Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747919

ABSTRACT

BACKGROUND: For many years it has been postulated that the immune system controls the progress of multiple myeloma (MM). However, the phenotypes of T cells in MM remain to be elucidated. In this study, we compared the phenotypes of T cells, which were obtained from the peripheral blood, in MM patients with those in healthy donors (HD). The expression of CCR7, CD57, CD28, HLA-DR, CD38, CD45RA, and CD45RO were assessed on T cells from MM patients and HDs using multicolor flow cytometry (MFC). METHODS: For this study, 17 newly diagnosed MM patients were selected, and 20 healthy people were selected as a control group. MFC was used to detect the markers on T cells. RESULTS: We detected significant increases in the expression levels of HLA-DR, CD38, and CD57on CD8+ T cells, significant decreases in the expression levels of CD28 and CD45RA on CD8+ T cells, and a decrease of CD4+ effec-tor T cells in MM patients, compared to the HD group. CONCLUSIONS: Our study shows that the accumulation of peripheral CD8+CD57+T cells, CD8+CD38high T cells, and CD8+HLA-DR+CD38high T cells is reflective of an ongoing antitumor T cell response and a progressive immune dysfunction in MM. During chemotherapy, the recovery of immune function can be monitored by detecting the proportion of activated molecules of T lymphocytes.


Subject(s)
ADP-ribosyl Cyclase 1 , CD28 Antigens , Flow Cytometry , HLA-DR Antigens , Leukocyte Common Antigens , Multiple Myeloma , Humans , Multiple Myeloma/immunology , CD28 Antigens/immunology , CD28 Antigens/metabolism , ADP-ribosyl Cyclase 1/metabolism , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , HLA-DR Antigens/blood , Leukocyte Common Antigens/metabolism , Male , Middle Aged , Female , Aged , CD57 Antigens/metabolism , Case-Control Studies , Immunophenotyping/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adult , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Membrane Glycoproteins/immunology
2.
Biomolecules ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672472

ABSTRACT

Adversity during infancy can affect neurobehavioral development and perturb the maturation of physiological systems. Dysregulated immune and inflammatory responses contribute to many of the later effects on health. Whether normalization can occur following a transition to more nurturing, benevolent conditions is unclear. To assess the potential for recovery, blood samples were obtained from 45 adolescents adopted by supportive families after impoverished infancies in institutional settings (post-institutionalized, PI). Their immune profiles were compared to 39 age-matched controls raised by their biological parents (non-adopted, NA). Leukocytes were immunophenotyped, and this analysis focuses on natural killer (NK) cell populations in circulation. Cytomegalovirus (CMV) seropositivity was evaluated to determine if early infection contributed to the impact of an atypical rearing. Associations with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), two cytokines released by activated NK cells, were examined. Compared to the NA controls, PI adolescents had a lower percent of CD56bright NK cells in circulation, higher TNF-α levels, and were more likely to be infected with CMV. PI adolescents who were latent carriers of CMV expressed NKG2C and CD57 surface markers on more NK cells, including CD56dim lineages. The NK cell repertoire revealed lingering immune effects of early rearing while still maintaining an overall integrity and resilience.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Killer Cells, Natural , Tumor Necrosis Factor-alpha , Killer Cells, Natural/immunology , Humans , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Adolescent , Female , Male , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism , Cytomegalovirus/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , CD56 Antigen/metabolism , CD57 Antigens/metabolism
3.
J Autoimmun ; 143: 103171, 2024 02.
Article in English | MEDLINE | ID: mdl-38306953

ABSTRACT

CD57+ CD8+ T cells, also referred as effector memory cells, are implicated in various conditions including tumor immunity, virus immunity, and most recently with autoimmunity. However, their roles in the progression and remission of T1D are still unclear. Here, we noted an increase in peripheral CD57+ CD8+ T cells in a T1D patient harboring an activator of transcription 3 (STAT3) mutation. Our in-depth study on the role of CD57+ CD8+ T cells within a T1D patient cohort revealed that these cells undergo significant compositional shifts during the disease's progression. Longitudinal cohort data suggested that CD57+ CD8+ T cell prevalence may be a harbinger of ß-cell function decline in T1D patients. Characterized by robust cytotoxic activity, heightened production of pro-inflammatory cytokines, and increased intracellular glucose uptake, these cells may be key players in the pathophysiology of T1D. Moreover, in vitro assays showed that the CXCL12-CXCR4 axis promotes the expansion and function of CD57+ CD8+ T cells via Erk1/2 signaling. Notably, the changes of serum CXCL12 concentrations were also found in individuals during the peri-remission phase of T1D. Furthermore, treatment with the CXCR4 antagonist LY2510924 reduced the immunological infiltration of CD57+ CD8+ T cells and mitigated hyperglycemia in a STZ-induced T1D mouse model. Taken together, our work has uncovered a novel role of the CXCL12-CXCR4 axis in driving CD57+ CD8+ T cells responses in T1D, and presented a promising therapeutic strategy for delaying the onset and progression of diabetes.


Subject(s)
CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Animals , Humans , Mice , CD57 Antigens/metabolism , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Cytokines/metabolism , Receptors, CXCR4/metabolism , Signal Transduction
4.
Cell Mol Immunol ; 20(7): 777-793, 2023 07.
Article in English | MEDLINE | ID: mdl-37161048

ABSTRACT

As chronic antigenic stimulation from infection and autoimmunity is a feature of primary antibody deficiency (PAD), analysis of affected patients could yield insights into T-cell differentiation and explain how environmental exposures modify clinical phenotypes conferred by single-gene defects. CD57 marks dysfunctional T cells that have differentiated after antigenic stimulation. Indeed, while circulating CD57+ CD4+ T cells are normally rare, we found that they are increased in patients with PAD and markedly increased with CTLA4 haploinsufficiency or blockade. We performed single-cell RNA-seq analysis of matched CD57+ CD4+ T cells from blood and tonsil samples. Circulating CD57+ CD4+ T cells (CD4cyt) exhibited a cytotoxic transcriptome similar to that of CD8+ effector cells, could kill B cells, and inhibited B-cell responses. CTLA4 restrained the formation of CD4cyt. While CD57 also marked an abundant subset of follicular helper T cells, which is consistent with their antigen-driven differentiation, this subset had a pre-exhaustion transcriptomic signature marked by TCF7, TOX, and ID3 expression and constitutive expression of CTLA4 and did not become cytotoxic even after CTLA4 inhibition. Thus, CD57+ CD4+ T-cell cytotoxicity and exhaustion phenotypes are compartmentalised between blood and germinal centers. CTLA4 is a key modifier of CD4+ T-cell cytotoxicity, and the pathological CD4cyt phenotype is accentuated by infection.


Subject(s)
B-Lymphocytes , CD4-Positive T-Lymphocytes , B-Lymphocytes/metabolism , CD57 Antigens/metabolism , Cell Differentiation , CTLA-4 Antigen , Humans
5.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884936

ABSTRACT

Immunosenescence is a process of remodeling the immune system under the influence of chronic inflammation during aging. Parkinson's disease (PD) is a common age-associated neurodegenerative disorder and is frequently accompanied by neuroinflammation. On the other hand, cytomegalovirus (CMV), one of the most spread infections in humans, may induce chronic inflammation which contributes to immunosenescence, differentiation and the inflation of T cells and NK cells. Currently, there is no clear understanding of immunosenescence severity in PD patients infected with CMV. In this study, we analyzed differentiation stages and immunosenescence characteristics of T cells and NK cells in 31 patients with mild and moderate PD severity, 33 age-matched and 30 young healthy donors. The PD patients were 100% CMV-seropositive compared to 76% age-matched and 73% young CMV-infected healthy donors. The proportion of effector memory T cells re-expressing CD45RA, CD57+CD56- T cells and CD57+CD56+ T cells was significantly reduced in PD patients compared with CMV-seropositive age-matched healthy individuals. The CD57+CD56- T cell proportion in PD patients was similar to that of CMV-seropositive young healthy donors. Thus, PD is characterized by reduced peripheral blood T cell immunosenescence, even against the background of CMV infection.


Subject(s)
Cytomegalovirus Infections/blood , Lymphocyte Subsets/immunology , Parkinson Disease/immunology , Parkinson Disease/virology , Age Factors , Aged , CD56 Antigen/metabolism , CD57 Antigens/metabolism , Case-Control Studies , Cell Differentiation , Cytomegalovirus Infections/immunology , Female , Humans , Immunosenescence , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Leukocytes, Mononuclear/immunology , Lymphocyte Count , Lymphocyte Subsets/virology , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Parkinson Disease/blood
6.
mBio ; 12(5): e0159921, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34488453

ABSTRACT

Cellular immunity may be involved in organ damage and rehabilitation in patients with coronavirus disease 2019 (COVID-19). We aimed to delineate immunological features of COVID-19 patients with pulmonary sequelae (PS) 1 year after discharge. Fifty COVID-19 survivors were recruited and classified according to radiological characteristics, including 24 patients with PS and 26 patients without PS. Phenotypic and functional characteristics of immune cells were evaluated by multiparametric flow cytometry. Patients with PS had an increased proportion of natural killer (NK) cells and a lower percentage of B cells than patients without PS. Phenotypic and functional features of T cells in patients with PS were predominated by the accumulation of CD4-positive (CD4+) T cells secreting interleukin 17A (IL-17A), short-lived effector-like CD8+ T cells (CD27-negative [CD27-] CD62L-), and senescent T cells with excessive secretion of granzyme B/perforin/interferon gamma (IFN-γ). NK cells were characterized by the excessive secretion of granzyme B and perforin and the downregulation of NKP30 and NKP46; highly activated NKT and γδ T cells exhibited NKP30 and TIM-3 upregulation and NKB1 downregulation in patients with PS. However, immunosuppressive cells were comparable between the two groups. The interrelationship of immune cells in COVID-19 was intrinsically identified, whereby T cells secreting IL-2, IL-4, and IL-17A were enriched among CD28+ and CD57- cells and cells secreting perforin/granzyme B/IFN-γ/tumor necrosis factor alpha (TNF-α)-expressed markers of terminal differentiation. CD57+ NK cells, CD4+Perforin+ T cells, and CD8+ CD27+ CD62L+ T cells were identified as the independent predictors for residual lesions. Overall, our findings unveil the profound imbalance of immune landscape that may correlate with organ damage and rehabilitation in COVID-19. IMPORTANCE A considerable proportion of COVID-19 survivors have residual lung lesions such as ground-glass opacity and fiber streak shadow. To determine the relationship between host immunity and residual lung lesions, we performed an extensive analysis of immune responses in convalescent patients with COVID-19 1 year after discharge. We found significant differences in immunological characteristics between patients with pulmonary sequelae and patients without pulmonary sequelae 1 year after discharge. Our study highlights the profound imbalance of immune landscape in the COVID-19 patients with pulmonary sequelae, characterized by the robust activation of cytotoxic T cells, NK cells, and γδ T cells, as well as the deficiencies of immunosuppressive cells. Importantly, CD57+ NK cells, CD4+Perforin+ T cells, and CD8+ CD27+ CD62L+ T cells were identified as the independent predictors for residual lesions.


Subject(s)
COVID-19/immunology , Adult , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/metabolism , Female , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Immunity, Cellular/immunology , Immunity, Cellular/physiology , Interleukin-17/metabolism , Interleukin-2/metabolism , Interleukin-4/metabolism , L-Selectin/metabolism , Male , Middle Aged , Natural Cytotoxicity Triggering Receptor 1/metabolism , Natural Cytotoxicity Triggering Receptor 3/metabolism
7.
Nat Commun ; 12(1): 4854, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381049

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Systemic Inflammatory Response Syndrome/immunology , Transcriptome/immunology , Adolescent , CD56 Antigen/metabolism , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Child , Child, Preschool , Down-Regulation , Female , Humans , Infant , Infant, Newborn , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/genetics , Young Adult
8.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360882

ABSTRACT

The human natural killer (HNK-1) carbohydrate plays important roles during nervous system development, regeneration after trauma and synaptic plasticity. Four proteins have been identified as receptors for HNK-1: the laminin adhesion molecule, high-mobility group box 1 and 2 (also called amphoterin) and cadherin 2 (also called N-cadherin). Because of HNK-1's importance, we asked whether additional receptors for HNK-1 exist and whether the four identified proteins share any similarity in their primary structures. A set of 40,000 sequences homologous to the known HNK-1 receptors was selected and used for large-scale sequence alignments and motif searches. Although there are conserved regions and highly conserved sites within each of these protein families, there was no sequence similarity or conserved sequence motifs found to be shared by all families. Since HNK-1 receptors have not been compared regarding binding constants and since it is not known whether the sulfated or non-sulfated part of HKN-1 represents the structurally crucial ligand, the receptors are more heterogeneous in primary structure than anticipated, possibly involving different receptor or ligand regions. We thus conclude that the primary protein structure may not be the sole determinant for a bona fide HNK-1 receptor, rendering receptor structure more complex than originally assumed.


Subject(s)
CD57 Antigens/metabolism , Cadherins/metabolism , HMGB1 Protein/metabolism , HMGB2 Protein/metabolism , Laminin/metabolism , Oligosaccharides/metabolism , Amino Acid Sequence , Animals , Binding Sites , CD57 Antigens/chemistry , Cadherins/chemistry , HMGB1 Protein/chemistry , HMGB2 Protein/chemistry , Humans , Laminin/chemistry , Ligands , Nerve Regeneration/physiology , Neuronal Plasticity/physiology , Oligosaccharides/chemistry , Protein Binding , Protein Domains
9.
Front Immunol ; 12: 713132, 2021.
Article in English | MEDLINE | ID: mdl-34386013

ABSTRACT

Senescent T cells have been described during aging, chronic infections, and cancer; however, a comprehensive study of the phenotype, function, and transcriptional program of this T cell population in breast cancer (BC) patients is missing. Compared to healthy donors (HDs), BC patients exhibit an accumulation of KLRG-1+CD57+ CD4+ and CD8+ T cells in peripheral blood. These T cells infiltrate tumors and tumor-draining lymph nodes. KLRG-1+CD57+ CD4+ and CD8+ T cells from BC patients and HDs exhibit features of senescence, and despite their inhibitory receptor expression, they produce more effector cytokines and exhibit higher expression of Perforin, Granzyme B, and CD107a than non-senescent subsets. When compared to blood counterparts, tumor-infiltrating senescent CD4+ T cells show similar surface phenotype but reduced cytokine production. Transcriptional profiling of senescent CD4+ T cells from the peripheral blood of BC patients reveals enrichment in genes associated with NK or CD8+-mediated cytotoxicity, TCR-mediated stimulation, and cell exhaustion compared to non-senescent T cells. Comparison of the transcriptional profile of senescent CD4+ T cells from peripheral blood of BC patients with those of HDs highlighted marked similarities but also relevant differences. Senescent CD4+ T cells from BC patients show enrichment in T-cell signaling, processes involved in DNA replication, p53 pathways, oncogene-induced senescence, among others compared to their counterparts in HDs. High gene expression of CD4, KLRG-1, and B3GAT1 (CD57), which correlates with increased overall survival for BC patients, underscores the usefulness of the evaluation of the frequency of senescent CD4+ T cells as a biomarker in the follow-up of patients.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cellular Senescence , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Breast Neoplasms/etiology , CD57 Antigens/metabolism , Case-Control Studies , Cellular Senescence/genetics , Cellular Senescence/immunology , Cytotoxicity, Immunologic , Female , Gene Expression Profiling , Humans , Immunophenotyping , Lectins, C-Type/metabolism , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/pathology , Receptors, Immunologic/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology
10.
Front Immunol ; 12: 661551, 2021.
Article in English | MEDLINE | ID: mdl-34122420

ABSTRACT

Immune function is altered with increasing age. Infection with cytomegalovirus (CMV) accelerates age-related immunological changes resulting in expanded oligoclonal memory CD8 T cell populations with impaired proliferation, signaling, and cytokine production. As a consequence, elderly CMV seropositive (CMV+) individuals have increased mortality and impaired responses to other infections in comparison to seronegative (CMV-) individuals of the same age. CMV is also a significant complication after organ transplantation, and recent studies have shown that CMV-associated expansion of memory T cells is accelerated after transplantation. Thus, we investigated whether immune aging is accelerated post-transplant, using a combination of telomere length, flow cytometry phenotyping, and single cell RNA sequencing. Telomere length decreased slightly in the first year after transplantation in a subset of both CMV+ and CMV- recipients with a strong concordance between CD57+ cells and short telomeres. Phenotypically aged cells increased post-transplant specifically in CMV+ recipients, and clonally expanded T cells were enriched for terminally differentiated cells post-transplant. Overall, these findings demonstrate a pattern of accelerated aging of the CD8 T cell compartment in CMV+ transplant recipients.


Subject(s)
Aging/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Heart Transplantation , Kidney Transplantation , Adult , Aged , Aging/genetics , CD57 Antigens/immunology , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cytomegalovirus/physiology , Cytomegalovirus Infections/virology , Female , Flow Cytometry/methods , Humans , Male , Middle Aged , Telomere/genetics , Telomere/immunology , Telomere Homeostasis/genetics , Telomere Homeostasis/immunology
11.
J Immunol ; 206(7): 1668-1676, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33597150

ABSTRACT

Costimulation blockade (CoB)-based immunosuppression offers the promise of improved transplantation outcomes with reduced drug toxicity. However, it is hampered by early acute rejections, mediated at least in part by differentiated, CoB-resistant T cells, such as CD57+PD1- CD4 T cells. In this study, we characterize these cells pretransplant, determine their fate posttransplant, and examine their proliferative capacity in vitro in humans. Our studies show that CD57+PD1- CD4 T cells are correlated with increasing age and CMV infection pretransplant, and persist for up to 1 y posttransplant. These cells are replication incompetent alone but proliferated in the presence of unsorted PBMCs in a contact-independent manner. When stimulated, cells sorted by CD57/PD1 status upregulate markers of activation with proliferation. Up to 85% of CD57+PD1- cells change expression of CD57/PD1 with stimulation, typically, upregulating PD1 and downregulating CD57. PD1 upregulation is accentuated in the presence of rapamycin but prevented by tacrolimus. These data support a general theory of CoB-resistant cells as Ag-experienced, costimulation-independent cells and suggest a mechanism for the synergy of belatacept and rapamycin, with increased expression of the activation marker PD1 potentiating exhaustion of CoB-resistant cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/physiology , Graft Rejection/immunology , Kidney Failure, Chronic/surgery , Kidney Transplantation , Programmed Cell Death 1 Receptor/metabolism , Abatacept/therapeutic use , Adult , CD57 Antigens/metabolism , Cell Plasticity , Cytomegalovirus Infections/drug therapy , Drug Synergism , Female , Gene Expression Regulation , Graft Rejection/drug therapy , Humans , Immunosuppression Therapy , Immunosuppressive Agents , Kidney Failure, Chronic/drug therapy , Male , Middle Aged , Phenotype , Programmed Cell Death 1 Receptor/genetics , Sirolimus/therapeutic use , Tacrolimus/therapeutic use
12.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33351781

ABSTRACT

Clinical trials of biologic therapies in type 1 diabetes (T1D) aim to mitigate autoimmune destruction of pancreatic ß cells through immune perturbation and serve as resources to elucidate immunological mechanisms in health and disease. In the T1DAL trial of alefacept (LFA3-Ig) in recent-onset T1D, endogenous insulin production was preserved in 30% of subjects for 2 years after therapy. Given our previous findings linking exhausted-like CD8+ T cells to beneficial response in T1D trials, we applied unbiased analyses to sorted CD8+ T cells to evaluate their potential role in T1DAL. Using RNA sequencing, we found that greater insulin C-peptide preservation was associated with a module of activation- and exhaustion-associated genes. This signature was dissected into 2 CD8 memory phenotypes through correlation with cytometry data. These cells were hypoproliferative, shared expanded rearranged TCR junctions, and expressed exhaustion-associated markers including TIGIT and KLRG1. The 2 phenotypes could be distinguished by reciprocal expression of CD8+ T and NK cell markers (GZMB, CD57, and inhibitory killer cell immunoglobulin-like receptor [iKIR] genes), versus T cell activation and differentiation markers (PD-1 and CD28). These findings support previous evidence linking exhausted-like CD8+ T cells to successful immune interventions for T1D, while suggesting that multiple inhibitory mechanisms can promote this beneficial cell state.


Subject(s)
Alefacept/therapeutic use , C-Peptide/biosynthesis , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Adolescent , Adult , C-Peptide/genetics , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/classification , CD8-Positive T-Lymphocytes/metabolism , Child , Diabetes Mellitus, Type 1/metabolism , Double-Blind Method , Female , Humans , Immunologic Factors/therapeutic use , Immunologic Memory/genetics , Immunophenotyping , Killer Cells, Natural/immunology , Lectins, C-Type/metabolism , Lymphocyte Activation , Male , Programmed Cell Death 1 Receptor/metabolism , RNA-Seq , Receptors, Immunologic/metabolism , Young Adult
13.
Cell Mol Life Sci ; 78(1): 93-116, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32613283

ABSTRACT

The success of investigations on the structure and function of the genome (genomics) has been paralleled by an equally awesome progress in the analysis of protein structure and function (proteomics). We propose that the investigation of carbohydrate structures that go beyond a cell's metabolism is a rapidly developing frontier in our expanding knowledge on the structure and function of carbohydrates (glycomics). No other functional system appears to be suited as well as the nervous system to study the functions of glycans, which had been originally characterized outside the nervous system. In this review, we describe the multiple studies on the functions of LewisX, the human natural killer cell antigen-1 (HNK-1), as well as oligomannosidic and sialic (neuraminic) acids. We attempt to show the sophistication of these structures in ontogenetic development, synaptic function and plasticity, and recovery from trauma, with a view on neurodegeneration and possibilities to ameliorate deterioration. In view of clinical applications, we emphasize the need for glycomimetic small organic compounds which surpass the usefulness of natural glycans in that they are metabolically more stable, more parsimonious to synthesize or isolate, and more advantageous for therapy, since many of them pass the blood brain barrier and are drug-approved for treatments other than those in the nervous system, thus allowing a more ready access for application in neurological diseases. We describe the isolation of such mimetic compounds using not only Western NIH, but also traditional Chinese medical libraries. With this review, we hope to deepen the interests in this exciting field.


Subject(s)
Carbohydrate Metabolism/physiology , Nervous System/metabolism , CD57 Antigens/metabolism , Glycosaminoglycans/metabolism , Humans , Lewis X Antigen/metabolism , Nerve Regeneration , Nervous System/growth & development , Neuronal Plasticity , Oligosaccharides/metabolism , Sialic Acids/metabolism
14.
Cells ; 9(12)2020 12 04.
Article in English | MEDLINE | ID: mdl-33291545

ABSTRACT

Pro-inflammatory CD4+CD28- T cells are characteristic of immunosenescence, but also of several autoimmune/inflammatory diseases. Vasoactive intestinal peptide (VIP) acts as an anti-inflammatory and immunomodulatory mediator on these cells. Our objective was to study the mutual influence between senescent Th cells and VIP axis in early arthritis (EA), comparing with non-EA donors. We characterized the correlation between senescent Th cells and clinic parameters of EA as well as the behavior of senescent Th biomarkers by real-time PCR. Clinical data were systematically recorded at baseline and after 6 months of follow-up. The number of CD4+CD28- T cells measured by sorting is higher in patients who initially meet ACR classification criteria for rheumatoid arthritis (RA) compared to those who were classified as undifferentiated arthritis (UA). A slight positive correlation between EA CD4+CD28- T cells and CRP or ESR and a negative correlation with bone mineral density were found. Th senescent biomarkers in EA CD4+CD28- T cells were similar to donors, however some of them increased after 6 months of follow-up. VPAC receptors were analyzed by real-time PCR and immunofluorescence, and CD4+CD28- T cells showed higher expression of VPAC2 and lower of VPAC1, VPAC2 showing a significant increased expression in EA cells. Sorted CD4+CD28- T cells were in vitro expanded in presence of VIP, wherein VIP increased senescent biomarker CD27, while it diminished CD57 or NKG2 senescent biomarkers. Our study demonstrates for the first time the existence of a link between senescent Th cells and the VIP axis.


Subject(s)
Arthritis/metabolism , Biomarkers/metabolism , Cellular Senescence , Vasoactive Intestinal Peptide/metabolism , Aged , Arthritis, Rheumatoid , Blood Sedimentation , Bone Density , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/cytology , CD57 Antigens/metabolism , Cells, Cultured , Disease Progression , Female , Gene Expression Profiling , Humans , Longitudinal Studies , Male , Middle Aged , Spain
15.
Cell Rep ; 33(11): 108501, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326780

ABSTRACT

A central paradigm in the field of lymphocyte biology asserts that replicatively senescent memory T cells express the carbohydrate epitope CD57. These cells nonetheless accumulate with age and expand numerically in response to persistent antigenic stimulation. Here, we use in vivo deuterium labeling and ex vivo analyses of telomere length, telomerase activity, and intracellular expression of the cell-cycle marker Ki67 to distinguish between two non-exclusive scenarios: (1) CD57+ memory T cells do not proliferate and instead arise via phenotypic transition from the CD57- memory T cell pool; and/or (2) CD57+ memory T cells self-renew via intracompartmental proliferation. Our results provide compelling evidence in favor of the latter scenario and further suggest in conjunction with mathematical modeling that self-renewal is by far the most abundant source of newly generated CD57+ memory T cells. Immunological memory therefore appears to be intrinsically sustainable among highly differentiated subsets of T cells that express CD57.


Subject(s)
CD57 Antigens/metabolism , Immunologic Memory/immunology , T-Lymphocytes/metabolism , Cell Proliferation , Humans
16.
PLoS One ; 15(10): e0241125, 2020.
Article in English | MEDLINE | ID: mdl-33104750

ABSTRACT

Neural crest cells (NCCs) are a promising source for cell therapy and regenerative medicine owing to their multipotency, self-renewability, and capability to secrete various trophic factors. However, isolating NCCs from adult organs is challenging, because NCCs are broadly distributed throughout the body. Hence, we attempted to directly induce NCCs from human adipose-derived mesenchymal stem cells (ADSCs), which can be isolated easily, using small molecule cocktails. We established a controlled induction protocol with two-step application of small molecule cocktails for 6 days. The induction efficiency was evaluated based on mRNA and protein expression of neural crest markers, such as nerve growth factor receptor (NGFR) and sex-determining region Y-box 10 (SOX10). We also found that various trophic factors were significantly upregulated following treatment with the small molecule cocktails. Therefore, we performed global profiling of cell surface makers and identified distinctly upregulated markers, including the neural crest-specific cell surface markers CD271 and CD57. These results indicate that our chemical treatment can direct human ADSCs to developing into the neural crest lineage. This offers a promising experimental platform to study human NCCs for applications in cell therapy and regenerative medicine.


Subject(s)
Cell Culture Techniques , Culture Media , Mesenchymal Stem Cells , Neural Crest , Regenerative Medicine/methods , CD57 Antigens/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , Neural Crest/cytology , Neural Crest/metabolism , Receptors, Nerve Growth Factor/metabolism , SOXE Transcription Factors/metabolism
17.
Biomed Res Int ; 2020: 9531549, 2020.
Article in English | MEDLINE | ID: mdl-33102599

ABSTRACT

The antitumor activity of NK cells in patients with chronic myeloid leukemia (CML) is inhibited by the leukemia microenvironment. Recent studies have identified that the expression of TIGIT, CD57, and KLRG1 is related to the function, maturation, and antitumor capabilities of NK cells. However, the characteristics of the expression of these genes in the peripheral blood (PB) and bone marrow (BM) from patients with CML remain unknown. In this study, we used multicolor flow cytometry to assay the quantity and phenotypic changes of NK cells in PB and BM from de novo CML (DN-CML) and CML patients acquiring molecular response (MR-CML). We found that the expression of TIGIT, which inhibits NK cell function, is increased on CD56+ and CD56dim NK cells in DN-CML PB compared with those in healthy individuals (HIs), and it is restored to normal in patients who achieve MR. We also found that the expression of CD57 on NK cells was approximately the same level in PB and BM from DN-CML patients, while decreased CD57 expression was found on CD56+ and CD56dim NK cells in HI BM compared with PB. Additionally, those two subsets were significantly increased in DN-CML BM compared to HI BM. The expression of CD57 correlates with replicative senescence and maturity for human NK cells; therefore, the increase in TIGIT on PB NK cells together with an increase in CD57 on BM NK cells may explain the subdued NK cell antileukemia capacity and proliferative ability in DN-CML patients. These results indicate that reversing the immune suppression of PB NK cells by blocking TIGIT while improving the proliferation of BM NK cells via targeting CD57 may be more effective in removing tumor cells.


Subject(s)
Bone Marrow Cells/metabolism , Bone Marrow/metabolism , CD57 Antigens/metabolism , Killer Cells, Natural/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Receptors, Immunologic/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , CD56 Antigen/metabolism , Female , Flow Cytometry/methods , Humans , Immunophenotyping/methods , Male , Middle Aged , Tumor Microenvironment/physiology , Young Adult
18.
Exp Physiol ; 105(9): 1524-1539, 2020 09.
Article in English | MEDLINE | ID: mdl-32715550

ABSTRACT

NEW FINDINGS: What is the central question of this study? What are the characteristics of the NK cell response following acute moderate-intensity aerobic exercise in prostate cancer survivors and is there a relationship between stress hormones and NK cell mobilization? What is the main finding and its importance? NK cell numbers and proportions changed similarly between prostate cancer survivors and controls following acute exercise. Consecutive training sessions can likely be used without adverse effects on the immune system during prostate cancer treatment. ABSTRACT: Prostate cancer treatment affects multiple physiological systems, although the immune response during exercise has been minimally investigated. The objective was to characterize the natural killer (NK) cell response following acute exercise in prostate cancer survivors. Prostate cancer survivors on androgen deprivation therapy (ADT) and those without (PCa) along with non-cancer controls (CON) completed a moderate intensity cycling bout. NK cells were phenotyped before and 0, 2 and 24 h after acute exercise using flow cytometry. CD56 total NK cell frequency increased by 6.2% at 0 h (P < 0.001) and decreased by 2.5% at 2 h (P < 0.01) with similar findings in CD56dim cells. NK cell counts also exhibited a biphasic response. Independent of exercise, ADT had intracellular interferon γ (IFNγ) expression that was nearly twofold higher than CON (P < 0.01). PCa perforin expression was reduced by 11.4% (P < 0.05), suggesting these cells may be more prone to degranulation. CD57- NK cells demonstrated increased perforin and IFNγ frequencies after exercise with no change within the CD57+ populations. All NK and leukocyte populations returned to baseline by 24 h. NK cell mobilization and egress with acute exercise appear normal, as cell counts and frequencies in prostate cancer survivors change similarly to CON. However, lower perforin proportions (PCa) and higher IFNγ expression (ADT) may alter NK cytotoxicity and require further investigation. The return of NK cell proportions to resting levels overnight suggests that consecutive training sessions can be used without adverse effects on the immune system during prostate cancer treatment.


Subject(s)
Exercise , Killer Cells, Natural/cytology , Lymphocyte Activation , Prostatic Neoplasms , Aged , Androgen Antagonists/therapeutic use , Blood Cell Count , CD57 Antigens/metabolism , Case-Control Studies , Humans , Interferon-gamma/metabolism , Male , Middle Aged , Perforin/metabolism , Prostatic Neoplasms/immunology
19.
Biotech Histochem ; 95(8): 619-625, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32362205

ABSTRACT

Neural crest cells possess characteristics of stem cells including plasticity and ability to differentiate into various cell types. HNK1 and Sox10 are markers of neural crest cell progenitors that have been demonstrated in osteoblasts during osteogenesis of the maxilla and mandible. We investigated the presence of Sox10 and HNK1 during regeneration of mandibular bone defects. Defects were created in mandibles of rats. Samples of these defects were collected at 7, 14 and 28 days post-surgery; bone regeneration was observed during this period. Immunohistochemical analysis revealed expression of HNK1 and Sox10 in osteoblasts, osteocytes and osteogenic cells, whereas osteoclasts were unstained. HNK1 expression was increased in osteoblasts and osteocytes over time and SOX10 expression was found in osteoblasts and osteogenic cells at 7, 14 and 28 days post-surgery. HNK1 and Sox10 are present in osteoblasts, osteocytes and osteogenic cells during mandible bone regeneration.


Subject(s)
Bone Regeneration/physiology , CD57 Antigens/metabolism , SOXE Transcription Factors/metabolism , Animals , Biomarkers/metabolism , Gene Expression Regulation , Male , Mandible , Osteoblasts/metabolism , Osteocytes/metabolism , Rats , Rats, Wistar , SOXE Transcription Factors/genetics
20.
J Exp Med ; 217(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32413101

ABSTRACT

CMV is associated with immunosenescence and reduced vaccine responses in the elderly (>70 yr). However, the impact of CMV in young adults is less clear. In this study, healthy UK and Senegalese adults aged 18-50 yr (average, 29 yr) were vaccinated with the Ebola vaccine candidate chimpanzee adenovirus type 3-vectored Ebola Zaire vaccine (ChAd3-EBO-Z) and boosted with modified vaccinia Ankara Ebola Zaire-vectored (MVA-EBO-Z) vaccine. CMV carriage was associated with an expansion of phenotypically senescent CD4+ and CD8+ T cells expressing CD57 and killer cell lectin-like receptor G1 (KLRG1), which was negatively associated with vaccine responses in both cohorts. Ebola-specific T cell responses induced by vaccination also contained significantly increased frequencies of terminally differentiated CD57+KLRG1+ cells in CMV seropositive (CMV+) individuals. This study suggests that CMV can also affect vaccine responses in younger adults and may have a particularly marked impact in many developing countries where CMV seroprevalence is almost universal.


Subject(s)
CD57 Antigens/metabolism , Cytomegalovirus Infections/immunology , Ebola Vaccines/immunology , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , T-Lymphocytes/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Cellular Senescence , Cytomegalovirus Infections/virology , Humans , Immunologic Memory , Middle Aged , Phenotype , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...