Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.439
Filter
1.
Nat Commun ; 15(1): 5680, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971819

ABSTRACT

Obesity shapes anti-tumor immunity through lipid metabolism; however, the mechanisms underlying how colorectal cancer (CRC) cells utilize lipids to suppress anti-tumor immunity remain unclear. Here, we show that tumor cell-intrinsic ATP6V0A1 drives exogenous cholesterol-induced immunosuppression in CRC. ATP6V0A1 facilitates cholesterol absorption in CRC cells through RAB guanine nucleotide exchange factor 1 (RABGEF1)-dependent endosome maturation, leading to cholesterol accumulation within the endoplasmic reticulum and elevated production of 24-hydroxycholesterol (24-OHC). ATP6V0A1-induced 24-OHC upregulates TGF-ß1 by activating the liver X receptor (LXR) signaling. Subsequently, the release of TGF-ß1 into the tumor microenvironment by CRC cells activates the SMAD3 pathway in memory CD8+ T cells, ultimately suppressing their anti-tumor activities. Moreover, we identify daclatasvir, a clinically used anti-hepatitis C virus (HCV) drug, as an ATP6V0A1 inhibitor that can effectively enhance the memory CD8+ T cell activity and suppress tumor growth in CRC. These findings shed light on the potential for ATP6V0A1-targeted immunotherapy in CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Cholesterol , Colorectal Neoplasms , Signal Transduction , Transforming Growth Factor beta1 , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Animals , Cholesterol/metabolism , Mice , Cell Line, Tumor , Transforming Growth Factor beta1/metabolism , Immunologic Memory , Vacuolar Proton-Translocating ATPases/metabolism , Tumor Microenvironment/immunology , Liver X Receptors/metabolism , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Pyrrolidines/pharmacology , Smad3 Protein/metabolism , Mice, Inbred C57BL , Carbamates/pharmacology
2.
Cell Death Dis ; 15(7): 507, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013845

ABSTRACT

Liver transplantation (LT) rejection remains the most pervasive problem associated with this procedure, while the mechanism involved is still complicated and undefined. One promising solution may involve the use of myeloid-derived suppressor cells (MDSC). However, the immunological mechanisms underlying the effects of MDSC after LT remain unclear. This study is meant to clarify the role MDSCs play after liver transplantation. In this study, we collected liver tissue and peripheral blood mononuclear cells (PBMC) from LT patients showing varying degrees of rejection, as well as liver and spleen tissue samples from mice LT models. These samples were then analyzed using flow cytometry, immunohistochemistry and multiple immunofluorescence. M-MDSCs and CD8 + T-cells extracted from C57/BL6 mice were enriched and cocultured for in vitro experiments. Results, as obtained in both LT patients and LT mice model, revealed that the proportion and frequency of M-MDSC and PD-1 + T-cells increased significantly under conditions associated with a high degree of LT rejection. Within the LT rejection group, our immunofluorescence results showed that a close spatial contiguity was present between PD-1 + T-cells and M-MDSCs in these liver tissue samples and the proportion of CD84/PD-L1 double-positive M-MDSC was greater than that of G-MDSC. There was a positive correlation between the activity of CD84 and immunosuppressive function of M-MDSCs including PD-L1 expression and reactive oxygen species (ROS) production, as demonstrated in our in vitro model. M-MDSCs treated with CD84 protein were able to induce co-cultured CD8 + T-cells to express high levels of exhaustion markers. We found that CD84 regulated M-MDSC function via expression of PD-L1 through activation of the Akt/Stat3 pathway. These results suggest that the capacity for CD84 to regulate M-MDSC induction of CD8 + T-cell exhaustion may play a key role in LT rejection. Such findings provide important, new insights into the mechanisms of tolerance induction in LT.


Subject(s)
CD8-Positive T-Lymphocytes , Graft Rejection , Liver Transplantation , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Graft Rejection/immunology , Humans , Mice , Male , Middle Aged , Female , Adult , STAT3 Transcription Factor/metabolism , Programmed Cell Death 1 Receptor/metabolism , Liver/pathology , Liver/metabolism
3.
Cell Rep Med ; 5(7): 101640, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959885

ABSTRACT

CD8+ T cells must persist and function in diverse tumor microenvironments to exert their effects. Thus, understanding common underlying expression programs could better inform the next generation of immunotherapies. We apply a generalizable matrix factorization algorithm that recovers both shared and context-specific expression programs from diverse datasets to a single-cell RNA sequencing (scRNA-seq) compendium of 33,161 CD8+ T cells from 132 patients with seven human cancers. Our meta-single-cell analyses uncover a pan-cancer T cell dysfunction program that predicts clinical non-response to checkpoint blockade in melanoma and highlights CXCR6 as a pan-cancer marker of chronically activated T cells. Cxcr6 is trans-activated by AP-1 and repressed by TCF1. Using mouse models, we show that Cxcr6 deletion in CD8+ T cells increases apoptosis of PD1+TIM3+ cells, dampens CD28 signaling, and compromises tumor growth control. Our study uncovers a TCF1:CXCR6 axis that counterbalances PD1-mediated suppression of CD8+ cell responses and is essential for effective anti-tumor immunity.


Subject(s)
CD28 Antigens , CD8-Positive T-Lymphocytes , Hepatocyte Nuclear Factor 1-alpha , Receptors, CXCR6 , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , CD28 Antigens/metabolism , CD28 Antigens/genetics , CD28 Antigens/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Mice , Receptors, CXCR6/metabolism , Receptors, CXCR6/genetics , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Single-Cell Analysis/methods , Signal Transduction , Tumor Microenvironment/immunology , Mice, Inbred C57BL
4.
Front Immunol ; 15: 1392940, 2024.
Article in English | MEDLINE | ID: mdl-39015576

ABSTRACT

As the primary component of anti-tumor immunity, T cells are prone to exhaustion and dysfunction in the tumor microenvironment (TME). A thorough understanding of T cell exhaustion (TEX) in the TME is crucial for effectively addressing TEX in clinical settings and promoting the efficacy of immune checkpoint blockade therapies. In eukaryotes, numerous cell surface proteins are tethered to the plasma membrane via Glycosylphosphatidylinositol (GPI) anchors, which play a crucial role in facilitating the proper translocation of membrane proteins. However, the available evidence is insufficient to support any additional functional involvement of GPI anchors. Here, we investigate the signature of GPI-anchor biosynthesis in the TME of breast cancer (BC)patients, particularly its correlation with TEX. GPI-anchor biosynthesis should be considered as a prognostic risk factor for BC. Patients with high GPI-anchor biosynthesis showed more severe TEX. And the levels of GPI-anchor biosynthesis in exhausted CD8 T cells was higher than normal CD8 T cells, which was not observed between malignant epithelial cells and normal mammary epithelial cells. In addition, we also found that GPI -anchor biosynthesis related genes can be used to diagnose TEX status and predict prognosis in BC patients, both the TEX diagnostic model and the prognostic model showed good AUC values. Finally, we confirmed our findings in cells and clinical samples. Knockdown of PIGU gene expression significantly reduced the proliferation rate of MDA-MB-231 and MCF-7 cell lines. Immunofluorescence results from clinical samples showed reduced aggregation of CD8 T cells in tissues with high expression of GPAA1 and PIGU.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Glycosylphosphatidylinositols , Machine Learning , Tumor Microenvironment , Humans , Breast Neoplasms/immunology , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Female , Glycosylphosphatidylinositols/metabolism , Prognosis , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , T-Cell Exhaustion
5.
J Immunol Res ; 2024: 4468145, 2024.
Article in English | MEDLINE | ID: mdl-39015755

ABSTRACT

Materials and Methods: We analyzed RNA-seq data from the Cancer Genome Atlas (TCGA-STAD) and Gene Expression Omnibus (GEO) datasets, focusing on five cDC1-related genes. The cDC1-related signature was defined and divided into high and low expression groups. We employed gene set variation analysis (GSVA) for oncogenic signaling pathways and conducted comprehensive statistical analyses, including Kaplan-Meier and Cox proportional hazards models. Results: The high cDC1-related gene signature group was associated with poorer overall and disease-free survival in the TCGA-STAD cohort. Significant differences in CD8+ T cell infiltration and cytotoxic capabilities were observed between high and low CDC1-related signature groups. The study also revealed a strong correlation between CDC1-related signature and increased expression of immune checkpoint proteins and oncogenic pathways, suggesting a complex immunosuppressive tumor microenvironment. Conclusions: Our findings indicate the potential of the cDC1-related signature as a prognostic marker in GC, offering insights into the tumor-immune interplay. The study underscores the importance of cDC1s in shaping the tumor microenvironment and their influence on patient prognosis in GC. These results may contribute to the development of novel therapeutic strategies targeting the immune microenvironment in GC.


Subject(s)
Gene Expression Regulation, Neoplastic , Stomach Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/mortality , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Prognosis , Gene Expression Profiling , Biomarkers, Tumor/genetics , Transcriptome , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Female , Male , Kaplan-Meier Estimate , Signal Transduction
6.
Oncoimmunology ; 13(1): 2371556, 2024.
Article in English | MEDLINE | ID: mdl-38952674

ABSTRACT

Isolation of tumor-specific T cells and their antigen receptors (TCRs) from malignant pleural effusions (MPE) may facilitate the development of TCR-transduced adoptive cellular immunotherapy products for advanced lung cancer patients. However, the characteristics and markers of tumor-specific T-cells in MPE are largely undefined. To this end, to establish the phenotypes and antigen specificities of CD8+ T cells, we performed single-cell RNA and TCR sequencing of samples from three advanced lung cancer patients. Dimensionality reduction on a total of 4,983 CD8+ T cells revealed 10 clusters including naïve, memory, and exhausted phenotypes. We focused particularly on exhausted T cell clusters and tested their TCR reactivity against neoantigens predicted from autologous cancer cell lines. Four different TCRs specific for the same neoantigen and one orphan TCR specific for the autologous cell line were identified from one of the patients. Differential gene expression analysis in tumor-specific T cells relative to the other T cells identified CXCL13, as a candidate gene expressed by tumor-specific T cells. In addition to expressing CXCL13, tumor-specific T cells were present in a higher proportion of T cells co-expressing PDCD1(PD-1)/TNFRSF9(4-1BB). Furthermore, flow cytometric analyses in advanced lung cancer patients with MPE documented that those with high PD-1/4-1BB expression have a better prognosis in the subset of 57 adenocarcinoma patients (p = .039). These data suggest that PD-1/4-1BB co-expression might identify tumor-specific CD8+ T cells in MPE, which are associated with patients' prognosis. (233 words).


Subject(s)
CD8-Positive T-Lymphocytes , Lung Neoplasms , Pleural Effusion, Malignant , Receptors, Antigen, T-Cell , Single-Cell Analysis , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Pleural Effusion, Malignant/immunology , Pleural Effusion, Malignant/pathology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Male , Female , Middle Aged , Aged , Antigens, Neoplasm/immunology
7.
Cancer Immunol Immunother ; 73(9): 175, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953994

ABSTRACT

Tumor immunotherapies targeting PD-(L)1 exhibit anti-tumor efficacy in only 10-30% of patients with various cancers. Literature has demonstrated that a "hot tumor" which contains high T lymphocytes in the tumor microenvironment exhibits a better response to immunotherapies than a "cold tumor." This study aimed to investigate whether tumor-intrinsic IFNα and CXCL10 determine the recruitment and activation of CD8+ T cells to become "hot tumor." In this study, we found that CXCL10 overexpressed in a variety of tumors including lung, colon, and liver tumors with a correlation with PD-L1. High PD-L1 and CXCL10 are associated with better survival rates in tumor patients receiving immunotherapies. IFNs-downstream transcriptional factor IRF-1 and STAT1 were correlated with PD-L1 and CXCL10 expression. We demonstrated that IRF-1 and STAT1 were both bound with the promoters of PD-L1 and CXCL10, sharing the same signaling pathway and determining IFNs-mediated PD-L1 and CXCL10 expression. In addition, IFNα significantly increased activation marker IFNγ in PBMCs, promoting M1 type monocyte differentiation, CD4+ T, and CD8+ T cell activation. Particularly, we found that CD8+ T lymphocytes abundantly expressed CXCR3, a receptor of CXCL10, by flow cytometry, indicating that tumor-intrinsic CXCL10 potentially recruited CD8+ T in tumor microenvironment. To demonstrate the hypothesis, immunotherapy-sensitive CT26 and immunotherapy-resistant LL/2 were used and we found that CT26 cells exhibited higher IFNα, IFNγ, CXCL10, and PD-L1 levels compared to LL/2, leading to higher IFNγ expression in mouse splenocytes. Moreover, we found that CD8+ T cells were recruited by CXCL10 in vitro, whereas SCH546738, an inhibitor of CXCR3, inhibited T cell migration and splenocytes-mediated anti-tumor effect. We then confirmed that CT26-derived tumor was sensitive to αPD-L1 immunotherapy and LL/2-tumor was resistant, whereas αPD-L1 significantly increased T lymphocyte activation marker CD107a in CT26-derived BALB/c mice. In conclusion, this study revealed that CXCL10 expression is correlated with PD-L1 in tumors, sharing the same signaling pathway and associating with better immunotherapeutic efficacy. Further evidence in the syngeneic tumor models demonstrated that immunotherapy-sensitive CT26 intrinsically exhibited higher IFNα and CXCL10 compared to immunotherapy-resistant LL/2 to recruit and activate CD8+ T cells in the tumor microenvironment, exhibiting "hot tumor" characteristic of sensitizing αPD-L1 immunotherapies.


Subject(s)
Chemokine CXCL10 , Immunotherapy , Interferon-alpha , Tumor Microenvironment , Chemokine CXCL10/metabolism , Chemokine CXCL10/immunology , Tumor Microenvironment/immunology , Animals , Mice , Humans , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Lymphocyte Activation/immunology , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Female , STAT1 Transcription Factor/metabolism
8.
Oncoimmunology ; 13(1): 2373530, 2024.
Article in English | MEDLINE | ID: mdl-38979545

ABSTRACT

TCRαß+ CD4- CD8- double-negative T (DNT) cells are minor populations in peripheral blood, and their roles have mostly been discussed in inflammation and autoimmunity. However, the functions of DNT cells in tumor microenvironment remain to be elucidated. We investigated their characteristics, possible origins and functions in colorectal cancer tissues as well as their corresponding tumor-draining lymph nodes. We found a significant enrichment of DNT cells in tumor tissues compared with their corresponding lymph nodes, especially in tumors with lower T cell infiltration. T cell receptor (TCR) sequence analysis of CD4+ T, CD8+ T and DNT cells indicated that TCR sequences detected in DNT cells were found in CD8+ T cells, but rarely in CD4+ T cells, suggesting that a part of DNT cells was likely to be originated from CD8+ T cells. Through a single-cell transcriptomic analysis of DNT cells, we found that a DNT cell cluster, which showed similar phenotypes to central memory CD8+ T cells with low expression of effector and exhaustion markers, revealed some specific gene expression patterns, including higher GZMK expression. Moreover, in flow cytometry analysis, we found that DNT cells lost production of cytotoxic mediators. These findings imply that DNT cells might function as negative regulators of anti-tumor immune responses in tumor microenvironment.


Subject(s)
Colorectal Neoplasms , Lymph Nodes , Tumor Microenvironment , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Lymph Nodes/immunology , Lymph Nodes/pathology , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Female , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Aged , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Middle Aged
9.
Oncoimmunology ; 13(1): 2376264, 2024.
Article in English | MEDLINE | ID: mdl-38988824

ABSTRACT

Functional roles of SIGLEC15 in hepatocellular carcinoma (HCC) were not clear, which was recently found to be an immune inhibitor with similar structure of inhibitory B7 family members. SIGLEC15 expression in HCC was explored in public databases and further examined by PCR analysis. SIGLEC15 and PD-L1 expression patterns were examined in HCC samples through immunohistochemistry. SIGLEC15 expression was knocked-down or over-expressed in HCC cell lines, and CCK8 tests were used to examine cell proliferative ability in vitro. Influences of SIGLEC15 expression on tumor growth were examined in immune deficient and immunocompetent mice respectively. Co-culture system of HCC cell lines and Jurkat cells, flow cytometry analysis of tumor infiltrated immune cells and further sequencing analyses were performed to investigate how SIGLEC15 could affect T cells in vitro and in vivo. We found SIGLEC15 was increased in HCC tumor tissues and was negatively correlated with PD-L1 in HCC samples. In vitro and in vivo models demonstrated inhibition of SIGLEC15 did not directly influence tumor proliferation. However, SIGLEC15 could promoted HCC immune evasion in immune competent mouse models. Knock-out of Siglec15 could inhibit tumor growth and reinvigorate CD8+ T cell cytotoxicity. Anti-SIGLEC15 treatment could effectively inhibit tumor growth in mouse models with or without mononuclear phagocyte deletion. Bulk and single-cell RNA sequencing data of treated mouse tumors demonstrated SIGLEC15 could interfere CD8+ T cell viability and induce cell apoptosis. In all, SIGLEC15 was negatively correlated with PD-L1 in HCC and mainly promote HCC immune evasion through inhibition of CD8+ T cell viability and cytotoxicity.


Subject(s)
Apoptosis , B7-H1 Antigen , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Tumor Escape/genetics , Cell Line, Tumor , Cell Proliferation , Male , Female , Membrane Proteins/genetics , Membrane Proteins/metabolism , Immune Evasion , Immunoglobulins
10.
Nat Commun ; 15(1): 5291, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987547

ABSTRACT

Resistance to immune checkpoint therapy (ICT) presents a growing clinical challenge. The tumor microenvironment (TME) and its components, namely tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), play a pivotal role in ICT resistance; however, the underlying mechanisms remain under investigation. In this study, we identify expression of TNF-Stimulated Factor 6 (TSG-6) in ICT-resistant pancreatic tumors, compared to ICT-sensitive melanoma tumors, both in mouse and human. TSG-6 is expressed by CAFs within the TME, where suppressive macrophages expressing Arg1, Mafb, and Mrc1, along with TSG-6 ligand Cd44, predominate. Furthermore, TSG-6 expressing CAFs co-localize with the CD44 expressing macrophages in the TME. TSG-6 inhibition in combination with ICT improves therapy response and survival in pancreatic tumor-bearing mice by reducing macrophages expressing immunosuppressive phenotypes and increasing CD8 T cells. Overall, our findings propose TSG-6 as a therapeutic target to enhance ICT response in non-responsive tumors.


Subject(s)
Cancer-Associated Fibroblasts , Cell Adhesion Molecules , Immune Checkpoint Inhibitors , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Humans , Tumor Microenvironment/immunology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Myeloid Cells/metabolism , Myeloid Cells/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Mice, Inbred C57BL , Female , Drug Resistance, Neoplasm , Macrophages/immunology , Macrophages/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism
11.
J Pathol Clin Res ; 10(4): e12390, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38992928

ABSTRACT

Oxidative stress and the immune microenvironment both contribute to the pathogenesis of esophageal squamous cell carcinoma (ESCC). However, their interrelationships remain poorly understood. We aimed to examine the status of key molecules involved in oxidative stress and the immune microenvironment, as well as their relationships with each other and with clinicopathological features and prognosis in ESCC. The expression of programmed death-ligand 1 (PD-L1), CD8, nuclear factor erythroid-2 related factor-2 (NRF2), and NAD(P)H quinone oxidoreductase 1 (NQO1) was detected using immunohistochemistry in tissue samples from 176 patients with ESCC. We employed both combined positive score (CPS) and tumor proportion score (TPS) to evaluate PD-L1 expression and found a positive correlation between CPS and TPS. Notably, PD-L1 expression, as assessed by either CPS or TPS, was positively correlated with both NRF2 nuclear score and NQO1 score in stage II-IV ESCC. We also observed a positive correlation between the density of CD8+ T cells and PD-L1 expression. Furthermore, high levels of PD-L1 CPS, but not TPS, were associated with advanced TNM stage and lymph node metastases. Moreover, both PD-L1 CPS and the nuclear expression of NRF2 were found to be predictive of shorter overall survival in stage II-IV ESCC. By using the Mandard-tumor regression grading (TRG) system to evaluate the pathological response of tumors to neoadjuvant chemotherapy (NACT), we found that the TRG-5 group had higher NRF2 nuclear score, PD-L1 CPS, and TPS in pre-NACT biopsy samples compared with the TRG-3 + 4 group. The NQO1 scores of post-NACT surgical specimens were significantly higher in the TRG-5 group than in the TRG 3 + 4 group. In conclusion, the expression of PD-L1 is associated with aberrant NRF2 signaling pathway, advanced TNM stage, lymph node metastases, and unfavorable prognosis. The dysregulation of PD-L1 and aberrant activation of the NRF2 signaling pathway are implicated in resistance to NACT. Our findings shed light on the complex interrelationships between oxidative stress and the immune microenvironment in ESCC, which may have implications for personalized therapies and improved patient outcomes.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , NAD(P)H Dehydrogenase (Quinone) , NF-E2-Related Factor 2 , Oxidative Stress , Tumor Microenvironment , Humans , NF-E2-Related Factor 2/metabolism , B7-H1 Antigen/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Male , Female , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/mortality , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Adult , Neoplasm Staging , Lymphocytes, Tumor-Infiltrating/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Prognosis , Immunohistochemistry
12.
Theranostics ; 14(10): 3793-3809, 2024.
Article in English | MEDLINE | ID: mdl-38994031

ABSTRACT

Rationale: CD8+ T cells undergo a series of metabolic reprogramming processes during their activation and proliferation, including increased glycolysis, decreased aerobic oxidation of sugars, increased amino acid metabolism and increased protein synthesis. However, it is still unclear what factors regulate these metabolic reprogramming processes in CD8+ T cells in the tumor immune microenvironment. Methods: T cell chromobox protein 4 (CBX4) knock-out mice models were used to determine the role of CBX4 in CD8+ T cells on the tumor immune microenvironment and tumor progression. Flow cytometry, Cut-Tag qPCR, Chip-seq, immunoprecipitation, metabolite detection, lentivirus infection and adoptive T cells transfer were performed to explore the underlying mechanisms of CBX4 knock-out in promoting CD8+ T cell activation and inhibiting tumor growth. Results: We found that CBX4 expression was induced in tumor-infiltrating CD8+ T cells and inhibited CD8+ T cell function by regulating glucose metabolism in tumor tissue. Mechanistically, CBX4 increases the expression of the metabolism-associated molecule aldolase B (Aldob) through sumoylation of trans-acting transcription factor 1 (SP1) and Krüppel-like factor 3 (KLF3). In addition, Aldob inhibits glycolysis and ATP synthesis in T cells by reducing the phosphorylation of the serine/threonine protein kinase (Akt) and ultimately suppresses CD8+ T cell function. Significantly, knocking out CBX4 may improve the efficacy of anti-PD-1 therapy by enhancing the function of CD8+ T cells in the tumor microenvironment. Conclusion: CBX4 is involved in CD8+ T cell metabolic reprogramming and functional persistence in tumor tissues, and serves as an inhibitor in CD8+ T cells' glycolysis and effector function.


Subject(s)
CD8-Positive T-Lymphocytes , Glycolysis , Mice, Knockout , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Tumor Microenvironment/immunology , Cell Line, Tumor , Mice, Inbred C57BL , Fructose-Bisphosphate Aldolase/metabolism , Fructose-Bisphosphate Aldolase/genetics , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Humans , Cellular Reprogramming
13.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000566

ABSTRACT

Staphylococcal toxic shock syndrome (STSS) is a rare, yet potentially fatal disease caused by Staphylococcus aureus (S. aureus) enterotoxins, known as superantigens, which trigger an intense immune response. Our previous study demonstrated the protective effect of tofacitinib against murine toxin-induced shock and a beneficial effect against S. aureus sepsis. In the current study, we examined the effects of tofacitinib on T-cell response in peripheral blood using a mouse model of enterotoxin-induced shock. Our data revealed that tofacitinib suppresses the activation of both CD4+ and CD8+ T cells in peripheral blood. Furthermore, both gene and protein levels of Th1 cytokines were downregulated by tofacitinib treatment in mice with enterotoxin-induced shock. Importantly, we demonstrated that CD4+ cells, but not CD8+ cells, are pathogenic in mice with enterotoxin-induced shock. In conclusion, our findings suggest that tofacitinib treatment suppresses CD4+ T-cell activation and Th1 response, thereby aiding in protection against staphylococcal toxic shock in mice. This insight may guide the future development of novel therapies for STSS.


Subject(s)
CD4-Positive T-Lymphocytes , Lymphocyte Activation , Piperidines , Pyrimidines , Shock, Septic , Staphylococcal Infections , Th1 Cells , Animals , Piperidines/pharmacology , Piperidines/therapeutic use , Th1 Cells/immunology , Th1 Cells/drug effects , Th1 Cells/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Shock, Septic/drug therapy , Shock, Septic/immunology , Shock, Septic/chemically induced , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Lymphocyte Activation/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Enterotoxins , Staphylococcus aureus/drug effects , Cytokines/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Female , Disease Models, Animal , Superantigens/immunology
14.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999932

ABSTRACT

The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.


Subject(s)
Adipose Tissue , Lung , Mycobacterium tuberculosis , Animals , Female , Male , Mice , Lung/immunology , Lung/microbiology , Lung/pathology , Lung/metabolism , Adipose Tissue/metabolism , Adipose Tissue/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , Tuberculosis, Pulmonary/microbiology , Mice, Transgenic , Sex Factors , Disease Models, Animal , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Sex Characteristics , Mice, Inbred C57BL
15.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999957

ABSTRACT

Abnormalities in mucosal immunity are involved in the onset and progression of ulcerative colitis (UC), resulting in a high incidence of colorectal cancer (CRC). While high-mobility group box-1 (HMGB1) is overexpressed during colorectal carcinogenesis, its role in UC-related carcinogenesis remains unclear. In the present study, we investigated the role of HMGB1 in UC-related carcinogenesis and sporadic CRC. Both the azoxymethane colon carcinogenesis and dextran sulfate sodium colitis carcinogenesis models demonstrated temporal increases in mucosal HMGB1 levels. Activated CD8+ cells initially increased and then decreased, whereas exhausted CD8+ cells increased. Additionally, we observed increased regulatory CD8+ cells, decreased naïve CD8+ cells, and decreased mucosal epithelial differentiation. In the in vitro study, HMGB1 induced energy reprogramming from oxidative phosphorylation to glycolysis in CD8+ cells and intestinal epithelial cells. Furthermore, in UC dysplasia, UC-related CRC, and hyperplastic mucosa surrounding human sporadic CRC, we found increased mucosal HMGB1, decreased activated CD8+ cells, and suppressed mucosal epithelial differentiation. However, we observed increased activated CD8+ cells in active UC mucosa. These findings indicate that HMGB1 plays an important role in modulating mucosal immunity and epithelial dedifferentiation in both UC-related carcinogenesis and sporadic CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Differentiation , Colitis, Ulcerative , HMGB1 Protein , Immunity, Mucosal , Intestinal Mucosa , HMGB1 Protein/metabolism , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Male , Epithelial Cells/metabolism , Epithelial Cells/pathology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/immunology , Mice, Inbred C57BL , Carcinogenesis/immunology , Carcinogenesis/pathology , Carcinogenesis/metabolism
16.
Cell Rep Methods ; 4(7): 100810, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38981475

ABSTRACT

In single-cell RNA sequencing (scRNA-seq) studies, cell types and their marker genes are often identified by clustering and differentially expressed gene (DEG) analysis. A common practice is to select genes using surrogate criteria such as variance and deviance, then cluster them using selected genes and detect markers by DEG analysis assuming known cell types. The surrogate criteria can miss important genes or select unimportant genes, while DEG analysis has the selection-bias problem. We present Festem, a statistical method for the direct selection of cell-type markers for downstream clustering. Festem distinguishes marker genes with heterogeneous distribution across cells that are cluster informative. Simulation and scRNA-seq applications demonstrate that Festem can sensitively select markers with high precision and enables the identification of cell types often missed by other methods. In a large intrahepatic cholangiocarcinoma dataset, we identify diverse CD8+ T cell types and potential prognostic marker genes.


Subject(s)
Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Cluster Analysis , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Genetic Markers/genetics
17.
Cancer Immunol Immunother ; 73(9): 176, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954030

ABSTRACT

BACKGROUND: Tissue-resident memory CD103+CD8+ T cells (CD103+CD8+ TRMs) are important components of anti-tumor immunity. However, the significance of CD103+CD8+ TRMs in colorectal cancer (CRC) and their advantages remain unclear. METHODS: Clinical data and specimens were used to evaluate the significance of CD103+CD8+ TRMs in CRC. A mouse subcutaneous tumorigenesis model and colony-formation assay were conducted to evaluate the anti-tumor effects of CD103+CD8+ TRMs. Finally, the infiltration density and function of CD103+CD8+ TRMs in the tumors were evaluated using flow cytometry. RESULTS: In this study, we showed that highly infiltrated CD103+CD8+ TRMs were associated with earlier clinical stage and negative VEGF expression in CRC patients and predicted a favorable prognosis for CRC/CRC liver metastases patients. Interestingly, we also found that CD103+CD8+ TRMs may have predictive potential for whether CRC develops liver metastasis in CRC. In addition, we found a positive correlation between the ratio of the number of α-SMA+ vessels to the sum of the number of α-SMA+ and CD31+ vessels in CRC, and the infiltration level of CD103+CD8+ TRMs. In addition, anti-angiogenic therapy promoted infiltration of CD103+CD8+ TRMs and enhanced their ability to secrete interferon (IFN)-γ, thus further improving the anti-tumor effect. Moreover, in vivo experiments showed that compared with peripheral blood CD8+ T cells, CD103+CD8+ TRMs infused back into the body could also further promote CD8+ T cells to infiltrate the tumor, and they had a stronger ability to secrete IFN-γ, which resulted in better anti-tumor effects. CONCLUSION: We demonstrated that CD103+CD8+ TRMs have the potential for clinical applications and provide new ideas for combined anti-tumor therapeutic strategies, such as anti-tumor angiogenesis therapy and CAR-T combined immunotherapy.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Immunologic Memory , Integrin alpha Chains , Liver Neoplasms , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , Animals , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Antigens, CD/metabolism , Prognosis , Female , Male , Biomarkers, Tumor/metabolism , Memory T Cells/immunology , Memory T Cells/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Middle Aged
18.
Sci Rep ; 14(1): 15053, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38956389

ABSTRACT

Targeting intracellular inhibiting proteins has been revealed to be a promising strategy to improve CD8+ T cell anti-tumor efficacy. Here, we are focusing on intracellular inhibiting proteins specific to TCR signaling: DOK1 and DOK2 expressed in T cells. We hypothesized that depletion of intracellular inhibition checkpoint DOK1 and DOK2 could improve CD8+ T-cell based cancer therapies. To evaluate the role of DOK1 and DOK2 depletion in physiology and effector function of CD8+ T lymphocytes and in cancer progression, we established a transgenic T cell receptor mouse model specific to melanoma antigen hgp100 (pmel-1 TCR Tg) in WT and Dok1/Dok2 DKO (double KO) mice. We showed that both DOK1 and DOK2 depletion in CD8+ T cells after an in vitro pre-stimulation induced a higher percentage of effector memory T cells as well as an up regulation of TCR signaling cascade- induced by CD3 mAbs, including the increased levels of pAKT and pERK, two major phosphoproteins involved in T cell functions. Interestingly, this improved TCR signaling was not observed in naïve CD8+ T cells. Despite this enhanced TCR signaling essentially shown upon stimulation via CD3 mAbs, pre-stimulated Dok1/Dok2 DKO CD8+ T cells did not show any increase in their activation or cytotoxic capacities against melanoma cell line expressing hgp100 in vitro. Altogether we demonstrate here a novel aspect of the negative regulation by DOK1 and DOK2 proteins in CD8+ T cells. Indeed, our results allow us to conclude that DOK1 and DOK2 have an inhibitory role following long term T cell stimulations.


Subject(s)
Adaptor Proteins, Signal Transducing , CD8-Positive T-Lymphocytes , DNA-Binding Proteins , Immunologic Memory , Mice, Knockout , Phosphoproteins , RNA-Binding Proteins , Receptors, Antigen, T-Cell , Signal Transduction , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Receptors, Antigen, T-Cell/metabolism , Cell Line, Tumor , Mice, Transgenic
19.
Medicine (Baltimore) ; 103(27): e38713, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968464

ABSTRACT

In the tumor microenvironment (TME), CD8+ T cells showed stage exhaustion due to the continuous stimulation of tumor antigens. To evaluate the status of CD8+ T cells and reverse the exhaustion is the key to evaluate the prognosis and therapeutic effect of tumor patients. The aim of this study was to establish a prognostic signature that could effectively predict prognosis and response to immunotherapy in patients with hepatocellular carcinoma (HCC). We used univariate Cox analysis to obtain transcription factors associated with CD8+ T cell exhaustion from The Cancer Genome Atlas dataset. Then, the prognostic signature for transcription factors basic leucine zipper ATF-like transcription factor, Eomesodermin, and T-box protein 21 regulating T cell exhaustion was constructed using LASSO Cox regression. The relative expression levels of the mRNA of the 3 transcription factors were detected by reverse transcription-quantitative polymerase chain reaction in 23 pairs of HCC and paracancer tissues, and verified internally in The Cancer Genome Atlas dataset and externally in the International Cancer Genome Consortium dataset. Cox regression analysis showed that risk score was an independent prognostic variable. The overall survival of the high-risk group was significantly lower than that of the low-risk group. The low-risk group had higher immune scores, matrix scores, and ESTIMATE scores, and significantly increased expression levels of most immune checkpoint genes in the low-risk group. Therefore, patients with lower risk scores benefit more from immunotherapy. The combination of the 3 transcription factors can evaluate the exhaustion state of CD8+ T cells in the TME, laying a foundation for evaluating the TME and immunotherapy efficacy in patients with HCC.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Prognosis , Male , Female , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Transcription Factors/genetics , Immunotherapy/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Proportional Hazards Models , T-Cell Exhaustion
20.
Sci Rep ; 14(1): 16580, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020008

ABSTRACT

Vitiligo and halo nevus are immune-mediated skin diseases that have a similar pathogenesis and involve cellular cytotoxicity mechanisms that are not yet fully understood. In this study, we investigated the expression patterns of the cytolytic molecule granulysin (GNLY) in different cytotoxic cells in skin samples of vitiligo and halo nevus. Skin biopsies were taken from perilesional and lesional skin of ten vitiligo patients, eight patients with halo nevus and ten healthy controls. We analysed the expression of GNLY by immunohistochemistry in CD8+ and CD56+ NK cells. A significantly higher accumulation of GNLY+, CD8+ GNLY+ and fewer CD56+ GNLY+ cells was found in the lesional skin of vitiligo and halo nevus than in the healthy skin. These cells were localised in the basal epidermis and papillary dermis, suggesting that GNLY may be involved in the immune response against melanocytes. Similarly, but to a lesser extent, upregulation of GNLY+ and CD8+ GNLY+ cells was observed in the perilesional skin of vitiligo and halo nevus compared to healthy controls. In this study, we demonstrated for the first time an increased expression of CD8+ GNLY+ T lymphocytes and CD56+ GNLY+ NK cells in lesions of vitiligo and halo nevus, indicating the role of GNLY in the pathogenesis of both diseases.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Killer Cells, Natural , Nevus, Halo , Vitiligo , Humans , Vitiligo/metabolism , Vitiligo/pathology , Antigens, Differentiation, T-Lymphocyte/metabolism , Male , Nevus, Halo/metabolism , Nevus, Halo/pathology , Female , Adult , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Middle Aged , Skin/metabolism , Skin/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Melanocytes/metabolism , Melanocytes/pathology , Young Adult , CD56 Antigen/metabolism , Case-Control Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...