Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathol Res Pract ; 253: 154969, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029715

ABSTRACT

Endoplasmic reticulum (ER) stress refers to a condition where the normal functioning of the ER is disrupted due to a variety of cellular stress factors. As a result, there is an accumulation of unfolded and misfolded proteins within the ER. Numerous studies have shown that ER stress can exacerbate inflammatory reactions and contribute to the development of various inflammatory diseases. However, the role of ER stress in the stability of atherosclerotic plaques remains poorly understood. In this study, we aimed to explore the potential impact of a specific ER stress inhibitor known as 4-phenyl butyric acid (4-PBA) on atherosclerosis in mice. The mice were fed a high-fat diet, and treatment with 4-PBA significantly improved the stability of the atherosclerotic plaques. This was evidenced by a reduction in oxidative stress and an increase in circadian locomotor output cycles kaput (CLOCK) protein and mRNA expression within the plaques. Additionally, 4-PBA reduced the expression of ER stress-related proteins and decreased apoptosis in the atherosclerotic plaques. In vitro investigation, we observed the effect of 4-PBA on vascular smooth muscle cells (VSMCs) that were exposed to oxidized low-density lipoprotein (ox-LDL), a significant contributor to the development of atherosclerosis. 4-PBA reduced reactive oxygen species (ROS) production and attenuated apoptosis, GRP78 and CHOP protein expression in ox-LDL-Induced VSMCs via up-regulating CLOCK expression. However, when the short hairpin RNA against CLOCK (sh-CLOCK) was introduced to the VSMCs, the protective effect of 4-PBA was abolished. This suggests that the up-regulation of CLOCK expression is crucial for the beneficial effects of 4-PBA on atherosclerotic plaque stability. This finding suggests that targeting ER stress and modulating CLOCK protein levels might be a promising way to enhance the stability of atherosclerotic plaques.


Subject(s)
Atherosclerosis , Butylamines , Plaque, Atherosclerotic , Animals , Mice , CLOCK Proteins/pharmacology , Atherosclerosis/metabolism , Apoptosis , Endoplasmic Reticulum Stress
2.
J Cosmet Dermatol ; 22(1): 156-172, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35560862

ABSTRACT

OBJECTIVE: Normal circadian rhythms are essential to the repair mechanisms of oxidative stress implicated in skin aging. Given reports that hyaluronic acid (HA) homeostasis exhibits a different profile in chronological skin aging, as compared to environmental or extrinsic aging, an improved understanding of the way HA interacts with its surroundings, and the impact of HA injectables in replacing lost HA and encouraging rejuvenation, is of key benefit to skin aging treatments. The objectives of these current studies were twofold. Firstly, to demonstrate the in vitro effects of two lightweight hyaluronic-based injectables on the expression of CLOCK protein in human skin fibroblasts, and their effects on Klotho protein expression as a marker for circadian rhythms in a combined human keratinocyte and Merkel cell model. Secondly, to ascertain whether these findings could be correlated with in vitro effects on various environmental oxidative stress aging markers (blue light, UVA/UVB, Urban Dust, and IR exposures). METHODS: Oxidative stress studies were aimed to highlight possible protective effects through different challenge conditions in two models, ex vivo human skin explants and in vitro monolayer cultures of normal human dermal fibroblasts (NHDF). The protective effects of the test products were evaluated against an increase of cyclobutene pyrimidine dimers (CPDs) abundance within epidermal section of ex vivo skin explants after UVA/UVB radiation; effects of blue light on gene expression from NHDFs fibroblasts; effects of pollutants (Urban dust, UbD) on gene expression in NHDFs fibroblasts; and an increase of reactive oxygen species (ROS) production by NHDFs fibroblasts after infrared-A radiation. Gene expression was assayed and analyzed utilizing microfluidic TaqMan qPCR arrays. CLOCK expression was measured in young and senescing NHDFs by immunostaining, and Klotho and melatonin expression by immunostaining in Merkel cell-enriched normal adult human epidermal cell cultures. RESULTS: In an aging culture of mixed keratinocyte and Merkel skin cells, activation of Klotho expression was induced by the application of both HA test products. Moreover, the HA products increase Klotho protein expression in both Merkel cells and keratinocytes. The observed positive effect of the tested products on melatonin receptors 1A and 1B expression in aging Merkel cell culture and keratinocytes is also interesting. HA-Y (developed for patients 25+ years old) stimulated melatonin receptors type 1B expression in aging cell cultures more strongly than HA-S (developed for patients 35-65 years old). In age (stressed) cells, a lower expression of Klotho protein and melatonin receptors 1A and 1B is apparent. The addition of HA-Y and HA-S stimulates their expression thus providing a "protective" effect. The blue light irradiation at 40 J/cm2 performed in NHDF fibroblast cultures led to a modification of the expression of several genes, all involved in mechanisms known to be modulated in case of solar radiation stress. CONCLUSIONS: Although these are preliminary findings, they are the first we know of that demonstrate HA facial injectables having a benefit and possibilities beyond the "physical filling" of the skin. As regards the beneficial effects against blue light-induced oxidative stress, and a return to cellular homeostasis, there is a need to conduct further and more precise investigations into HA-S. Furthermore, the benefit of these HA injectables (Novacutan®) in the modulation of oxidative stressed circadian rhythms widens their potential benefit.


Subject(s)
Hyaluronic Acid , Klotho Proteins , Humans , Adult , Middle Aged , Aged , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Receptors, Melatonin/metabolism , CLOCK Proteins/metabolism , CLOCK Proteins/pharmacology , Skin , Keratinocytes/metabolism , Oxidative Stress , Ultraviolet Rays , Fibroblasts , Gene Expression
3.
Osteoarthritis Cartilage ; 27(6): 922-931, 2019 06.
Article in English | MEDLINE | ID: mdl-30716535

ABSTRACT

OBJECTIVES: To examine the effect of the circadian gene Clock on posttranscriptional function and pro-inflammatory mechanisms in osteoarthritis (OA). METHODS: The cartilage from Clock mutant mice was assessed using histology, (OA) score, and real-time polymerase chain reaction (PCR) quantification of key pro-inflammatory genes. Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) translocation, posttranslational state and expression levels during day and night conditions were assessed using immunoblot and IP. The regulation of transcription by Clock in cartilage tissue was assessed by using chromatin immunoprecipitation (ChIP) and luciferase assays. Total acetylation level and pattern over 24 h were quantified using immunoblot and real-time PCR. Finally, the effects of exogenous Clock nanoparticle treatment were quantified by histology and immunoblot. RESULTS: The Clock mutation significantly promoted the degradation of cartilage and the expression of the key pro-inflammatory mediators, IL-1ß, IL-6 and MCP-1. The Clock mutation significantly promoted NFκB nuclear translocation. The circadian protein CLOCK positively regulates NFκB at the transcriptional level by binding the E-box domain. The Clock mutation significantly inhibited the total lysine acetylation level in cartilage and inhibited NFκB acetylation at the Lys310 residue but promoted phosphorylation at the Ser276 residue. The forced expression of Clock in vivo inhibited NFκB activation by increasing acetylation and decreasing phosphorylation levels and by decreasing cartilage damage and inflammation. CONCLUSIONS: This study demonstrates the mutation of Clock promotes inflammatory activity by mediating the posttranscriptional regulation of NFκB in OA pathogenesis.


Subject(s)
CLOCK Proteins/genetics , Cartilage, Articular/metabolism , NF-kappa B/genetics , Osteoarthritis, Knee/genetics , Stifle/metabolism , Acetylation , Animals , CLOCK Proteins/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/immunology , Cartilage, Articular/pathology , Chemokine CCL2/immunology , Chromatin Immunoprecipitation , Immunoblotting , Immunoprecipitation , Inflammation , Interleukin-1beta/immunology , Interleukin-6/immunology , Mice , NF-kappa B/drug effects , NF-kappa B/metabolism , Nanoparticles , Osteoarthritis, Knee/immunology , Osteoarthritis, Knee/metabolism , Phosphorylation , Protein Processing, Post-Translational , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Stifle/drug effects , Stifle/immunology , Stifle/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...