror human WNV neuroinvasive disease. WNV-NS5-E218A-recovered mice (recovery defined as survival after acute infection) display impaired spatial learning and persistence of phagocytic microglia without loss of hippocampal neurons or volume. Hippocampi from WNV-NS5-E218A-recovered mice with poor spatial learning show increased expression of genes that drive synaptic remodelling by microglia via complement. C1QA was upregulated and localized to microglia, infected neurons and presynaptic terminals during WNV neuroinvasive disease. Murine and human WNV neuroinvasive disease post-mortem samples exhibit loss of hippocampal CA3 presynaptic terminals, and murine studies revealed microglial engulfment of presynaptic terminals during acute infection and after recovery. Mice with fewer microglia (Il34(-/-) mice with a deficiency in IL-34 production) or deficiency in complement C3 or C3a receptor were protected from WNV-induced synaptic terminal loss. Our study provides a new murine model of WNV-induced spatial memory impairment, and identifies a potential mechanism underlying neurocognitive impairment in patients recovering from WNV neuroinvasive disease.


Subject(s)
Complement System Proteins/immunology , Memory Disorders/pathology , Memory Disorders/virology , Microglia/immunology , Neuronal Plasticity , Presynaptic Terminals/pathology , West Nile virus/pathogenicity , Animals , CA3 Region, Hippocampal/immunology , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/virology , Complement Activation , Complement Pathway, Classical/immunology , Disease Models, Animal , Female , Humans , Male , Memory Disorders/immunology , Memory Disorders/physiopathology , Mice , Neurons/immunology , Neurons/pathology , Neurons/virology , Presynaptic Terminals/immunology , Spatial Memory , West Nile Fever/pathology , West Nile Fever/physiopathology , West Nile Fever/virology , West Nile virus/immunology
5.
Cell Death Differ ; 21(7): 1095-106, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24608792

ABSTRACT

Kainic acid (KA)-induced seizures followed by neuronal death are associated with neuroinflammation and blood-brain barrier (BBB) leakage. Tonicity-responsive enhancer binding protein (TonEBP) is known as a transcriptional factor activating osmoprotective genes, and in brain, it is expressed in neuronal nuclei. Thus dysregulation of TonEBP may be involved in the pathology of KA-induced seizures. Here we used TonEBP heterozygote (+/-) mice to study the roles of TonEBP. Electroencephalographic study showed that TonEBP (+/-) mice reduced seizure frequency and severity compared with wild type during KA-induced status epilepticus. Immunohistochemistry and western blotting analysis showed that KA-induced neuroinflammation and BBB leakage were dramatically reduced in TonEBP (+/-) mice. Similarly, TonEBP-specific siRNA reduced glutamate-induced death in HT22 hippocampal neuronal cells. TonEBP haplodeficiency prevented KA-induced nuclear translocation of NF-κB p65 and attenuated inflammation. Our findings identify TonEBP as a critical regulator of neuroinflammation and BBB leakage in KA-induced seizures, which suggests TonEBP as a good therapeutic target.


Subject(s)
NF-kappa B/physiology , Seizures/metabolism , Transcription Factors/genetics , Active Transport, Cell Nucleus , Animals , Aquaporin 4/metabolism , Blood-Brain Barrier/metabolism , CA3 Region, Hippocampal/immunology , CA3 Region, Hippocampal/pathology , Cell Line , Cell Nucleus/metabolism , Cyclooxygenase 2/metabolism , Haploinsufficiency , Kainic Acid , Male , Mice, Inbred ICR , Seizures/chemically induced , Seizures/immunology , Transcription Factors/metabolism , Vascular Endothelial Growth Factor A/metabolism
6.
PLoS One ; 8(6): e64812, 2013.
Article in English | MEDLINE | ID: mdl-23840307

ABSTRACT

The Tyro3, Axl and Mertk (TAM) triply knockout (TKO) mice exhibit systemic autoimmune diseases, with characteristics of increased proinflammatory cytokine production, autoantibody deposition and autoreactive lymphocyte infiltration into a variety of tissues. Here we show that TKO mice produce high level of serum TNF-α and specific autoantibodies deposited onto brain blood vessels. The brain-blood barrier (BBB) in mutant brains exhibited increased permeability for Evans blue and fluorescent-dextran, suggesting a breakdown of the BBB in the mutant brains. Impaired BBB integrity facilitated autoreactive T cells infiltrating into all regions of the mutant brains. Brain autoimmune disorder caused accumulation of the ubiquitin-reactive aggregates in the mutant hippocampus, and early formation of autofluorescent lipofuscins in the neurons throughout the entire brains. Chronic neuroinflammation caused damage of the hippocampal mossy fibers and neuronal apoptotic death. This study shows that chronic systemic inflammation and autoimmune disorders in the TKO mice cause neuronal damage and death.


Subject(s)
Apoptosis , Autoimmune Diseases/genetics , Brain Damage, Chronic/immunology , CA3 Region, Hippocampal/pathology , Neurons/physiology , Animals , Autoantibodies/blood , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Blood-Brain Barrier/metabolism , Brain Damage, Chronic/genetics , Brain Damage, Chronic/pathology , CA3 Region, Hippocampal/blood supply , CA3 Region, Hippocampal/immunology , Capillary Permeability/immunology , Cells, Cultured , Cytokines/metabolism , Dentate Gyrus/blood supply , Dentate Gyrus/immunology , Dentate Gyrus/pathology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Female , Gene Knockdown Techniques , Inclusion Bodies/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microvessels/immunology , Microvessels/metabolism , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/blood , Ubiquitinated Proteins/metabolism , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
7.
Cell Mol Neurobiol ; 30(6): 827-39, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20232136

ABSTRACT

Several recent studies suggested a role for neuronal major histocompatibility complex class I (MHCI) molecules in certain forms of synaptic plasticity in the hippocampus of rodents. Here, we report for the first time on the expression pattern and functional properties of MHCI molecules in the hippocampus of a nonhuman primate, the common marmoset monkey (Callithrix jacchus). We detected a presynaptic, mossy fiber-specific localization of MHCI proteins within the marmoset hippocampus. MHCI molecules were present in the large, VGlut1-positive, mossy fiber terminals, which provide input to CA3 pyramidal neurons. Furthermore, whole-cell recordings of CA3 pyramidal neurons in acute hippocampal slices of the common marmoset demonstrated that application of antibodies which specifically block MHCI proteins caused a significant decrease in the frequency, and a transient increase in the amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in CA3 pyramidal neurons. These findings add to previous studies on neuronal MHCI molecules by describing their expression and localization in the primate hippocampus and by implicating them in plasticity-related processes at the mossy fiber-CA3 synapses. In addition, our results suggest significant interspecies differences in the localization of neuronal MHCI molecules in the hippocampus of mice and marmosets, as well as in their potential function in these species.


Subject(s)
Callithrix/immunology , Histocompatibility Antigens Class I/immunology , Mossy Fibers, Hippocampal/immunology , Neurons/immunology , Synapses/immunology , Synaptic Transmission/immunology , Animals , Antibodies/immunology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/immunology , Cell Line , Female , Humans , In Vitro Techniques , Male , Neurons/cytology , Presynaptic Terminals/metabolism , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...