Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.130
Filter
1.
Mol Genet Genomics ; 299(1): 49, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704518

ABSTRACT

The main objective of this study was to determine whether the common Y-haplogroups were be associated with the risk of developing severe COVID-19 in Spanish male. We studied 479 patients who required hospitalization due to COVID-19 and 285 population controls from the region of Asturias (northern Spain), They were genotyped for several polymorphisms that define the common European Y-haplogroups. We compared the frequencies between patients and controls aged ≤ 65 and >65 years. There were no different haplogroup frequencies between the two age groups of controls. Haplogroup R1b was less common in patients aged ≤65 years. Haplogroup I was more common in the two patient´s groups compared to controls (p = 0.02). Haplogroup R1b was significantly more frequent among hypertensive patients, without difference between the hypertensive and normotensive controls. This suggested that R1b could increase the risk for severe COVID-19 among male with pre-existing hypertension. In conclusion, we described the Y-haplogroup structure among Asturians. We found an increased risk of severe COVID-19 among haplogroup I carriers, and a significantly higher frequency of R1b among hypertensive patients. These results indicate that Y-chromosome variants could serve as markers to define the risk of developing a severe form of COVID-19.


Subject(s)
COVID-19 , Chromosomes, Human, Y , Haplotypes , Hypertension , SARS-CoV-2 , Humans , Male , COVID-19/genetics , COVID-19/epidemiology , Spain/epidemiology , Haplotypes/genetics , Aged , Middle Aged , SARS-CoV-2/genetics , Chromosomes, Human, Y/genetics , Hypertension/genetics , Genetic Predisposition to Disease , Case-Control Studies , Polymorphism, Single Nucleotide , Adult , Female
2.
Mol Biol Rep ; 51(1): 630, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720147

ABSTRACT

BACKGROUND: The pro-inflammatory cytokine IL-1 plays an important role in severe COVID-19. A change in IL-1 production may be associated with a mutation in the IL1Β gene. Our study analyzed the impact of the IL1Β gene variants (rs1143634) on disease progression in patients with severe COVID-19 pneumonia, taking into account treatment strategies. METHODS AND RESULTS: The study enrolled 117 patients with severe COVID-19 pneumonia. The IL1Β gene variants were identified using the polymerase chain reaction-restriction fragment length polymorphism method. In the group of patients, the following genotype frequencies were found based on the investigated rs1143634 variant of the IL1Β gene: CC-65.8%, CT-28.2%, and TT-6.0%. Our results showed that the group of patients with the T allele of the IL1Β gene had higher leukocyte counts (p = 0.040) and more pronounced lymphopenia (p = 0.007). It was determined that patients carrying the T allele stayed on ventilators significantly longer (p = 0.049) and required longer treatment with corticosteroids (p = 0.045). CONCLUSION: Identifying variants of the IL1Β gene can be used as a predictive tool for assessing the severity of COVID-19 pneumonia and tailoring personalized treatment strategies. Further research with a larger patient cohort is required to validate these findings.


Subject(s)
COVID-19 , Interleukin-1beta , SARS-CoV-2 , Humans , Interleukin-1beta/genetics , COVID-19/genetics , Male , Female , Middle Aged , Aged , SARS-CoV-2/genetics , Polymorphism, Single Nucleotide/genetics , Gene Frequency/genetics , Alleles , Genotype , Adult , Genetic Predisposition to Disease
3.
Front Immunol ; 15: 1406291, 2024.
Article in English | MEDLINE | ID: mdl-38803488

ABSTRACT

Background: The human gut microbiota has been identified as a potentially important factor influencing the development of COVID-19. It is believed that the disease primarily affects the organism through inflammatory pathways. With the aim of improving early diagnosis and targeted therapy, it is crucial to identify the specific gut microbiota associated with COVID-19 and to gain a deeper understanding of the underlying processes. The present study sought to investigate the potential causal relationship between the gut microbiota and COVID-19, and to determine the extent to which inflammatory proteins act as mediators in this relationship. Methods: Bidirectional mendelian randomization (MR) and Two-step mediated MR analyses were applied to examine causative associations among 196 gut microbiota, 91 inflammatory proteins and COVID-19. The main analytical method used in the MR was the random effects inverse variance weighted (IVW) method. This was complemented by the Bayesian weighted Mendelian randomization (BWMR) method, which was utilized to test the hypothesis of MR. In order for the results to be deemed reliable, statistical significance was required for both methods. Validation was then carried out using an external dataset, and further meta-analyses were conducted to authenticate that the association was reliable. Results: Results of our research indicated that seven gut microbiota were actively associated to the COVID-19 risk. Five inflammatory proteins were associated with COVID-19 risk, of which three were positively and two were negatively identified with COVID-19. Further validation was carried out using sensitivity analyses. Mediated MR results revealed that CCL2 was a possible mediator of causality of family Bifidobacteriaceae and order Bifidobacteriales with COVID-19, mediating at a ratio of 12.73%. Conclusion: Suggesting a genetic causation between specific gut microbiota and COVID-19, our present research emphasizes the underlying mediating role of CCL2, an inflammatory factor, and contributes to a deeper understanding of the mechanism of action underlying COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Mendelian Randomization Analysis , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/immunology , Gastrointestinal Microbiome/genetics , SARS-CoV-2/physiology , Bayes Theorem , Inflammation
4.
An Acad Bras Cienc ; 96(2): e20231160, 2024.
Article in English | MEDLINE | ID: mdl-38808879

ABSTRACT

This study investigated the association between the IFITM3 rs12252 polymorphism and the severity and mortality of COVID-19 in hospitalized Brazilian patients. A total of 102 COVID-19 patients were included, and the outcomes of interest were defined as death and the need for mechanical ventilation. Genotypes were assessed using Taqman probes. No significant associations were found between the rs12252 polymorphism and COVID-19 outcomes in the original sample, both for death and the need for mechanical ventilation. A meta-analysis, incorporating previous studies that used death as a severity indicator, revealed no association in the allelic and C-recessive models. However, due to the rarity of the T allele and its absence in the sample, further replication studies in larger and more diverse populations are needed to clarify the role of rs12252 in COVID-19 prognosis.


Subject(s)
COVID-19 , Membrane Proteins , Polymorphism, Single Nucleotide , RNA-Binding Proteins , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/genetics , COVID-19/mortality , Brazil/epidemiology , Membrane Proteins/genetics , SARS-CoV-2/genetics , Male , Female , RNA-Binding Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Middle Aged , Pandemics , Betacoronavirus/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/mortality , Genotype , Aged , Genetic Predisposition to Disease/genetics , Respiration, Artificial , Adult
5.
Biomolecules ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785948

ABSTRACT

This study presents the interaction with the human host metabolism of SARS-CoV-2 ORF7b protein (43 aa), using a protein-protein interaction network analysis. After pruning, we selected from BioGRID the 51 most significant proteins among 2753 proven interactions and 1708 interactors specific to ORF7b. We used these proteins as functional seeds, and we obtained a significant network of 551 nodes via STRING. We performed topological analysis and calculated topological distributions by Cytoscape. By following a hub-and-spoke network architectural model, we were able to identify seven proteins that ranked high as hubs and an additional seven as bottlenecks. Through this interaction model, we identified significant GO-processes (5057 terms in 15 categories) induced in human metabolism by ORF7b. We discovered high statistical significance processes of dysregulated molecular cell mechanisms caused by acting ORF7b. We detected disease-related human proteins and their involvement in metabolic roles, how they relate in a distorted way to signaling and/or functional systems, in particular intra- and inter-cellular signaling systems, and the molecular mechanisms that supervise programmed cell death, with mechanisms similar to that of cancer metastasis diffusion. A cluster analysis showed 10 compact and significant functional clusters, where two of them overlap in a Giant Connected Component core of 206 total nodes. These two clusters contain most of the high-rank nodes. ORF7b acts through these two clusters, inducing most of the metabolic dysregulation. We conducted a co-regulation and transcriptional analysis by hub and bottleneck proteins. This analysis allowed us to define the transcription factors and miRNAs that control the high-ranking proteins and the dysregulated processes within the limits of the poor knowledge that these sectors still impose.


Subject(s)
COVID-19 , Protein Interaction Maps , SARS-CoV-2 , Viral Proteins , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Protein Interaction Maps/genetics , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , Viral Proteins/metabolism , Viral Proteins/genetics
6.
Cells ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786015

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.


Subject(s)
Adenocarcinoma of Lung , COVID-19 , RNA, Messenger , Receptors, G-Protein-Coupled , SARS-CoV-2 , Up-Regulation , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , COVID-19/genetics , COVID-19/virology , COVID-19/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/virology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Up-Regulation/genetics , Cell Line, Tumor , Lung Neoplasms/genetics , Lung Neoplasms/virology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Caco-2 Cells
7.
Funct Integr Genomics ; 24(3): 107, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772950

ABSTRACT

COVID-19 is associated with heterogeneous outcome. Early identification of a severe progression of the disease is essential to properly manage the patients and improve their outcome. Biomarkers reflecting an increased inflammatory response, as well as individual features including advanced age, male gender, and pre-existing comorbidities, are risk factors of severe COVID-19. Yet, these features show limited accuracy for outcome prediction. The aim was to evaluate the prognostic value of whole blood transcriptome at an early stage of the disease. Blood transcriptome of patients with mild pneumonia was profiled. Patients with subsequent severe COVID-19 were compared to those with favourable outcome, and a molecular predictor based on gene expression was built. Unsupervised classification discriminated patients who would later develop a COVID-19-related severe pneumonia. The corresponding gene expression signature reflected the immune response to the viral infection dominated by a prominent type I interferon, with IFI27 among the most over-expressed genes. A 48-genes transcriptome signature predicting the risk of severe COVID-19 was built on a training cohort, then validated on an external independent cohort, showing an accuracy of 81% for predicting severe outcome. These results identify an early transcriptome signature of severe COVID-19 pneumonia, with a possible relevance to improve COVID-19 patient management.


Subject(s)
COVID-19 , SARS-CoV-2 , Transcriptome , Humans , COVID-19/blood , COVID-19/genetics , Male , Female , Middle Aged , Aged , Cohort Studies , Prognosis , Adult , Severity of Illness Index , Biomarkers/blood , Gene Expression Profiling , Membrane Proteins
8.
BMC Med Genomics ; 17(1): 139, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783290

ABSTRACT

The symptoms of SARS-CoV-2 infection vary widely, ranging from asymptomatic cases to severe forms marked by acute respiratory distress syndrome, multi-organ damage, and fatalities. Studies indicate a correlation between specific genes and susceptibility to SARS-CoV-2 infection and disease severity, particularly involving variants in genes linked to inflammation and immune responses. The objective of this study is to investigate the association between rs1800795 (- 174 G > C) and rs1800797 (- 597 A > G) variants in the interleukin-6 (IL-6) promoter region and susceptibility to SARS-CoV-2 infection. Additionally, we aim to explore their correlation with COVID-19 severity in a Moroccan population. In this case-control study, we enrolled 270 unvaccinated COVID-19 patients, consisting of 132 with severe COVID-19 and 138 with asymptomatic-moderate COVID-19. Additionally, we included 339 SARS-CoV-2-negative group. Genotyping of rs1800795 and rs1800797 polymorphisms of the IL-6 gene was performed using predesigned TaqMan SNP genotyping. The median age of SARS-CoV-2-negative controls was 50 years, while severe COVID-19 cases exhibited a median age of 61 years. Additionally, individuals with asymptomatic to moderate COVID-19 had a median age of 36 years. We observed a significant age difference between severe and mild COVID-19 patients (p < 0.0001), and an association was noted between gender and the severity of COVID-19 (p = 0.011). The allele and genotype frequencies of the IL-6 - 597G > A and - 174G > C variants did not show significant associations with susceptibility to SARS-CoV-2 infection (p > 0.05). However, further analysis revealed that the linkage disequilibrium between rs1800797 and rs1800795 indicated that individuals with the GC* haplotype (OR = 0.04, 95% CI 0.01-0.30, p = 0.001) and AG* haplotype (OR = 0.11, 95% CI 0.03-0.46, p = 0.002) were significantly associated with protection against SARS-CoV-2 infection. Moreover, in the overdominant model, the IL-6 - 174 G/C genotype was found to be protective against the development of severe disease compared to those with the G/G-C/C genotypes (p = 0.03; OR = 0.41, 95% CI 0.18-0.96). However, correlations between complete blood count markers, hematological markers, D-dimer, C-reactive protein, and ferritin levels according to - 597 A > G and - 174G > C genotypes showed no significant differences (all p > 0.05). Our findings provide valuable insights into the pathogenesis of COVID-19, suggesting that genetic variations at the IL-6 gene may contribute to the susceptibility to severe SARS-CoV-2 infection within the Moroccan population.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Interleukin-6 , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/genetics , COVID-19/virology , Interleukin-6/genetics , Female , Male , Case-Control Studies , Morocco , Middle Aged , Adult , Promoter Regions, Genetic , Aged , Gene Frequency , Haplotypes
9.
Front Cell Infect Microbiol ; 14: 1322882, 2024.
Article in English | MEDLINE | ID: mdl-38694517

ABSTRACT

COVID-19 has a broad clinical spectrum, ranging from asymptomatic-mild form to severe phenotype. The severity of COVID-19 is a complex trait influenced by various genetic and environmental factors. Ethnic differences have been observed in relation to COVID-19 severity during the pandemic. It is currently unknown whether genetic variations may contribute to the increased risk of severity observed in Latin-American individuals The aim of this study is to investigate the potential correlation between gene variants at CCL2, OAS1, and DPP9 genes and the severity of COVID-19 in a population from Quito, Ecuador. This observational case-control study was conducted at the Carrera de Biologia from the Universidad Central del Ecuador and the Hospital Quito Sur of the Instituto Ecuatoriano de Seguridad Social (Quito-SUR-IESS), Quito, Ecuador. Genotyping for gene variants at rs1024611 (A>G), rs10774671 (A>G), and rs10406145 (G>C) of CCL2, OAS1, and DPP9 genes was performed on 100 COVID-19 patients (43 with severe form and 57 asymptomatic-mild) using RFLP-PCR. The genotype distribution of all SNVs throughout the entire sample of 100 individuals showed Hardy Weinberg equilibrium (P=0.53, 0.35, and 0.4 for CCL2, OAS1, and DPP9, respectively). The HWE test did not find any statistically significant difference in genotype distribution between the study and control groups for any of the three SNVs. The multivariable logistic regression analysis showed that individuals with the GG of the CCL2 rs1024611 gene variant had an increased association with the severe COVID-19 phenotype in a recessive model (P = 0.0003, OR = 6.43, 95% CI 2.19-18.89) and for the OAS1 rs10774671 gene variant, the log-additive model showed a significant association with the severe phenotype of COVID-19 (P=0.0084, OR=3.85, 95% CI 1.33-11.12). Analysis of haplotype frequencies revealed that the coexistence of GAG at CCL2, OAS1, and DPP9 variants, respectively, in the same individual increased the presence of the severe COVID-19 phenotype (OR=2.273, 95% CI: 1.271-4.068, P=0.005305). The findings of the current study suggests that the ethnic background affects the allele and genotype frequencies of genes associated with the severity of COVID-19. The experience with COVID-19 has provided an opportunity to identify an ethnicity-based approach to recognize genetically high-risk individuals in different populations for emerging diseases.


Subject(s)
2',5'-Oligoadenylate Synthetase , COVID-19 , Chemokine CCL2 , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index , Humans , Ecuador/epidemiology , Female , Male , Case-Control Studies , Adult , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/genetics , Middle Aged , Chemokine CCL2/genetics , SARS-CoV-2/genetics , Genetic Predisposition to Disease , Genotype , Gene Frequency , Aged , Young Adult
10.
Nat Commun ; 15(1): 4031, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740772

ABSTRACT

The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.


Subject(s)
Alleles , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , HLA Antigens , Polymorphism, Single Nucleotide , SARS-CoV-2 , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , COVID-19/genetics , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , HLA Antigens/genetics , HLA Antigens/immunology , Antibody Formation/genetics , Antibody Formation/immunology , Male , Female , Genotype , Vaccination , Middle Aged , Adult , Genetic Variation , HLA-DQ beta-Chains/genetics , HLA-DQ beta-Chains/immunology , Breakthrough Infections
11.
Front Immunol ; 15: 1382449, 2024.
Article in English | MEDLINE | ID: mdl-38745657

ABSTRACT

Background: Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods: Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results: The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFß signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion: This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.


Subject(s)
Acute Lung Injury , Cell Communication , Gene Expression Profiling , Animals , Acute Lung Injury/genetics , Acute Lung Injury/immunology , Mice , Humans , Cell Communication/immunology , Transcriptome , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/genetics , Disease Models, Animal , Single-Cell Analysis , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , COVID-19/immunology , COVID-19/genetics , Signal Transduction , Male , Macrophages/immunology , Macrophages/metabolism
12.
BMC Res Notes ; 17(1): 140, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755665

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19)-associated tracheal stenosis (COATS) may occur as a result of prolonged intubation during COVID-19 infection. We aimed to investigate patterns of gene expression in the tracheal granulation tissue of patients with COATS, leverage gene expression data to identify dysregulated cellular pathways and processes, and discuss potential therapeutic options based on the identified gene expression profiles. METHODS: Adult patients (age ≥ 18 years) presenting to clinics for management of severe, recalcitrant COATS were included in this study. RNA sequencing and differential gene expression analysis was performed with transcriptomic data for normal tracheal tissue being used as a control. The top ten most highly upregulated and downregulated genes were identified. For each of these pathologically dysregulated genes, we identified key cellular pathways and processes they are involved in using Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) applied via Database for Annotation, Visualization, and Integrated Discovery (DAVID). RESULTS: Two women, aged 36 years and 37 years, were included. The profile of dysregulated genes indicated a cellular response consistent with viral infection (CXCL11, PI15, CCL8, DEFB103A, IFI6, ACOD1, and DEFB4A) and hyperproliferation/hypergranulation (MMP3, CASP14 and HAS1), while downregulated pathways included retinol metabolism (ALDH1A2, RBP1, RBP4, CRABP1 and CRABP2). CONCLUSION: Gene expression changes consistent with persistent viral infection and dysregulated retinol metabolism may promote tracheal hypergranulation and hyperproliferation leading to COATS. Given the presence of existing literature highlighting retinoic acid's ability to favorably regulate these genes, improve cell-cell adhesion, and decrease overall disease severity in COVID-19, future studies must evaluate its utility for adjunctive management of COATS in animal models and clinical settings.


Subject(s)
COVID-19 , Tracheal Stenosis , Transcriptome , Vitamin A , Humans , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Female , Vitamin A/metabolism , Adult , Tracheal Stenosis/genetics , Tracheal Stenosis/metabolism , Transcriptome/genetics , SARS-CoV-2 , Gene Expression Profiling/methods , Trachea/metabolism , Trachea/virology
13.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38742520

ABSTRACT

The dynamic evolution of the severe acute respiratory syndrome coronavirus 2 virus is primarily driven by mutations in its genetic sequence, culminating in the emergence of variants with increased capability to evade host immune responses. Accurate prediction of such mutations is fundamental in mitigating pandemic spread and developing effective control measures. This study introduces a robust and interpretable deep-learning approach called PRIEST. This innovative model leverages time-series viral sequences to foresee potential viral mutations. Our comprehensive experimental evaluations underscore PRIEST's proficiency in accurately predicting immune-evading mutations. Our work represents a substantial step in utilizing deep-learning methodologies for anticipatory viral mutation analysis and pandemic response.


Subject(s)
COVID-19 , Immune Evasion , Mutation , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Humans , COVID-19/virology , COVID-19/immunology , COVID-19/genetics , Immune Evasion/genetics , Deep Learning , Evolution, Molecular , Pandemics
14.
BMC Genomics ; 25(1): 482, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750426

ABSTRACT

BACKGROUND: The severity of COVID-19 is influenced by various factors including the presence of respiratory diseases. Studies have indicated a potential relationship between asthma and COVID-19 severity. OBJECTIVE: This study aimed to conduct a genome-wide association study (GWAS) to identify genetic and clinical variants associated with the severity of COVID-19, both among patients with and without asthma. METHODS: We analyzed data from 2131 samples sourced from the Biobanque québécoise de la COVID-19 (BQC19), with 1499 samples from patients who tested positive for COVID-19. Among these, 1110 exhibited mild-to-moderate symptoms, 389 had severe symptoms, and 58 had asthma. We conducted a comparative analysis of clinical data from individuals in these three groups and GWAS using a logistic regression model. Phenotypic data analysis resulted in the refined covariates integrated into logistic models for genetic studies. RESULTS: Considering a significance threshold of 1 × 10-6, seven genetic variants were associated with severe COVID-19. These variants were located proximal to five genes: sodium voltage-gated channel alpha subunit 1 (SCN10A), desmoplakin (DSP), RP1 axonemal microtubule associated (RP1), IGF like family member 1 (IGFL1), and docking protein 5 (DOK5). The GWAS comparing individuals with severe COVID-19 with asthma to those without asthma revealed four genetic variants in transmembrane protein with EGF like and two follistatin like domains 2 (TMEFF2) and huntingtin interacting protein-1 (HIP1) genes. CONCLUSION: This study provides significant insights into the genetic profiles of patients with severe forms of the disease, whether accompanied by asthma or not. These findings enhance our comprehension of the genetic factors that affect COVID-19 severity. KEY MESSAGES: Seven genetic variants were associated with the severe form of COVID-19; Four genetic variants were associated with the severe form of COVID-19 in individuals with comorbid asthma; These findings help define the genetic component of the severe form of COVID-19 in relation to asthma as a comorbidity.


Subject(s)
Asthma , COVID-19 , Comorbidity , Genome-Wide Association Study , SARS-CoV-2 , Humans , COVID-19/genetics , Asthma/genetics , Asthma/complications , Male , Female , Middle Aged , SARS-CoV-2/genetics , Adult , Severity of Illness Index , Cohort Studies , Polymorphism, Single Nucleotide , Aged , Genomics/methods , Genetic Predisposition to Disease
15.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713502

ABSTRACT

We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.


Subject(s)
Angiotensin-Converting Enzyme 2 , Evolution, Molecular , Polymorphism, Genetic , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites/genetics , Protein Binding , COVID-19/virology , COVID-19/genetics , Mutation , Molecular Dynamics Simulation
16.
Signal Transduct Target Ther ; 9(1): 125, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734691

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.


Subject(s)
COVID-19 , ErbB Receptors , Mitochondria , SARS-CoV-2 , Virus Replication , SARS-CoV-2/drug effects , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/drug effects , Humans , Animals , Mice , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Virus Replication/drug effects , Energy Metabolism/drug effects , Energy Metabolism/genetics , Vero Cells , Chlorocebus aethiops , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Membrane Potential, Mitochondrial/drug effects , Oxidative Phosphorylation/drug effects , Signal Transduction/drug effects
17.
Viral Immunol ; 37(4): 186-193, 2024 05.
Article in English | MEDLINE | ID: mdl-38717821

ABSTRACT

Coronavirus disease 2019 (COVID-19) represented an international health risk. Variants of the interferon-induced transmembrane protein-3 (IFITM3) gene can increase the risk of developing severe viral infections. This cross-sectional study investigated the association between IFITM3 rs12252A>G single nucleotide polymorphism (SNP) and COVID-19 severity and mortality in 100 Egyptian patients. All participants were subjected to serum interleukin-6 (IL-6) determination by ELISA and IFITM3 rs12252 genotyping by real-time polymerase chain reaction. Of all participants, 85.0% had the IFITM3 rs12252 homozygous AA genotype, whereas 15.0% had the heterozygous AG genotype. None of our participants had the homozygous GG genotype. The IFITM3 rs12252A allele was found in 92.5% and the G allele in only 7.5%. There was no significant association (p > 0.05) between the IFITM3 rs12252 SNP and COVID-19 severity, intensive care unit (ICU) admission, or IL-6 serum levels. The heterozygous AG genotype frequency showed a significant increase among participants who died (32.0%) compared with those who had been cured (9.3%). The mutant G allele was associated with patients' death. Its frequency among cured participants was 8.5%, whereas in those who died was 24.2% (p = 0.024) with 3.429 odds ratio [95% confidence interval: 1.1-10.4]. In conclusion, this study revealed a significant association between the G allele variant of IFITM3 rs12252 and COVID-19 mortality. However, results were unable to establish a significant link between rs12252 polymorphism, disease severity, ICU admission, or serum IL-6 levels.


Subject(s)
COVID-19 , Genotype , Interleukin-6 , Membrane Proteins , Polymorphism, Single Nucleotide , RNA-Binding Proteins , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/genetics , Female , Male , Egypt , Middle Aged , Membrane Proteins/genetics , Adult , Interleukin-6/blood , Interleukin-6/genetics , Cross-Sectional Studies , SARS-CoV-2/genetics , RNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Alleles , Severity of Illness Index , Gene Frequency , Aged
18.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731851

ABSTRACT

COVID-19 is characterized by a wide range of clinical manifestations, where aging, underlying diseases, and genetic background are related to worse outcomes. In the present study, the differential expression of seven genes related to immunity, IRF9, CCL5, IFI6, TGFB1, IL1B, OAS1, and TFRC, was analyzed in individuals with COVID-19 diagnoses of different disease severities. Two-step RT-qPCR was performed to determine the relative gene expression in whole-blood samples from 160 individuals. The expression of OAS1 (p < 0.05) and IFI6 (p < 0.05) was higher in moderate hospitalized cases than in severe ones. Increased gene expression of OAS1 (OR = 0.64, CI = 0.52-0.79; p = 0.001), IRF9 (OR = 0.581, CI = 0.43-0.79; p = 0.001), and IFI6 (OR = 0.544, CI = 0.39-0.69; p < 0.001) was associated with a lower risk of requiring IMV. Moreover, TGFB1 (OR = 0.646, CI = 0.50-0.83; p = 0.001), CCL5 (OR = 0.57, CI = 0.39-0.83; p = 0.003), IRF9 (OR = 0.80, CI = 0.653-0.979; p = 0.03), and IFI6 (OR = 0.827, CI = 0.69-0.991; p = 0.039) expression was associated with patient survival. In conclusion, the relevance of OAS1, IRF9, and IFI6 in controlling the viral infection was confirmed.


Subject(s)
2',5'-Oligoadenylate Synthetase , COVID-19 , Interferon-Stimulated Gene Factor 3, gamma Subunit , SARS-CoV-2 , Humans , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Male , Female , Middle Aged , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Nuclear Proteins/genetics , Adult , Aged , Mitochondrial Proteins
19.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731879

ABSTRACT

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2 variants capable of breakthrough infections have attracted global attention. These variants have significant mutations in the receptor-binding domain (RBD) of the spike protein and the membrane (M) protein, which may imply an enhanced ability to evade immune responses. In this study, an examination of co-mutations within the spike RBD and their potential correlation with mutations in the M protein was conducted. The EVmutation method was utilized to analyze the distribution of the mutations to elucidate the relationship between the mutations in the spike RBD and the alterations in the M protein. Additionally, the Sequence-to-Sequence Transformer Model (S2STM) was employed to establish mapping between the amino acid sequences of the spike RBD and M proteins, offering a novel and efficient approach for streamlined sequence analysis and the exploration of their interrelationship. Certain mutations in the spike RBD, G339D-S373P-S375F and Q493R-Q498R-Y505, are associated with a heightened propensity for inducing mutations at specific sites within the M protein, especially sites 3 and 19/63. These results shed light on the concept of mutational synergy between the spike RBD and M proteins, illuminating a potential mechanism that could be driving the evolution of SARS-CoV-2.


Subject(s)
COVID-19 , Machine Learning , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Humans , COVID-19/virology , COVID-19/genetics , Viral Matrix Proteins/genetics , Viral Matrix Proteins/chemistry , Coronavirus M Proteins/genetics , Protein Domains/genetics , Amino Acid Sequence , Protein Binding
20.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731889

ABSTRACT

We are pleased to present the first and second editions of this Special Issue, titled "Molecular and Genetic Aspects of SARS-CoV-2 Infection and COVID-19 Disease", of the International Journal of Molecular Sciences [...].


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , COVID-19/virology , Humans , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...