Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49.729
Filter
1.
J Clin Invest ; 134(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828727

ABSTRACT

Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A-secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.


Subject(s)
Calcineurin Inhibitors , Graft vs Host Disease , Isoantigens , Memory T Cells , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/pathology , Animals , Mice , Isoantigens/immunology , Calcineurin Inhibitors/pharmacology , Chronic Disease , Memory T Cells/immunology , Tacrolimus/pharmacology , CD4-Positive T-Lymphocytes/immunology , Cyclosporine/pharmacology , Female , CD8-Positive T-Lymphocytes/immunology , T-Lymphocyte Subsets/immunology
2.
Front Immunol ; 15: 1372658, 2024.
Article in English | MEDLINE | ID: mdl-38827740

ABSTRACT

Background: Persistent radiological lung abnormalities are evident in many survivors of acute coronavirus disease 2019 (COVID-19). Consolidation and ground glass opacities are interpreted to indicate subacute inflammation whereas reticulation is thought to reflect fibrosis. We sought to identify differences at molecular and cellular level, in the local immunopathology of post-COVID inflammation and fibrosis. Methods: We compared single-cell transcriptomic profiles and T cell receptor (TCR) repertoires of bronchoalveolar cells obtained from convalescent individuals with each radiological pattern, targeting lung segments affected by the predominant abnormality. Results: CD4 central memory T cells and CD8 effector memory T cells were significantly more abundant in those with inflammatory radiology. Clustering of similar TCRs from multiple donors was a striking feature of both phenotypes, consistent with tissue localised antigen-specific immune responses. There was no enrichment for known SARS-CoV-2-reactive TCRs, raising the possibility of T cell-mediated immunopathology driven by failure in immune self-tolerance. Conclusions: Post-COVID radiological inflammation and fibrosis show evidence of shared antigen-specific T cell responses, suggesting a role for therapies targeting T cells in limiting post-COVID lung damage.


Subject(s)
COVID-19 , SARS-CoV-2 , Single-Cell Analysis , Humans , COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Male , Female , Middle Aged , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Lung/immunology , Lung/pathology , Lung/diagnostic imaging , Aged , Adult , Inflammation/immunology , Inflammation/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Memory T Cells/immunology , Transcriptome
3.
Drug Des Devel Ther ; 18: 1833-1853, 2024.
Article in English | MEDLINE | ID: mdl-38828018

ABSTRACT

Purpose: Given the potent immunostimulatory effects of bacterial outer membrane vesicles (OMVs) and the significant anti-colon tumor properties of Parabacteroides distasonis (Pd), this study aimed to elucidate the role and potential mechanisms of Pd-derived OMVs (Pd-OMVs) against colon cancer. Methods: This study isolated and purified Pd-OMVs from Pd cultures and assessed their characteristics. The effects of Pd-OMVs on CT26 cell uptake, proliferation, and invasion were investigated in vitro. In vivo, a CT26 colon tumor model was used to investigate the anti-colon tumor effects and underlying mechanisms of Pd-OMVs. Finally, we evaluated the biosafety of Pd-OMVs. Results: Purified Pd-OMVs had a uniform cup-shaped structure with an average size of 165.5 nm and a zeta potential of approximately -9.56 mV, and their proteins were associated with pathways related to immunity and apoptosis. In vitro experiments demonstrated that CT26 cells internalized the Pd-OMVs, resulting in a significant decrease in their proliferation and invasion abilities. Further in vivo studies confirmed the accumulation of Pd-OMVs in tumor tissues, which significantly inhibited the growth of colon tumors. Mechanistically, Pd-OMVs increased the expression of CXCL10, promoting infiltration of CD8+ T cells into tumor tissues and expression of pro-inflammatory factors TNF-α, IL-1ß, and IL-6. Notably, Pd-OMVs demonstrated a high level of biosafety. Conclusion: This paper elucidates that Pd-OMVs can exert significant anti-colon tumor effects by upregulating the expression of the chemokine CXCL10, thereby increasing the infiltration of CD8+ T cells into tumors and enhancing antitumor immune responses. This suggests that Pd-OMVs may be developed as a novel nanoscale potent immunostimulant with great potential for application in tumor immunotherapy. As well as developed as a novel nano-delivery carrier for combination with other antitumor drugs.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Proliferation , Chemokine CXCL10 , Colonic Neoplasms , Mice, Inbred BALB C , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Mice , Cell Proliferation/drug effects , Chemokine CXCL10/metabolism , Chemokine CXCL10/immunology , Bacterial Outer Membrane/immunology , Bacterial Outer Membrane/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Humans , Neoplasms, Experimental/pathology , Neoplasms, Experimental/immunology , Neoplasms, Experimental/drug therapy , Drug Screening Assays, Antitumor , Tumor Cells, Cultured
4.
Nat Commun ; 15(1): 4701, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830882

ABSTRACT

Immune checkpoint blockade (ICB) therapies function by alleviating immunosuppression on tumor-infiltrating lymphocytes (TILs) but are often insufficient to fully reactivate these dysfunctional TILs. Although interleukin 12 (IL-12) has been used in combination with ICB to improve efficacy, this remains limited by severe toxicity associated with systemic administration of this cytokine. Here, we engineer a fusion protein composed of an anti-PD-1 antibody and a mouse low-affinity IL-12 mutant-2 (αPD1-mIL12mut2). Systemic administration of αPD1-mIL12mut2 displays robust antitumor activities with undetectable toxicity. Mechanistically, αPD1-mIL12mut2 preferentially activates tumor-infiltrating PD-1+CD8+T cells via high-affinity αPD-1 mediated cis-binding of low-affinity IL-12. Additionally, αPD1-mIL12mut2 treatment exerts an abscopal effect to suppress distal tumors, as well as metastasis. Collectively, αPD1-mIL12mut2 treatment induces robust systemic antitumor responses with reduced side effects.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-12 , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Animals , Interleukin-12/metabolism , Interleukin-12/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Mice , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Female , Immune Checkpoint Inhibitors/pharmacology , Humans , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics
5.
Cell Death Dis ; 15(6): 386, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824143

ABSTRACT

Doxorubicin's antitumor effectiveness may be constrained with ineffective tumor penetration, systemic adverse effects, as well as drug resistance. The co-loading of immune checkpoint inhibitors and doxorubicin into liposomes can produce synergistic benefits and address problems, including quick drug clearance, toxicity, and low drug penetration efficiency. In our previous study, we modified a nanobody targeting CTLA-4 onto liposomes (LPS-Nb36) to be an extremely potent CTLA-4 signal blocker which improve the CD8+ T-cell activity against tumors under physiological conditions. In this study, we designed a drug delivery system (LPS-RGD-Nb36-DOX) based on LPS-Nb36 that realized the doxorubicin and anti-CTLA-4 Nb co-loaded and RGD modification, and was applied to antitumor therapy. We tested whether LPS-RGD-Nb36-DOX could targets the tumor by in vivo animal photography, and more importantly, promote cytotoxic T cells proliferation, pro-inflammatory cytokine production, and cytotoxicity. Our findings demonstrated that the combination of activated CD8+ T cells with doxorubicin/anti-CTLA-4 Nb co-loaded liposomes can effectively eradicate tumor cells both in vivo and in vitro. This combination therapy is anticipated to have synergistic antitumor effects. More importantly, it has the potential to reduce the dose of chemotherapeutic drugs and improve safety.


Subject(s)
CTLA-4 Antigen , Doxorubicin , Drug Delivery Systems , Liposomes , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Animals , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , Mice , Drug Delivery Systems/methods , Humans , Cell Line, Tumor , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Mice, Inbred BALB C , Mice, Inbred C57BL
6.
Cancer Immunol Immunother ; 73(8): 150, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832948

ABSTRACT

Hotspot driver mutations presented by human leukocyte antigens might be recognized by anti-tumor T cells. Based on their advantages of tumor-specificity and immunogenicity, neoantigens derived from hotspot mutations, such as PIK3CAH1047L, may serve as emerging targets for cancer immunotherapies. NetMHCpan V4.1 was utilized for predicting neoepitopes of PIK3CA hotspot mutation. Using in vitro stimulation, antigen-specific T cells targeting the HLA-A*11:01-restricted PIK3CA mutation were isolated from healthy donor-derived peripheral blood mononuclear cells. T cell receptors (TCRs) were cloned using single-cell PCR and sequencing. Their functionality was assessed through T cell activation markers, cytokine production and cytotoxic response to cancer cell lines pulsed with peptides or transduced genes of mutant PIK3CA. Immunogenic mutant antigens from PIK3CA and their corresponding CD8+ T cells were identified. These PIK3CA mutation-specific CD8+ T cells were subsequently enriched, and their TCRs were isolated. The TCR clones exhibited mutation-specific and HLA-restricted reactivity, demonstrating varying degrees of functional avidity. Identified TCR genes were transferred into CD8+ Jurkat cells and primary T cells deficient of endogenous TCRs. TCR-expressing cells demonstrated specific recognition and reactivity against the PIK3CAH1047L peptide presented by HLA-A*11:01-expressing K562 cells. Furthermore, mutation-specific TCR-T cells demonstrated an elevation in cytokine production and profound cytotoxic effects against HLA-A*11:01+ malignant cell lines harboring PIK3CAH1047L. Our data demonstrate the immunogenicity of an HLA-A*11:01-restricted PIK3CA hotspot mutation and its targeting therapeutic potential, together with promising candidates of TCR-T cell therapy.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Mutation , Neoplasms , Receptors, Antigen, T-Cell , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy/methods , HLA-A11 Antigen/genetics , HLA-A11 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Cell Line, Tumor
7.
J Immunol Res ; 2024: 5582151, 2024.
Article in English | MEDLINE | ID: mdl-38690552

ABSTRACT

Unlike T cells in other tissues, uterine T cells must balance strong immune defense against pathogens with tolerance to semiallogeneic fetus. Our previous study fully elucidated the characteristics of γδT cells in nonpregnant uterus and the mechanism modulated by estrogen. However, comprehensive knowledge of the immunological properties of αßT (including CD4+T cells and CD8+T) cells in nonpregnancy uterus has not been acquired. In this study, we fully compared the immunological properties of αßT cells between uterus and blood using mouse and human sample. It showed that most of CD4+T cells and CD8+T cells in murine uterus and human endometrium were tissue resident memory T cells which highly expressed tissue residence markers CD69 and/or CD103. In addition, both CD4+T cells and CD8+T cells in uterus highly expressed inhibitory molecular PD-1 and cytokine IFN-γ. Uterine CD4+T cells highly expressed IL-17 and modulated by transcription factor pSTAT3. Moreover, we compared the similarities and differences between human and murine uterine T cell phenotype. Together, uterine CD4+T cells and CD8+ cells exhibited a unique mixed signature of T cell dysfunction, activation, and effector function which enabled them to balance strong immune defense against pathogens with tolerance to fetus. Our study fully elucidated the unique immunologic properties of uterine CD4+T and CD8+T cells and provided a base for further investigation of functions.


Subject(s)
Antigens, CD , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Uterus , Female , CD8-Positive T-Lymphocytes/immunology , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/immunology , Uterus/immunology , Antigens, CD/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Integrin alpha Chains/metabolism , Memory T Cells/immunology , STAT3 Transcription Factor/metabolism , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Interleukin-17/metabolism , Lymphocyte Activation/immunology , Immunologic Memory
8.
Autoimmunity ; 57(1): 2347379, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38723105

ABSTRACT

Thymoma is closely associated with myasthenia gravis (MG). However, due to the heterogeneity of thymoma and the intricate pathogenesis of MG, it remains unclear why some patients with thymoma develop MG and others do not. In this study, we conducted a comparative phenotype analysis of thymocytes in type B thymomas in patients with MG (MG (+) thymomas) and without MG (MG (-) thymomas) via fluorescence-activated cell sorting (FACS). Our results show that the developmental stages defined by the expression of CD3, CD4, and CD8 were largely maintained in both MG (+) and MG (-) thymomas, with CD4+CD8+ cells constituting the majority of thymocytes in type B thymoma, and no significant difference between this cell population was observed in MG (+) and MG (-) thymomas.We discovered that CD4+CD8+ thymocytes in MG (+) thymomas expressed low levels of αß TCR and high levels of IL-7 receptor α (IL-7Rα), whereas in MG (-) thymomas, CD4+CD8+ thymocytes exhibited the opposite pattern of αß TCR and IL-7Rα expression. These results suggest that the positive and negative selection processes of CD4+CD8+ thymocytes might differ between MG (+) thymomas and MG (-) thymomas. The expression of the Helios transcription factor is induced during negative selection and marks a group of T cells that have undergone negative selection and are likely to be deleted due to strong TCR binding with self-peptides/MHC ligands. We observed that the percentage of Helios-positive CD4SP T cells was greater in MG (-) than in MG (+) thymomas. Thus, the differentially regulated selection process of CD4+CD8+ thymocytes, which involves TCR and IL-7/IL-7Rα signaling, is associated with the presence of MG in type B thymomas.


Subject(s)
Myasthenia Gravis , Receptors, Antigen, T-Cell, alpha-beta , Thymocytes , Thymoma , Humans , Thymoma/immunology , Thymoma/pathology , Thymoma/metabolism , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , Myasthenia Gravis/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Male , Thymocytes/immunology , Thymocytes/metabolism , Female , Middle Aged , Receptors, Interleukin-7/metabolism , Receptors, Interleukin-7/immunology , Adult , Aged , Thymus Neoplasms/immunology , Thymus Neoplasms/pathology , Thymus Neoplasms/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunophenotyping
9.
Cell Host Microbe ; 32(5): 627-630, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723599

ABSTRACT

Microbial-based therapies have the potential to combat immunotherapy resistance, extending the boundaries of oncological therapeutics. In a recent issue of Cell, Jia et al. demonstrates an example of microbial collaboration to produce a postbiotic that promotes the stemness program of CD8+ T cells to augment immunotherapy at the pan-cancer level.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , Indoles , Animals , Mice
10.
BMC Immunol ; 25(1): 28, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710996

ABSTRACT

INTRODUCTION: Metronomic capecitabine used as an adjuvant therapy improves survival in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC). This therapeutic approach may also contribute to improving immune function, consequently enhancing overall therapeutic efficacy. AIM: We aimed to evaluate the effect of metronomic capecitabine as adjuvant therapy on immune function and survival in cases of LA-NPC. SUBJECTS AND METHODS: 28 patients with LA-NPC were enrolled in the study and equally assigned to two groups of 14 each: experimental and control group. The experimental group received induction chemotherapy + concurrent chemotherapy + adjuvant chemotherapy as well as oral capecitabine at a dose of 650 mg/m² of body surface area twice daily for 1 year, with the option to discontinue in case of intolerance. The control group did not receive additional chemotherapy or targeted drugs after the induction chemotherapy + concurrent chemoradiotherapy; however, they were followed up regularly. Changes in immune function and survival were compared between the two groups. RESULTS: The median follow-up time was 43.5 months. One year after adjuvant chemotherapy, the experimental group showed higher levels of CD8 + cells, CD28 + CD8 + cells, and activated CD8 + cells compared to the control group (P < 0.05). The CD4/CD8 ratio and proportion of monocyte-derived dendritic cells were also higher in the experimental group than in the control group, but the difference was not statistically significant (P ≥ 0.05). Comparisons of 3-year overall survival, local-regional recurrence-free survival, progression-free survival, and distant metastasis-free survival between the two groups showed percentages of 92.9% vs. 78.6%, 92.9% vs. 92.9%, 78.6% vs. 71.4%, and 85.7% vs. 0.78 0.6% respectively, but these differences were not significant (P > 0 0.05 ). CONCLUSION: Metronomic capecitabine chemotherapy was observed to induce an immunomodulatory effect in LA-NPC. TRIAL REGISTRATION: NCT02958111, date of registration 04-11-2016.


Subject(s)
Administration, Metronomic , Capecitabine , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Capecitabine/administration & dosage , Capecitabine/therapeutic use , Male , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/mortality , Female , Middle Aged , Adult , Chemotherapy, Adjuvant/methods , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Aged , Neoplasm Staging , Treatment Outcome , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/therapeutic use , Follow-Up Studies
11.
Cell Metab ; 36(5): 884-886, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718753

ABSTRACT

Tumors compromise T cell functionality through various mechanisms, including the induction of a nutrient-scarce microenvironment, leading to lipid accumulation and metabolic reprogramming. Hunt et al. elucidate acetyl-CoA carboxylase's crucial role in regulating lipid metabolism in CD8+ T cells, uncovering a novel metabolic strategy to potentiate antitumor immune responses.


Subject(s)
Acetyl-CoA Carboxylase , CD8-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Humans , Acetyl-CoA Carboxylase/metabolism , Animals , Neoplasms/immunology , Neoplasms/metabolism , Lipid Metabolism , Tumor Microenvironment/immunology
12.
PLoS One ; 19(5): e0302684, 2024.
Article in English | MEDLINE | ID: mdl-38722858

ABSTRACT

BACKGROUND: In most cases, Zika virus (ZIKV) causes a self-limited acute illness in adults, characterized by mild clinical symptoms that resolve within a few days. Immune responses, both innate and adaptive, play a central role in controlling and eliminating virus-infected cells during the early stages of infection. AIM: To test the hypothesis that circulating T cells exhibit phenotypic and functional activation characteristics during the viremic phase of ZIKV infection. METHODS: A comprehensive analysis using mass cytometry was performed on peripheral blood mononuclear cells obtained from patients with acute ZIKV infection (as confirmed by RT-PCR) and compared with that from healthy donors (HD). The frequency of IFN-γ-producing T cells in response to peptide pools covering immunogenic regions of structural and nonstructural ZIKV proteins was quantified using an ELISpot assay. RESULTS: Circulating CD4+ and CD8+ T lymphocytes from ZIKV-infected patients expressed higher levels of IFN-γ and pSTAT-5, as well as cell surface markers associated with proliferation (Ki-67), activation ((HLA-DR, CD38) or exhaustion (PD1 and CTLA-4), compared to those from HD. Activation of CD4+ and CD8+ memory T cell subsets, including Transitional Memory T Cells (TTM), Effector Memory T cells (TEM), and Effector Memory T cells Re-expressing CD45RA (TEMRA), was prominent among CD4+ T cell subset of ZIKV-infected patients and was associated with increased levels of IFN-γ, pSTAT-5, Ki-67, CTLA-4, and PD1, as compared to HD. Additionally, approximately 30% of ZIKV-infected patients exhibited a T cell response primarily directed against the ZIKV NS5 protein. CONCLUSION: Circulating T lymphocytes spontaneously produce IFN-γ and express elevated levels of pSTAT-5 during the early phase of ZIKV infection whereas recognition of ZIKV antigen results in the generation of virus-specific IFN-γ-producing T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/immunology , Zika Virus Infection/epidemiology , Adult , Zika Virus/immunology , Female , Male , Interferon-gamma/metabolism , Interferon-gamma/immunology , Brazil/epidemiology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Middle Aged , Young Adult , Epidemics , Lymphocyte Activation/immunology , T-Lymphocytes/immunology
13.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 284-289, 2024 Mar 14.
Article in Chinese | MEDLINE | ID: mdl-38716601

ABSTRACT

Objective: To analyze the level and clinical significance of IL-18 and IL-18-binding protein (BP) in the bone marrow of patients with myelodysplastic syndrome (MDS) . Methods: A total of 43 newly diagnosed patients with MDS who were admitted to the Department of Hematology, Tianjin Medical University General Hospital, from July 2020 to February 2021 were randomly selected. The control group consisted of 14 patients with acute myeloid leukemia (AML) and 25 patients with iron-deficiency anemia (IDA). The levels of IL-18 and IL-18 BP in the bone marrow supernatant were measured, and their correlations with MDS severity, as well as the functionality of CD8(+) T cells and natural killer cells, was analyzed. Results: The levels of IL-18, IL-18 BP, and free IL-18 (fIL-18) in the bone marrow supernatant of patients with MDS were higher than in the IDA group. The level of fIL-18 was linearly and negatively correlated with the MDS-International Prognostic Scoring System (IPSS) score. IL-18 receptor (IL-18Rα) expression on CD8(+) T cells in the MDS group was lower than in the IDA group, and the levels of fIL-18 and IL-18Rα were positively correlated with CD8(+) T-cell function in the MDS group. Conclusion: IL-18 BP antagonizes IL-18, leading to a decrease in fIL-18 in the bone marrow microenvironment of patients with MDS, affecting CD8(+) T-cell function, which is closely related to MDS severity; therefore, it may become a new target for MDS treatment.


Subject(s)
Bone Marrow , Intercellular Signaling Peptides and Proteins , Interleukin-18 , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/metabolism , Interleukin-18/metabolism , Bone Marrow/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , CD8-Positive T-Lymphocytes/metabolism , Male , Female , Killer Cells, Natural/metabolism , Middle Aged , Clinical Relevance
14.
Viruses ; 16(5)2024 05 17.
Article in English | MEDLINE | ID: mdl-38793680

ABSTRACT

Immunotherapy with checkpoint inhibitors, albeit commonly used against tumors, is still at its infancy against chronic virus infections. It relies on the reinvigoration of exhausted T lymphocytes to eliminate virus-infected cells. Since T cell exhaustion is a physiological process to reduce immunopathology, the reinvigoration of these cells might be associated with an augmentation of pathological changes. To test this possibility, we here analyzed in the model system of chronic lymphocytic choriomeningitis virus (LCMV)-infected mice whether treatment with the checkpoint inhibitor anti-PD-L1 antibody would increase CD8 T cell-dependent fibrosis. We show that pre-existing spleen fibrosis did not worsen under conditions that increase CD8 T cell functionality and reduce virus loads suggesting that the CD8 T cell functionality increase remained below its pathogenicity threshold. These promising findings should further encourage immunotherapeutic trials against chronic virus infections.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Fibrosis , Immune Checkpoint Inhibitors , Immunotherapy , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus , Mice, Inbred C57BL , Animals , Mice , Lymphocytic choriomeningitis virus/immunology , Immunotherapy/methods , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic Choriomeningitis/therapy , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Viral Load , Spleen/immunology , Spleen/virology , Disease Models, Animal , Chronic Disease , Female
15.
Oncoimmunology ; 13(1): 2346359, 2024.
Article in English | MEDLINE | ID: mdl-38737794

ABSTRACT

Immune exhaustion is a hallmark of ovarian cancer. Using multiparametric flow cytometry, the study aimed to analyze protein expression of novel immunological targets on CD3+ T cells isolated from the peripheral blood (n = 20), malignant ascites (n = 16), and tumor tissue (n = 6) of patients with ovarian cancer (OVCA). The study revealed an increased proportion of effector memory CD8+ T cells in OVCA tissue and malignant ascites. An OVCA-characteristic PD-1high CD8+ T cell population was detected, which differed from PD-1lowCD8+ T cells by increased co-expression of TIGIT, CD39, and HLA-DR. In addition, these OVCA-characteristic CD8+ T cells showed reduced expression of the transcription factor TCF-1, which may also indicate reduced effector function and memory formation. On the contrary, the transcription factor TOX, which significantly regulates terminal T cell-exhaustion, was found more frequently in these cells. Further protein and gene analysis showed that CD39 and CD73 were also expressed on OVCA tumor cells isolated from solid tumors (n = 14) and malignant ascites (n = 9). In the latter compartment, CD39 and CD73 were also associated with the expression of the "don't eat me" molecule CD24 on tumor cells. Additionally, ascites-derived CD24+EpCAM+ tumor cells showed a higher frequency of CD39+ or CD73+ cells. Furthermore, CD39 expression was associated with unfavorable clinical parameters. Expression of CD39 on T cells was upregulated through CD3/CD28 stimulation and its blockade by a newly developed nanobody construct resulted in increased proliferation (eFluor), activation (CD25 and CD134), and production of cytotoxic cytokines (IFN-γ, TNF-α, and granzyme-B) of CD8+ T cells.


Subject(s)
Apyrase , CD8-Positive T-Lymphocytes , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Apyrase/metabolism , Apyrase/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Ascites/immunology , Ascites/pathology , Ascites/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/antagonists & inhibitors , T Cell Transcription Factor 1/metabolism , T Cell Transcription Factor 1/genetics , HLA-DR Antigens/metabolism , Adult , T-Cell Exhaustion , High Mobility Group Proteins
16.
FASEB J ; 38(10): e23683, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38758184

ABSTRACT

Mesenchymal stromal cells (MSCs) have been shown to modulate the function of various subsets of T cells such as naïve CD4+ T cells and IFNγ+CD4+ Th1 cells; however, mechanisms underlying this regulation have not been fully deciphered. Our in vitro culture assays demonstrate that MSCs suppress the activation and function of CD4+ T cells by secreting interleukin 11, and neutralization of IL11 abrogates MSC-mediated suppression of CD4+ T cell function. Moreover, delayed-type, exogenous supplementation of IL11 significantly suppressed IFNγ+ expression by Th1 cells. Th1 and CD8+ cells play central roles in T cell-mediated tissue damage. Using a murine model of hypersensitivity response to study T cell-mediated tissue damage, we show that silencing IL11 in MSCs significantly abates the capacity of MSCs to suppress the generation of IFNγ-secreting CD4+ and CD8+ cells, failing to prevent T cell-mediated tissue inflammation and tissue damage.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Interleukin-11 , Mesenchymal Stem Cells , Mice, Inbred C57BL , Th1 Cells , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Th1 Cells/immunology , Mice , Interleukin-11/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Interferon-gamma/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Female
17.
Sci Immunol ; 9(95): eadi7418, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758807

ABSTRACT

Immune checkpoint blockade is a promising approach to activate antitumor immunity and improve the survival of patients with cancer. V-domain immunoglobulin suppressor of T cell activation (VISTA) is an immune checkpoint target; however, the downstream signaling mechanisms are elusive. Here, we identify leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) as a VISTA binding partner, which acts as an inhibitory receptor by engaging VISTA and suppressing T cell receptor signaling pathways. Mice with T cell-specific LRIG1 deletion developed superior antitumor responses because of expansion of tumor-specific cytotoxic T lymphocytes (CTLs) with increased effector function and survival. Sustained tumor control was associated with a reduction of quiescent CTLs (TCF1+ CD62Lhi PD-1low) and a reciprocal increase in progenitor and memory-like CTLs (TCF1+ PD-1+). In patients with melanoma, elevated LRIG1 expression on tumor-infiltrating CD8+ CTLs correlated with resistance to immunotherapies. These results delineate the role of LRIG1 as an inhibitory immune checkpoint receptor and propose a rationale for targeting the VISTA/LRIG1 axis for cancer immunotherapy.


Subject(s)
B7 Antigens , CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Mice, Inbred C57BL , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/genetics , Humans , B7 Antigens/immunology , B7 Antigens/genetics , Mice, Knockout , Cell Line, Tumor , Female , Membrane Proteins , Nerve Tissue Proteins
18.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747919

ABSTRACT

BACKGROUND: For many years it has been postulated that the immune system controls the progress of multiple myeloma (MM). However, the phenotypes of T cells in MM remain to be elucidated. In this study, we compared the phenotypes of T cells, which were obtained from the peripheral blood, in MM patients with those in healthy donors (HD). The expression of CCR7, CD57, CD28, HLA-DR, CD38, CD45RA, and CD45RO were assessed on T cells from MM patients and HDs using multicolor flow cytometry (MFC). METHODS: For this study, 17 newly diagnosed MM patients were selected, and 20 healthy people were selected as a control group. MFC was used to detect the markers on T cells. RESULTS: We detected significant increases in the expression levels of HLA-DR, CD38, and CD57on CD8+ T cells, significant decreases in the expression levels of CD28 and CD45RA on CD8+ T cells, and a decrease of CD4+ effec-tor T cells in MM patients, compared to the HD group. CONCLUSIONS: Our study shows that the accumulation of peripheral CD8+CD57+T cells, CD8+CD38high T cells, and CD8+HLA-DR+CD38high T cells is reflective of an ongoing antitumor T cell response and a progressive immune dysfunction in MM. During chemotherapy, the recovery of immune function can be monitored by detecting the proportion of activated molecules of T lymphocytes.


Subject(s)
ADP-ribosyl Cyclase 1 , CD28 Antigens , Flow Cytometry , HLA-DR Antigens , Leukocyte Common Antigens , Multiple Myeloma , Humans , Multiple Myeloma/immunology , CD28 Antigens/immunology , CD28 Antigens/metabolism , ADP-ribosyl Cyclase 1/metabolism , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , HLA-DR Antigens/blood , Leukocyte Common Antigens/metabolism , Male , Middle Aged , Female , Aged , CD57 Antigens/metabolism , Case-Control Studies , Immunophenotyping/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adult , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Membrane Glycoproteins/immunology
19.
Front Immunol ; 15: 1338218, 2024.
Article in English | MEDLINE | ID: mdl-38742109

ABSTRACT

Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL responses and is impaired when CTLs become exhausted, e.g. during chronic retroviral infections. A prominent T cell exhaustion marker is programmed cell death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be attributed selectively to CTLs. To overcome this problem, we performed CRISPR/Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus (FV)-specific CTLs. We transferred 1,000 of these cells into mice where they proliferated upon FV-infection. Using intravital two-photon microscopy we visualized CTL motility in the bone marrow and evaluated cytotoxic molecule expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at 14 days post infection and enhanced the expression of cytotoxicity markers. Our data show the potential of genetic tuning of naive antiviral CTLs and might be relevant for future designs of improved T cell-mediated therapies.


Subject(s)
Cell Movement , Mice, Knockout , Programmed Cell Death 1 Receptor , Retroviridae Infections , T-Lymphocytes, Cytotoxic , Animals , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Mice , Cell Movement/genetics , Retroviridae Infections/immunology , T-Lymphocytes, Cytotoxic/immunology , Mice, Inbred C57BL , Friend murine leukemia virus/immunology , Gene Knockout Techniques , CD8-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems , Cytotoxicity, Immunologic
20.
Methods Mol Biol ; 2807: 287-298, 2024.
Article in English | MEDLINE | ID: mdl-38743236

ABSTRACT

The inability of people living with HIV (PLWH) to eradicate human immunodeficiency virus (HIV) infection is due in part to the inadequate HIV-specific cellular immune response. The antiviral function of cytotoxic CD8+ T cells, which are crucial for HIV control, is impaired during chronic viral infection because of viral escape mutations, immune exhaustion, HIV antigen downregulation, inflammation, and apoptosis. In addition, some HIV-infected cells either localize to tissue sanctuaries inaccessible to CD8+ T cells or are intrinsically resistant to CD8+ T cell killing. The novel design of synthetic chimeric antigen receptors (CARs) that enable T cells to target specific antigens has led to the development of potent and effective CAR-T cell therapies. While initial clinical trials using anti-HIV CAR-T cells performed over 20 years ago showed limited anti-HIV effects, the improved CAR-T cell design, which enabled its success in treating cancer, has reinstated CAR-T cell therapy as a strategy for HIV cure with notable progress being made in the recent decade.Effective CAR-T cell therapy against HIV infection requires the generation of anti-HIV CAR-T cells with potent in vivo activity against HIV-infected cells. Preclinical evaluation of anti-HIV efficacy of CAR-T cells and their safety is fundamental for supporting the initiation of subsequent clinical trials in PLWH. For these preclinical studies, we developed a novel humanized mouse model supporting in vivo HIV infection, the development of viremia, and the evaluation of novel HIV therapeutics. Preclinical assessment of anti-HIV CAR-T cells using this mouse model involves a multistep process including peripheral blood mononuclear cells (PBMCs) harvested from human donors, T cell purification, ex vivo T cell activation, transduction with lentiviral vectors encoding an anti-HIV CAR, CAR-T cell expansion and infusion in mice intrasplenically injected with autologous PBMCs followed by the determination of CAR-T cell capacity for HIV suppression. Each of the steps described in the following protocol were optimized in the lab to maximize the quantity and quality of the final anti-HIV CAR-T cell products.


Subject(s)
HIV Infections , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Animals , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Mice , HIV Infections/immunology , HIV Infections/therapy , HIV Infections/virology , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , CD8-Positive T-Lymphocytes/immunology , HIV-1/immunology , T-Lymphocytes/immunology , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...