Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 828
Filter
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710517

ABSTRACT

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Subject(s)
Caspase 1 , Hypoxia , Inflammasomes , Interleukin-1beta , Liver , Mice, Inbred C57BL , Reactive Oxygen Species , Animals , Male , Inflammasomes/metabolism , Hypoxia/metabolism , Hypoxia/complications , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver/pathology , Caspase 1/metabolism , Interleukin-1beta/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis Regulatory Proteins/metabolism , Alanine Transaminase/blood , CARD Signaling Adaptor Proteins/metabolism , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology
2.
Int Heart J ; 65(3): 466-474, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38749754

ABSTRACT

Endothelial cell dysfunction is the main pathology of atherosclerosis (AS). Sirtuin 6 (SIRT6), a deacetylase, is involved in AS progression. This study aimed to investigate the impacts of SIRT6 on the pyroptosis of endothelial cells and its underlying mechanisms. ApoE-/- mice were fed a high-fat diet (HFD) to establish the AS mouse model, atherosclerotic lesions were evaluated using oil red O staining, and blood lipids and inflammatory factors were measured using corresponding kits. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish the cell model, and pyroptosis was evaluated by flow cytometry, ELISA, and western blot. Immunoprecipitation (IP), co-IP, western blot, and immunofluorescence were used to detect the molecular mechanisms. The results showed that SIRT6 expression was downregulated in the blood of HFD-induced mice and ox-LDL-induced HUVECs. Overexpression of SIRT6 reduced atherosclerotic lesions, blood lipids, and inflammation in vivo and suppressed pyroptosis of HUVECs in vitro. Moreover, SIRT6 interacted with ASC to inhibit the acetylation of ASC, thus, reducing the interaction between ASC and NLRP3. Moreover, SIRT6 inhibits endothelial cell pyroptosis in the aortic roots of mice by deacetylating ASC. In conclusion, SIRT6 deacetylated ASC to inhibit its interaction with NLRP3 and then suppressed pyroptosis of endothelial cells, thus, decelerating the progression of AS. The findings provide new insights into the function of SIRT6 in AS.


Subject(s)
Atherosclerosis , Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL , Pyroptosis , Sirtuins , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Sirtuins/metabolism , Mice , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , CARD Signaling Adaptor Proteins/metabolism , Disease Models, Animal , Diet, High-Fat , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL
3.
Arch Oral Biol ; 164: 105987, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723420

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate interleukin (IL)-1ß, IL-18, nod-like receptor pyrin domain-containing protein 3 (NLRP3), apoptosis-related speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1 levels in saliva and serum in different periodontal diseases and to evaluate the changes after non-surgical periodontal treatment (NSPT). DESIGN: A total of 45 participants, 15 healthy, 15 gingivitis, and 15 stage III grade C (SIIIGC) periodontitis patients, were included in the study. Periodontal parameters were assessed, and salivary and serum samples were collected at baseline in all groups and one and three months after NSPT in gingivitis and periodontitis groups. An enzyme-linked immunosorbent assay was used to analyse IL-1ß, IL-18, NLRP3, ASC, and caspase-1 levels. RESULTS: After NSPT, improvement was observed in all clinical parameters, along with periodontal inflamed surface area (PISA) in gingivitis and periodontitis groups. PISA scores were positively correlated with IL-1ß, NLRP3, and caspase-1 at baseline (p < 0.05). Salivary and serum IL-1ß, NLRP3 levels were higher in periodontitis compared to healthy controls at baseline and reduced after treatment (p < 0.05). Receiver operating characteristic analysis revealed that salivary IL-1ß, NLRP3, and caspase-1 had the ability to discriminate SIIIGC periodontitis patients from healthy subjects (p < 0.05). CONCLUSION: In conclusion, salivary IL-1ß, NLRP3, and caspase-1 are at aberrantly high levels in SIIIGC periodontitis and are remarkably decreased following NSPT; these inflammasome biomarkers may show potential utility in diagnosing and monitoring periodontitis.


Subject(s)
Biomarkers , Caspase 1 , Enzyme-Linked Immunosorbent Assay , Gingivitis , Inflammasomes , Interleukin-18 , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Saliva , Humans , Female , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Biomarkers/blood , Caspase 1/blood , Caspase 1/metabolism , Saliva/metabolism , Saliva/chemistry , Interleukin-18/blood , Interleukin-18/metabolism , Interleukin-18/analysis , Inflammasomes/metabolism , Adult , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Gingivitis/therapy , Gingivitis/metabolism , Gingivitis/blood , Middle Aged , CARD Signaling Adaptor Proteins/metabolism , Periodontitis/therapy , Periodontitis/metabolism , Periodontitis/blood
4.
Article in Chinese | MEDLINE | ID: mdl-38802305

ABSTRACT

Objective: To explore the effect of the absent in melanoma 2 (AIM2) -mediated neuroinflammation in noise-induced cognitive dysfunction in rats. Methods: In April 2023, sixteen male Wistar rats were randomly divided into control group and noise group, with 8 rats in each group. The rats in the noise group were placed in 50 cm×50 cm×40 cm transparent boxes and exposed to 100 dB (A) white noise with a sound pressure level of 100 dB (A) (4 h/d for 30 d) . At the same time, rats in the control group were kept in similar boxes with environmental noise less than 60 dB (A) . After 30 days of noise exposure, the Morris water maze experiment was applied to test the learning and memory abilities of the rats; the pathological morphology of hippocampal tissues was observed by Hematoxylin-Eosin (HE) staining. Western blot was used to detect the protein expression levels of AIM2, cysteinyl aspartate specific proteinase-1 (caspase-1) , apoptosis-associated speck-like protein (ASC) , interleukin-1ß (IL-1ß) , IL-18, ionic calcium-binding articulation molecule-1 (Iba-1) , and glial fibrillary acidic protein (GFAP) . The expression of both Iba-1 and GFAP in hippocampal tissue was assessed by immunohistochemical staining. The co-localization of AIM2 with Iba-1 or GFAP was determined by immunofluorescence double staining. Results: Compared with the control group, the escape latency of rats in the noise group was increased by 16.29 s, 17.71 s, and 20.26 s on days 3, 4, and 5, respectively. On day 6, the noise-exposed rats spent shorter time in the target quadrant and had fewer times in crossing the platform[ (7.25±2.27) s and (1.13±0.64) times] than the control group[ (15.64±3.99) s and (4.25±2.12) times] (P<0.05) . After noise exposure, hippocampal neurons of rats displayed marked nuclear hyperchromatic and pyknosis phenomenon. The noise-exposed rats had higher numbers of both microglia and astrocytes (27.00±2.65 and 43.33±5.51) in the DG area of the hippocampus relative to the control group (14.67±3.06 and 20.00±4.58) (P<0.05) . Moreover, the glial cells in the noise group had larger cell cytosol with more and thicker branches. The protein expression levels of inflammatory cytokines Cleaved-IL-1ß and Cleaved-IL-18 in the hippocampus of rats in the noise group (1.55±0.19 and 1.74±0.12) were significantly higher than the control group (1.00±0.11 and 1.00±0.13) (P<0.05) . After noise exposure, the protein expression levels of AIM2, Cleaved-Caspase-1 and ASC (1.19±0.09, 1.34±0.07 and 1.14±0.01) were higher than the control group (1.00±0.07, 1.00±0.14 and 1.00±0.06) and differences between the two groups were statistically significant (P<0.05) . A significant increase in the number of cells co-localizing AIM2 with Iba-1 or GFAP in the noise group (28.67±4.04 and 40.67±5.13) compared with the control group (15.67±4.04 and 17.67±3.79) , and statistically significant differences were observed between the two groups (P<0.05) . Conclusion: Noise exposure may activate the AIM2 inflammasome in hippocampal glial cells of rats, releasing excessive inflammatory cytokines and causing neuroinflammation that damages neurons.


Subject(s)
Cognitive Dysfunction , Hippocampus , Inflammasomes , Interleukin-18 , Noise , Rats, Wistar , Animals , Rats , Male , Noise/adverse effects , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Inflammasomes/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , DNA-Binding Proteins/metabolism , Caspase 1/metabolism , Calcium-Binding Proteins/metabolism , Glial Fibrillary Acidic Protein/metabolism , Microfilament Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Maze Learning
5.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734816

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


Subject(s)
CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Interleukin-18 , Interleukin-1beta , Intracellular Signaling Peptides and Proteins , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Macrophages/metabolism , Macrophages/immunology , Interleukin-1beta/metabolism , Male , Female , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Caspase 1/metabolism , Skin/pathology , Skin/immunology , Skin/metabolism , Severity of Illness Index , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Young Adult , Apoptosis Regulatory Proteins/metabolism , Antigens, CD/metabolism , NLR Proteins/metabolism , Case-Control Studies , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , CD68 Molecule , DNA-Binding Proteins
6.
Sci Signal ; 17(833): eabn8003, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652763

ABSTRACT

Inflammasomes are multiprotein platforms that control caspase-1 activation, which process the inactive precursor forms of the inflammatory cytokines IL-1ß and IL-18, leading to an inflammatory type of programmed cell death called pyroptosis. Studying inflammasome-driven processes, such as pyroptosis-induced cell swelling, under controlled conditions remains challenging because the signals that activate pyroptosis also stimulate other signaling pathways. We designed an optogenetic approach using a photo-oligomerizable inflammasome core adapter protein, apoptosis-associated speck-like containing a caspase recruitment domain (ASC), to temporally and quantitatively manipulate inflammasome activation. We demonstrated that inducing the light-sensitive oligomerization of ASC was sufficient to recapitulate the classical features of inflammasomes within minutes. This system showed that there were two phases of cell swelling during pyroptosis. This approach offers avenues for biophysical investigations into the intricate nature of cellular volume control and plasma membrane rupture during cell death.


Subject(s)
CARD Signaling Adaptor Proteins , Inflammasomes , Optogenetics , Pyroptosis , Inflammasomes/metabolism , Optogenetics/methods , Animals , Humans , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Mice , Caspase 1/metabolism , Caspase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
7.
J Gene Med ; 26(4): e3683, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571451

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is a potentially lethal acute disease highly involved in coagulation disorders. Pyroptosis has been reported to exacerbate coagulation disorders, yet this implication has not been illustrated completely in AP. METHODS: RNA sequencing data of peripheral blood of AP patients were downloaded from the Gene Expression Omnibus database. Gene set variation analysis and single sample gene set enrichment analysis were used to calculate the enrichment score of coagulation-related signatures and pyroptosis. Spearman and Pearson correlation analysis was used for correlation analysis. Peripheral blood samples and related clinical parameters were collected from patients with AP and healthy individuals. A severe AP (SAP) model of mice was established using caerulein and lipopolysaccharide. Enzyme-linked immunosorbent assay, chemiluminescence immunoassay and immunohistochemical analysis were employed to detect the level of coagulation indicators and pyroptosis markers in serum and pancreas tissues. Additionally, we evaluated the effect of pyroptosis inhibition and NLRC4 silence on the function of human umbilical vein endothelial cells (HUVECs). RESULTS: Coagulation disorders were significantly positively correlated to the severity of AP, and they could be a predictor for AP severity. Further analyses indicated that six genes-DOCK9, GATA3, FCER1G, NLRC4, C1QB and C1QC-may be involved in coagulation disorders of AP. Among them, NLRC4 was positively related to pyroptosis that had a positive association with most coagulation-related signatures. Data from patients showed that NLRC4 and other pyroptosis markers, including IL-1ß, IL-18, caspase1 and GSDMD, were significant correlation to AP severity. In addition, NLRC4 was positively associated with coagulation indicators in AP patients. Data from mice showed that NLRC4 was increased in the pancreas tissues of SAP mice. Treatment with a pyroptosis inhibitor effectively alleviated SAP and coagulation disorders in mice. Finally, inhibiting pyroptosis or silencing NLRC4 could relieve endothelial dysfunction in HUVECs. CONCLUSIONS: NLRC4-mediated pyroptosis damages the function of endothelial cells and thereby exacerbates coagulation disorders of AP. Inhibiting pyroptosis could improve coagulation function and alleviate AP.


Subject(s)
Blood Coagulation Disorders , Pancreatitis , Animals , Humans , Mice , Acute Disease , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/complications , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Pancreatitis/genetics , Pyroptosis
8.
Cell Commun Signal ; 22(1): 237, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649988

ABSTRACT

BACKGROUND: A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS: Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of ß-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS: Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral ß-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION: NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.


Subject(s)
Azadirachta , CARD Signaling Adaptor Proteins , Dendritic Cells , Lectins, C-Type , Mice, Inbred C57BL , NF-kappa B , Plant Leaves , Signal Transduction , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Azadirachta/chemistry , Mice , CARD Signaling Adaptor Proteins/metabolism , NF-kappa B/metabolism , Protein Binding
9.
Front Immunol ; 15: 1364957, 2024.
Article in English | MEDLINE | ID: mdl-38650932

ABSTRACT

Introduction: CARD11 is a lymphoid lineage-specific scaffold protein regulating the NF-κB activation downstream of the antigen receptor signal pathway. Defective CARD11 function results in abnormal development and differentiation of lymphocytes, especially thymic regulatory T cells (Treg). Method: In this study, we used patients' samples together with transgenic mouse models carrying pathogenic CARD11 mutations from patients to explore their effects on Treg development. Immunoblotting and a GFP receptor assay were used to evaluate the activation effect of CARD11 mutants on NF-κB signaling. Then the suppressive function of Tregs carrying distinct CARD11 mutations was measured by in vitro suppression assay. Finally, we applied the retroviral transduced bone marrow chimeras to rescue the Treg development in an NF-κB independent manner. Results and discuss: We found CARD11 mutations causing hyper-activated NF-κB signals also gave rise to compromised Treg development in the thymus, similar to the phenotype in Card11 deficient mice. This observation challenges the previous view that CARD11 regulates Treg lineage dependent on the NF-kB activation. Mechanistic investigations reveal that the noncanonical function CARD11, which negatively regulates the AKT/ FOXO1 signal pathway, is responsible for regulating Treg generation. Moreover, primary immunodeficiency patients carrying CARD11 mutation, which autonomously activates NF-κB, also represented the reduced Treg population in their peripheral blood. Our results propose a new regulatory function of CARD11 and illuminate an NF-κB independent pathway for thymic Treg lineage commitment.


Subject(s)
CARD Signaling Adaptor Proteins , Guanylate Cyclase , Mutation , NF-kappa B , Signal Transduction , T-Lymphocytes, Regulatory , Thymus Gland , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , NF-kappa B/metabolism , Humans , Mice , Thymus Gland/immunology , Thymus Gland/cytology , Thymus Gland/metabolism , Mice, Transgenic , Cell Differentiation/immunology , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/genetics , Male
10.
PLoS Biol ; 22(4): e3002597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38684033

ABSTRACT

Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.


Subject(s)
Calcium-Binding Proteins , Cytosol , Flagellin , Host-Pathogen Interactions , Inflammasomes , Salmonella typhimurium , Type III Secretion Systems , Cytosol/metabolism , Cytosol/microbiology , Animals , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/metabolism , Type III Secretion Systems/metabolism , Inflammasomes/metabolism , Mice , Flagellin/metabolism , Neuronal Apoptosis-Inhibitory Protein/metabolism , Neuronal Apoptosis-Inhibitory Protein/genetics , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Inbred C57BL , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Single-Cell Analysis/methods , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella Infections/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism
11.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652550

ABSTRACT

The immune system can control cancer progression. However, even though some innate immune sensors of cellular stress are expressed intrinsically in epithelial cells, their potential role in cancer aggressiveness and subsequent overall survival in humans is mainly unknown. Here, we show that nucleotide-binding oligomerization domain-like receptor (NLR) family CARD domain-containing 4 (NLRC4) is downregulated in epithelial tumor cells of patients with colorectal cancer (CRC) by using spatial tissue imaging. Strikingly, only the loss of tumor NLRC4, but not stromal NLRC4, was associated with poor immune infiltration (mainly DCs and CD4+ and CD8+ T cells) and accurately predicted progression to metastatic stage IV and decrease in overall survival. By combining multiomics approaches, we show that restoring NLRC4 expression in human CRC cells triggered a broad inflammasome-independent immune reprogramming consisting of type I interferon (IFN) signaling genes and the release of chemokines and myeloid growth factors involved in the tumor infiltration and activation of DCs and T cells. Consistently, such reprogramming in cancer cells was sufficient to directly induce maturation of human DCs toward a Th1 antitumor immune response through IL-12 production in vitro. In multiple human carcinomas (colorectal, lung, and skin), we confirmed that NLRC4 expression in patient tumors was strongly associated with type I IFN genes, immune infiltrates, and high microsatellite instability. Thus, we shed light on the epithelial innate immune sensor NLRC4 as a therapeutic target to promote an efficient antitumor immune response against the aggressiveness of various carcinomas.


Subject(s)
Calcium-Binding Proteins , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Interferon Type I , Signal Transduction , Humans , Calcium-Binding Proteins/genetics , Interferon Type I/metabolism , Interferon Type I/immunology , Interferon Type I/genetics , Signal Transduction/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Female , Dendritic Cells/immunology , Dendritic Cells/metabolism , Male , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology
12.
Phytomedicine ; 128: 155515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484624

ABSTRACT

BACKGROUND: Vulvovaginal candidiasis (VVC) is a common infection that affects the female reproductive tract. Pulsatilla decoction (PD), a traditional Chinese herbal medicine, is a classic and effective prescription for VVC. However, its mechanism of action remains unclear. PURPOSE: This study aimed to evaluate the efficacy and potential mechanism of action of the n-butanol extract of Pulsatilla decoction (BEPD) in VVC treatment. METHODS: High performance liquid chromatography (HPLC) was used to detect the main active ingredients in BEPD. A VVC-mouse model was constructed using an estrogen-dependent method to evaluate the efficacy of BEPD in VVC treatment. Fungal burden and morphology in the vaginal cavity were comprehensively assessed. Candida albicans-induced inflammation was examined in vivo and in vitro. The effects of BEPD on the Protein kinase Cδ (PKCδ) /NLR family CARD domain-containing protein 4 (NLRC4)/Interleukin-1 receptor antagonist (IL-1Ra) axis were analyzed using by immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and reverse transcription-quantitative polymerase chain reaction (qRT-PCR). RESULTS: BEPD inhibited fungal growth in the vagina of VVC mice, preserved the integrity of the vaginal mucosa, and suppressed inflammatory responses. Most importantly, BEPD activated the "silent" PKCδ/NLRC4/IL-1Ra axis and negatively regulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, thereby exerting a therapeutic efficacy on VVC. CONCLUSIONS: BEPD effects on mice with VVC were dose-dependent. BEPD protects against VVC by inhibiting inflammatory response and NLRP3 inflammasome via the activation of the PKCδ/NLRC4/IL-1Ra axis. This study revealed the pharmacological mechanism of BEPD in VVC treatment and provided further evidence for the application of BEPD in VVC treatment.


Subject(s)
Candidiasis, Vulvovaginal , Disease Models, Animal , Drugs, Chinese Herbal , Pulsatilla , Animals , Female , Mice , Candida albicans/drug effects , Candidiasis, Vulvovaginal/drug therapy , CARD Signaling Adaptor Proteins/metabolism , Drugs, Chinese Herbal/pharmacology , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Kinase C-delta/metabolism , Pulsatilla/chemistry , Vagina/microbiology , Vagina/drug effects
13.
STAR Protoc ; 5(1): 102916, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38451820

ABSTRACT

Apoptosis-associated speck-like protein containing a c-terminal caspase activation and recruitment domain (ASC) specks are elevated in the cerebrospinal fluid (CSF) of Alzheimer's disease and related dementias (AD/ADRDs) patients. Here, we present a flow cytometry protocol to quantify ASC specks. We describe steps for fluorescently labeling ASC specks using antibody technology, visualizing with imaging flow cytometry, and gating based on physical characteristics. CSF ASC specks levels positively correlate with phosphorylated tau (Thr181) and negatively correlate with amyloid ß ratio (42/40), thus serving as a neuroinflammatory biomarker for diagnosing AD/ADRDs. For complete details on the use and execution of this protocol, please refer to Jiang et al.1.


Subject(s)
Amyloid beta-Peptides , CARD Signaling Adaptor Proteins , Humans , Flow Cytometry/methods , CARD Signaling Adaptor Proteins/metabolism , Amyloid beta-Peptides/metabolism , Inflammasomes/metabolism , Apoptosis
14.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473845

ABSTRACT

The caspase recruitment domain-containing protein 9 (CARD9) is an intracellular adaptor protein that is abundantly expressed in cells of the myeloid lineage, such as neutrophils, macrophages, and dendritic cells. CARD9 plays a critical role in host immunity against infections caused by fungi, bacteria, and viruses. A CARD9 deficiency impairs the production of inflammatory cytokines and chemokines as well as migration and infiltration, thereby increasing susceptibility to infections. However, CARD9 signaling varies depending on the pathogen causing the infection. Furthermore, different studies have reported altered CARD9-mediated signaling even with the same pathogen. Therefore, this review focuses on and elucidates the current literature on varied CARD9 signaling in response to various infectious stimuli in humans and experimental mice models.


Subject(s)
Adaptor Proteins, Signal Transducing , Cytokines , Humans , Animals , Mice , Cytokines/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Immunity , Signal Transduction , Macrophages/metabolism , CARD Signaling Adaptor Proteins/metabolism
15.
Cell Rep ; 43(3): 113944, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38489265

ABSTRACT

Population genetics continues to identify genetic variants associated with diseases of the immune system and offers a unique opportunity to discover mechanisms of immune regulation. Multiple genetic variants linked to severe fungal infections and autoimmunity are associated with caspase recruitment domain-containing protein 9 (CARD9). We leverage the CARD9 R101C missense variant to uncover a biochemical mechanism of CARD9 activation essential for antifungal responses. We demonstrate that R101C disrupts a critical signaling switch whereby phosphorylation of S104 releases CARD9 from an autoinhibited state to promote inflammatory responses in myeloid cells. Furthermore, we show that CARD9 R101C exerts dynamic effects on the skin cellular contexture during fungal infection, corrupting inflammatory signaling and cell-cell communication circuits. Card9 R101C mice fail to control dermatophyte infection in the skin, resulting in high fungal burden, yet show minimal signs of inflammation. Together, we demonstrate how translational genetics reveals molecular and cellular mechanisms of innate immune regulation.


Subject(s)
CARD Signaling Adaptor Proteins , Mycoses , Animals , Mice , Phosphorylation , CARD Signaling Adaptor Proteins/metabolism , Signal Transduction , Inflammation , Antifungal Agents
16.
Nat Commun ; 15(1): 2100, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453949

ABSTRACT

Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.


Subject(s)
COVID-19 , Inflammasomes , Humans , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , COVID-19/pathology , Inflammasomes/metabolism , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleoproteins/metabolism , SARS-CoV-2/metabolism
17.
Cell ; 187(5): 1223-1237.e16, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428396

ABSTRACT

While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.


Subject(s)
HIV Infections , Inflammasomes , Simian Acquired Immunodeficiency Syndrome , Animals , Humans , Mice , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/metabolism , Disease Progression , HIV Infections/pathology , Inflammasomes/metabolism , Neoplasm Proteins/metabolism , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/physiology , Viremia , HIV/physiology
18.
Nature ; 626(7999): 626-634, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326614

ABSTRACT

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Subject(s)
Evolution, Molecular , Immunotherapy, Adoptive , Lymphoma, T-Cell, Cutaneous , Mutation , T-Lymphocytes , Humans , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cytokines/biosynthesis , Cytokines/immunology , Cytokines/metabolism , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Immunotherapy, Adoptive/methods , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/immunology , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Cutaneous/therapy , Phosphatidylinositol 3-Kinases , Signal Transduction/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
19.
Nat Microbiol ; 9(1): 95-107, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168615

ABSTRACT

The host type I interferon (IFN) pathway is a major signature of inflammation induced by the human fungal pathogen, Candida albicans. However, the molecular mechanism for activating this pathway in the host defence against C. albicans remains unknown. Here we reveal that mice lacking cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway components had improved survival following an intravenous challenge by C. albicans. Biofilm-associated C. albicans DNA packaged in extracellular vesicles triggers the cGAS-STING pathway as determined by induction of interferon-stimulated genes, IFNß production, and phosphorylation of IFN regulatory factor 3 and TANK-binding kinase 1. Extracellular vesicle-induced activation of type I IFNs was independent of the Dectin-1/Card9 pathway and did not require toll-like receptor 9. Single nucleotide polymorphisms in cGAS and STING potently altered inflammatory cytokine production in human monocytes challenged by C. albicans. These studies provide insights into the early innate immune response induced by a clinically significant fungal pathogen.


Subject(s)
Candidiasis , Interferon Type I , Animals , Mice , Candida albicans/pathogenicity , CARD Signaling Adaptor Proteins/metabolism , Immunity, Innate , Interferon Type I/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction , Candidiasis/metabolism , Candidiasis/pathology
20.
Curr Opin HIV AIDS ; 19(2): 56-61, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38169429

ABSTRACT

PURPOSE OF REVIEW: HIV requires lifelong antiviral treatment due to the persistence of a reservoir of latently infected cells. Multiple strategies have been pursued to promote the death of infected cells. RECENT FINDINGS: Several groups have focused on multipronged approaches to induce apoptosis of infected cells. One approach is to combine latency reversal agents with proapoptotic compounds and cytotoxic T cells to first reactivate and then clear infected cells. Other strategies include using natural killer cells or chimeric antigen receptor cells to decrease the size of the reservoir.A novel strategy is to promote cell death by pyroptosis. This mechanism relies on the activation of the caspase recruitment domain-containing protein 8 (CARD8) inflammasome by the HIV protease and can be potentiated by nonnucleoside reverse transcriptase inhibitors. SUMMARY: The achievement of a clinically significant reduction in the size of the reservoir will likely require a combination strategy since none of the approaches pursued so far has been successful on its own in clinical trials. This discrepancy between promising in vitro findings and modest in vivo results highlights the hurdles of identifying a universally effective strategy given the wide heterogeneity of the HIV reservoirs in terms of tissue location, capability to undergo latency reversal and susceptibility to cell death.


Subject(s)
HIV Infections , HIV-1 , Humans , Virus Latency , CD4-Positive T-Lymphocytes , HIV-1/physiology , Cell Death , Neoplasm Proteins/metabolism , Neoplasm Proteins/pharmacology , Neoplasm Proteins/therapeutic use , CARD Signaling Adaptor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...