Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.528
Filter
1.
Acta Neuropathol ; 147(1): 92, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801558

ABSTRACT

The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aß), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aß deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.


Subject(s)
Alzheimer Disease , Brain , COVID-19 , Down Syndrome , Humans , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/complications , Alzheimer Disease/pathology , Alzheimer Disease/virology , Alzheimer Disease/metabolism , COVID-19/pathology , COVID-19/complications , Male , Female , Aged , Middle Aged , Brain/pathology , Brain/virology , Aged, 80 and over , Astrocytes/pathology , Astrocytes/virology , Astrocytes/metabolism , Amyloid beta-Peptides/metabolism , SARS-CoV-2/pathogenicity , Microglia/pathology , Microglia/metabolism , Adult , tau Proteins/metabolism
2.
Nat Commun ; 15(1): 4256, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762609

ABSTRACT

After contracting COVID-19, a substantial number of individuals develop a Post-COVID-Condition, marked by neurologic symptoms such as cognitive deficits, olfactory dysfunction, and fatigue. Despite this, biomarkers and pathophysiological understandings of this condition remain limited. Employing magnetic resonance imaging, we conduct a comparative analysis of cerebral microstructure among patients with Post-COVID-Condition, healthy controls, and individuals that contracted COVID-19 without long-term symptoms. We reveal widespread alterations in cerebral microstructure, attributed to a shift in volume from neuronal compartments to free fluid, associated with the severity of the initial infection. Correlating these alterations with cognition, olfaction, and fatigue unveils distinct affected networks, which are in close anatomical-functional relationship with the respective symptoms.


Subject(s)
COVID-19 , Cognitive Dysfunction , Fatigue , Magnetic Resonance Imaging , Olfaction Disorders , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19/physiopathology , COVID-19/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/virology , Male , Fatigue/physiopathology , Female , Middle Aged , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/virology , Olfaction Disorders/physiopathology , Adult , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Post-Acute COVID-19 Syndrome , Aged
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732160

ABSTRACT

Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/virology , COVID-19/pathology , SARS-CoV-2/pathogenicity , Lung/blood supply , Lung/pathology , Lung/virology , Pulmonary Embolism/virology , Pulmonary Embolism/etiology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/virology , Hypertension, Pulmonary/pathology , Post-Acute COVID-19 Syndrome , Thrombosis/virology , Thrombosis/etiology , Thrombosis/pathology
4.
Cell Rep Med ; 5(5): 101561, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38744274

ABSTRACT

Natural history and mechanisms for persistent cognitive symptoms ("brain fog") following acute and often mild COVID-19 are unknown. In a large prospective cohort of people who underwent testing a median of 9 months after acute COVID-19 in the New York City/New Jersey area, we found that cognitive dysfunction is common; is not influenced by mood, fatigue, or sleepiness; and is correlated with MRI changes in very few people. In a subgroup that underwent cerebrospinal fluid analysis, there are no changes related to Alzheimer's disease or neurodegeneration. Single-cell gene expression analysis in the cerebrospinal fluid shows findings consistent with monocyte recruitment, chemokine signaling, cellular stress, and suppressed interferon response-especially in myeloid cells. Longitudinal analysis shows slow recovery accompanied by key alterations in inflammatory genes and increased protein levels of CXCL8, CCL3L1, and sTREM2. These findings suggest that the prognosis for brain fog following COVID-19 correlates with myeloid-related chemokine and interferon-responsive genes.


Subject(s)
COVID-19 , Cognitive Dysfunction , SARS-CoV-2 , Single-Cell Analysis , Humans , COVID-19/cerebrospinal fluid , COVID-19/pathology , COVID-19/complications , Male , Single-Cell Analysis/methods , Female , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/pathology , Cognitive Dysfunction/virology , Cognitive Dysfunction/genetics , Middle Aged , SARS-CoV-2/isolation & purification , Aged , Receptors, Immunologic/genetics , Prospective Studies , Adult , Magnetic Resonance Imaging , Membrane Glycoproteins , Interleukin-8
5.
Cell Rep Med ; 5(5): 101570, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38749422

ABSTRACT

While an association between Parkinson's disease (PD) and viral infections has been recognized, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on PD progression remains unclear. Here, we demonstrate that SARS-CoV-2 infection heightens the risk of PD using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons and a human angiotensin-converting enzyme 2 (hACE2) transgenic (Tg) mouse model. Our findings reveal that SARS-CoV-2 infection exacerbates PD susceptibility and cellular toxicity in DA neurons pre-treated with human preformed fibrils (hPFFs). Additionally, nasally delivered SARS-CoV-2 infects DA neurons in hACE2 Tg mice, aggravating the damage initiated by hPFFs. Mice infected with SARS-CoV-2 display persisting neuroinflammation even after the virus is no longer detectable in the brain. A comprehensive analysis suggests that the inflammatory response mediated by astrocytes and microglia could contribute to increased PD susceptibility associated with SARS-CoV-2. These findings advance our understanding of the potential long-term effects of SARS-CoV-2 infection on the progression of PD.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Disease Models, Animal , Dopaminergic Neurons , Mice, Transgenic , Parkinson Disease , SARS-CoV-2 , Animals , Dopaminergic Neurons/pathology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/virology , Humans , COVID-19/pathology , COVID-19/virology , Parkinson Disease/pathology , Parkinson Disease/virology , Mice , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Microglia/pathology , Microglia/metabolism , Microglia/virology , Human Embryonic Stem Cells/metabolism , Astrocytes/pathology , Astrocytes/virology , Astrocytes/metabolism , Brain/pathology , Brain/virology
6.
Nat Commun ; 15(1): 3816, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769293

ABSTRACT

SARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases. COVID-19 lungs display dysregulation of lipids involved in metabolism and ferroptosis. We find increased ferritin light chain associated with severe COVID-19 lung pathology. Iron overload promotes ferroptosis in both primary cells and cancerous lung epithelial cells. In addition, ferroptosis markers strongly correlate with lung injury severity in a COVID-19 lung disease model using male Syrian hamsters. These results reveal a role for ferroptosis in COVID-19 pulmonary disease; pharmacological ferroptosis inhibition may serve as an adjuvant therapy to prevent lung damage during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Ferroptosis , Lung , Mesocricetus , SARS-CoV-2 , COVID-19/virology , COVID-19/metabolism , COVID-19/pathology , Animals , Humans , Male , Lung/pathology , Lung/virology , Lung/metabolism , SARS-CoV-2/physiology , Female , Iron/metabolism , Middle Aged , Disease Models, Animal , Aged , Lung Injury/virology , Lung Injury/metabolism , Lung Injury/pathology , Iron Overload/metabolism , Adult , Cricetinae
7.
Pediatr Infect Dis J ; 43(6): 525-531, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38753993

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a rare, severe complication of coronavirus disease 2019, commonly involving the gastrointestinal tract. Some children with MIS-C undergo appendectomy before the final diagnosis. There are several hypotheses explaining the pathomechanism of MIS-C, including the central role of the viral antigen persistence in the gut, associated with lymphocyte exhaustion. We aimed to examine appendectomy specimens from MIS-C patients and assess their pathologic features, as well as the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens. METHODS: In this cross-sectional study we included 21 children with MIS-C who underwent appendectomy. The control group included 21 sex- and age-matched children with acute appendicitis (AA) unrelated to SARS-CoV-2 infection. Histologic evaluation of appendiceal specimens included hematoxylin and eosin staining and immunohistochemical identification of lymphocyte subpopulations, programmed cell death protein-1 (PD-1) and SARS-CoV-2 nucleocapsid antigen. RESULTS: Appendices of MIS-C patients lacked neutrophilic infiltrate of muscularis propria typical for AA (14% vs. 95%, P < 0.001). The proportion of CD20+ to CD5+ cells was higher in patients with MIS-C (P = 0.04), as was the proportion of CD4+ to CD8+ (P < 0.001). We found no proof of SARS-CoV-2 antigen presence, nor lymphocyte exhaustion, in the appendices of MIS-C patients. CONCLUSIONS: The appendiceal muscularis of patients with MIS-C lack edema and neutrophilic infiltration typical for AA. SARS-CoV-2 antigens and PD-1 are absent in the appendices of children with MIS-C. These findings argue against the central role of SARS-CoV-2 persistence in the gut and lymphocyte exhaustion as the major triggers of MIS-C.


Subject(s)
Appendectomy , Appendicitis , COVID-19 , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Humans , Cross-Sectional Studies , COVID-19/pathology , COVID-19/immunology , COVID-19/complications , Appendicitis/pathology , Appendicitis/virology , Male , Child , Female , Systemic Inflammatory Response Syndrome/pathology , Child, Preschool , SARS-CoV-2/immunology , Adolescent , Appendix/pathology
8.
J Med Virol ; 96(5): e29671, 2024 May.
Article in English | MEDLINE | ID: mdl-38747003

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Subject(s)
Blood-Brain Barrier , COVID-19 , Choroid Plexus , SARS-CoV-2 , Blood-Brain Barrier/virology , Animals , Choroid Plexus/virology , Choroid Plexus/pathology , COVID-19/virology , COVID-19/pathology , COVID-19/complications , COVID-19/physiopathology , Mice , Tight Junctions/virology , Disease Models, Animal , Angiotensin-Converting Enzyme 2/metabolism , Inflammation/virology , Humans , Pericytes/virology , Pericytes/pathology
9.
Surg Pathol Clin ; 17(2): 203-214, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692805

ABSTRACT

The pathology of severe COVID-19 lung injury is predominantly diffuse alveolar damage, with other reported patterns including acute fibrinous organizing pneumonia, organizing pneumonia, and bronchiolitis. Lung injury was caused by primary viral injury, exaggerated immune responses, and superinfection with bacteria and fungi. Although fatality rates have decreased from the early phases of the pandemic, persistent pulmonary dysfunction occurs and its pathogenesis remains to be fully elucidated.


Subject(s)
COVID-19 , Lung , SARS-CoV-2 , Humans , COVID-19/pathology , COVID-19/complications , Lung/pathology , Lung Diseases/pathology
10.
Acta Neuropathol Commun ; 12(1): 70, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698465

ABSTRACT

The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.


Subject(s)
COVID-19 , Microglia , Olfactory Bulb , Humans , COVID-19/pathology , COVID-19/complications , Olfactory Bulb/pathology , Olfactory Bulb/metabolism , Aged , Male , Female , Aged, 80 and over , Middle Aged , Microglia/pathology , Microglia/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , SARS-CoV-2 , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/metabolism
11.
PLoS One ; 19(5): e0300621, 2024.
Article in English | MEDLINE | ID: mdl-38696393

ABSTRACT

The prone position reduces mortality in severe cases of COVID-19 with acute respiratory distress syndrome. However, visual loss and changes to the peripapillary retinal nerve fiber layer (p-RNFL) and the macular ganglion cell layer and inner plexiform layer (m-GCIPL) have occurred in patients undergoing surgery in the prone position. Moreover, COVID-19-related eye problems have been reported. This study compared the p-RNFL and m-GCIPL thicknesses of COVID-19 patients who were placed in the prone position with patients who were not. This prospective longitudinal and case-control study investigated 15 COVID-19 patients placed in the prone position (the "Prone Group"), 23 COVID-19 patients not in the prone position (the "Non-Prone Group"), and 23 healthy, non-COVID individuals without ocular disease or systemic conditions (the "Control Group"). The p-RNFL and m-GCIPL thicknesses of the COVID-19 patients were measured at 1, 3, and 6 months and compared within and between groups. The result showed that the Prone and Non-Prone Groups had no significant differences in their p-RNFL thicknesses at the 3 follow-ups. However, the m-GCIPL analysis revealed significant differences in the inferior sector of the Non-Prone Group between months 1 and 3 (mean difference, 0.74 µm; P = 0.009). The p-RNFL analysis showed a significantly greater thickness at 6 months for the superior sector of the Non-Prone Group (131.61 ± 12.08 µm) than for the Prone Group (118.87 ± 18.21 µm; P = 0.039). The m-GCIPL analysis revealed that the inferior sector was significantly thinner in the Non-Prone Group than in the Control Group (at 1 month 80.57 ± 4.60 versus 83.87 ± 5.43 µm; P = 0.031 and at 6 months 80.48 ± 3.96 versus 83.87 ± 5.43 µm; P = 0.044). In conclusion, the prone position in COVID-19 patients can lead to early loss of p-RNFL thickness due to rising intraocular pressure, which is independent of the timing of prone positioning. Consequently, there is no increase in COVID-19 patients' morbidity burden.


Subject(s)
COVID-19 , Nerve Fibers , Retinal Ganglion Cells , Humans , COVID-19/pathology , COVID-19/complications , Male , Prone Position , Female , Middle Aged , Retinal Ganglion Cells/pathology , Case-Control Studies , Nerve Fibers/pathology , Prospective Studies , SARS-CoV-2 , Adult , Aged , Tomography, Optical Coherence , Retina/pathology , Longitudinal Studies
12.
Nat Commun ; 15(1): 4235, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762489

ABSTRACT

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


Subject(s)
COVID-19 , Endothelial Cells , Lung , Macrophage Activation , SARS-CoV-2 , Animals , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , COVID-19/pathology , Mice , Endothelial Cells/metabolism , Endothelial Cells/virology , Endothelial Cells/immunology , SARS-CoV-2/physiology , Lung/virology , Lung/pathology , Lung/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Mice, Inbred C57BL , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Male , Macrophages/metabolism , Macrophages/immunology , Female , Mice, Knockout , Extracellular Matrix Proteins
13.
Medicine (Baltimore) ; 103(21): e38171, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788031

ABSTRACT

Although studies evaluated placental involvement in Covid-19 patients, few have assessed its association with clinical repercussions. The study aimed to determine the association between the clinical status and maternal and perinatal outcomes of patients with Covid-19 at delivery and changes in placental histology. It is so far the largest cohort evaluating placentas of patients infected by the SARS-CoV-2. A secondary analysis was conducted of a database from which a cohort of 226 patients, who tested real-time polymerase chain reaction-positive for Covid-19 at delivery and whose placentas were collected and submitted to pathology, was selected for inclusion. One or more types of histological changes were detected in 44.7% of the 226 placentas evaluated. The most common abnormalities were maternal vascular malperfusion (38%), evidence of inflammation/infection (9.3%), fetal vascular malperfusion (0.8%), fibrinoid changes and intervillous thrombi (0.4%). Oxygen use (P = .01) and need for admission to an intensive care unit (ICU) (P = .04) were less common in patients with placental findings, and hospital stay was shorter in these patients (P = .04). There were more fetal deaths among patients with evidence of inflammation/infection (P = .02). Fetal death, albeit uncommon, is associated with findings of inflammation/infection. Oxygen use and need for admission to an ICU were less common among patients with placental findings, probably due to the pregnancy being interrupted early. None of the other findings was associated with maternal clinical status or with adverse perinatal outcome.


Subject(s)
COVID-19 , Placenta , Pregnancy Complications, Infectious , Pregnancy Outcome , SARS-CoV-2 , Humans , Pregnancy , Female , COVID-19/pathology , COVID-19/complications , Placenta/pathology , Placenta/virology , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/epidemiology , Adult , Pregnancy Outcome/epidemiology , Cohort Studies , Infant, Newborn , Placenta Diseases/pathology , Placenta Diseases/virology , Placenta Diseases/epidemiology
14.
PLoS One ; 19(5): e0302682, 2024.
Article in English | MEDLINE | ID: mdl-38781150

ABSTRACT

INTRODUCTION: The impact of COVID-19 on the placenta is poorly described, particularly among minority women. MATERIALS AND METHODS: This is a retrospective case-control study. Micro- and macroscopic placental pathologic findings were compared for 15 COVID-19 positive and 36 negative mothers. Cases and controls were frequency matched on gestational age, race, maternal comorbidities, and delivery type. Data from the electronic medical record were supplemented with independent review of microscopic slides. RESULTS: Placentas from cases and controls were similar except the median distance from the site of the cord insertion to the nearest disk margin was statistically significantly shorter among placentas from COVID-19 positive cases (3.5 versus 6.0 cm, p = 0.006). Case status was not associated with an increased risk of placental pathologies. CONCLUSION: There are few pathologic differences between placentas of COVID-19 positive and negative mothers. Additional studies are needed to investigate the role of timing of infection.


Subject(s)
COVID-19 , Placenta , Pregnancy Complications, Infectious , SARS-CoV-2 , Humans , Female , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Pregnancy , Placenta/virology , Placenta/pathology , Adult , Retrospective Studies , Case-Control Studies , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/pathology , SARS-CoV-2/isolation & purification
15.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786077

ABSTRACT

Patients with COVID-19 have coagulation and platelet disorders, with platelet alterations and thrombocytopenia representing negative prognostic parameters associated with severe forms of the disease and increased lethality. METHODS: The aim of this study was to study the expression of platelet glycoprotein IIIa (CD61), playing a critical role in platelet aggregation, together with TRL-2 as a marker of innate immune activation. RESULTS: A total of 25 patients were investigated, with the majority (24/25, 96%) having co-morbidities and dying from a fatal form of SARS-CoV-2(+) infection (COVID-19+), with 13 men and 12 females ranging in age from 45 to 80 years. When compared to a control group of SARS-CoV-2 (-) negative lungs (COVID-19-), TLR-2 expression was up-regulated in a subset of patients with deadly COVID-19 fatal lung illness. The proportion of Spike-1 (+) patients found by PCR and ISH correlates to the proportion of Spike-S1-positive cases as detected by digital pathology examination. Furthermore, CD61 expression was considerably higher in the lungs of deceased patients. In conclusion, we demonstrate that innate immune prolonged hyperactivation is related to platelet/megakaryocyte over-expression in the lung. CONCLUSIONS: Microthrombosis in deadly COVID-19+ lung disease is associated with an increase in the number of CD61+ platelets and megakaryocytes in the pulmonary interstitium, as well as their functional activation; this phenomenon is associated with increased expression of innate immunity TLR2+ cells, which binds the SARS-CoV-2 E protein, and significantly with the persistence of the Spike-S1 viral sequence.


Subject(s)
COVID-19 , Lung , Megakaryocytes , SARS-CoV-2 , Thrombosis , Toll-Like Receptor 2 , Up-Regulation , Humans , COVID-19/pathology , COVID-19/immunology , COVID-19/metabolism , Male , Female , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Megakaryocytes/virology , Aged , Middle Aged , Aged, 80 and over , Lung/pathology , Lung/virology , Lung/metabolism , Up-Regulation/genetics , Thrombosis/pathology , Integrin beta3/metabolism , Integrin beta3/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Immunity, Innate , Pandemics
16.
Am J Forensic Med Pathol ; 45(2): 151-156, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38739896

ABSTRACT

ABSTRACT: Autopsy followed by histopathological examination is foundational in clinical and forensic medicine for discovering and understanding pathological changes in disease, their underlying processes, and cause of death. Imaging technology has become increasingly important for advancing clinical research and practice, given its noninvasive, in vivo and ex vivo applicability. Medical and forensic autopsy can benefit greatly from advances in imaging technology that lead toward minimally invasive, whole-brain virtual autopsy. Brain autopsy followed by histopathological examination is still the hallmark for understanding disease and a fundamental modus operandi in forensic pathology and forensic medicine, despite the fact that its practice has become progressively less frequent in medical settings. This situation is especially relevant with respect to new diseases such as COVID-19 caused by the SARS-CoV-2 virus, for which our neuroanatomical knowledge is sparse. In this narrative review, we show that ad hoc clinical autopsies and histopathological analyses combined with neuroimaging of the principal circumventricular organs are critical to gaining insight into the reconstruction of the pathophysiological mechanisms and the explanation of cause of death (ie, atrium mortis) related to the cardiovascular effects of SARS-CoV-2 infection in forensic and clinical medicine.


Subject(s)
COVID-19 , Humans , COVID-19/pathology , COVID-19/diagnostic imaging , Neuroimaging/methods , Autopsy/methods , Brain/pathology , Brain/diagnostic imaging , SARS-CoV-2 , Forensic Pathology/methods , Clinical Relevance
17.
PLoS One ; 19(5): e0302984, 2024.
Article in English | MEDLINE | ID: mdl-38753890

ABSTRACT

BACKGROUND: Lipoproteins in cell membranes are related to membrane stability and play a role against microorganisms. Patients with COVID-19 often experience myocyte membrane damage. OBJECTIVE: This study aimed to search the relationship of atherogenic indices with myocardial damage and mortality in COVID-19. METHODS: This was an observational, single-center, retrospective study. The study population was grouped according to in-hospital mortality. C-reactive protein (CRP), CRP to albumin ratio (CAR), monocyte to high density lipoprotein cholesterol ratio (MHR), levels of total cholesterol (TC), triglycerides, high-density lipoprotein cholesterol (HDLc), and low-density lipoprotein cholesterol (LDLc) and cardiac troponin I (cTnI) were recorded. Atherogenic indices (plasma atherogenic index [AIP], atherogenic coefficient [AC], Castelli's risk indices I and II [CRI I and II], triglyceride to HDLc ratio (THR) were calculated. RESULTS: A total of 783 patients were included. The mortality rate was 15.45% (n = 121). The median age of non-survivor group (NSG) was higher than survivor group (SG) [66.0 years (Q1 -Q3: 55.0-77.5) vs 54.0 years (Q1 -Q3: 43.0-63.0)] (p < 0.001). Study parameters which were measured significantly higher in the NSG were CRP, cTnI, triglyceride, CRI-I, CRI-II, AC, AIP, ferritin, CAR, MHR and THR. LDLc, HDLc, TC and albumin were significantly lower in NSG (p<0.001). CONCLUSION: THR is positively correlated with myocardial damage and strongly predicts in-hospital mortality in COVID-19.


Subject(s)
Atherosclerosis , C-Reactive Protein , COVID-19 , Hospital Mortality , Humans , COVID-19/mortality , COVID-19/pathology , COVID-19/blood , Male , Middle Aged , Female , Retrospective Studies , Aged , Atherosclerosis/mortality , Atherosclerosis/blood , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Triglycerides/blood , Troponin I/blood , SARS-CoV-2/isolation & purification , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Myocardium/pathology , Myocardium/metabolism , Adult
18.
Commun Biol ; 7(1): 526, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702425

ABSTRACT

COVID-19, caused by SARS-CoV-2, can lead to a severe inflammatory disease characterized by significant lymphopenia. However, the underlying cause for the depletion of T-cells in COVID-19 patients remains incompletely understood. In this study, we assessed the presence of different T-cell subsets in the progression of COVID-19 from mild to severe disease, with a focus on TCF1 expressing progenitor T-cells that are needed to replenish peripheral T-cells during infection. Our results showed a preferential decline in TCF1+ progenitor CD4 and CD8+ T-cells with disease severity. This decline was seen in various TCF1+ subsets including naive, memory and effector-memory cells, and surprisingly, was accompanied by a loss in cell division as seen by a marked decline in Ki67 expression. In addition, TCF1+ T-cells showed a reduction in pro-survival regulator, BcL2, and the appearance of a new population of TCF1 negative caspase-3 expressing cells in peripheral blood from patients with severe disease. The decline in TCF1+ T-cells was also seen in a subgroup of severe patients with vitamin D deficiency. Lastly, we found that sera from severe patients inhibited TCF1 transcription ex vivo which was attenuated by a blocking antibody against the cytokine, interleukin-12 (IL12). Collectively, our findings underscore the potential significance of TCF1+ progenitor T-cells in accounting for the loss of immunity in severe COVID-19 and outline an array of markers that could be used to identify disease progression.


Subject(s)
COVID-19 , Hepatocyte Nuclear Factor 1-alpha , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/pathology , Male , Female , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Middle Aged , CD8-Positive T-Lymphocytes/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , Aged , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
19.
Signal Transduct Target Ther ; 9(1): 141, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811527

ABSTRACT

The immunoprotective components control COVID-19 disease severity, as well as long-term adaptive immunity maintenance and subsequent reinfection risk discrepancies across initial COVID-19 severity, remain unclarified. Here, we longitudinally analyzed SARS-CoV-2-specific immune effectors during the acute infection and convalescent phases of 165 patients with COVID-19 categorized by severity. We found that early and robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses ameliorate disease progression and shortened hospital stay, while delayed and attenuated virus-specific CD8+ T cell responses are prominent severe COVID-19 features. Delayed antiviral antibody generation rather than titer level associates with severe outcomes. Conversely, initial COVID-19 severity imprints the long-term maintenance of SARS-CoV-2-specific adaptive immunity, demonstrating that severe convalescents exhibited more sustained virus-specific antibodies and memory T cell responses compared to mild/moderate counterparts. Moreover, initial COVID-19 severity inversely correlates with SARS-CoV-2 reinfection risk. Overall, our study unravels the complicated interaction between temporal characteristics of virus-specific T cell responses and COVID-19 severity to guide future SARS-CoV-2 wave management.


Subject(s)
Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 , Memory T Cells , Reinfection , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Male , Female , Reinfection/immunology , Middle Aged , CD8-Positive T-Lymphocytes/immunology , Adult , Antibodies, Viral/immunology , Memory T Cells/immunology , Aged , CD4-Positive T-Lymphocytes/immunology , Immunologic Memory
20.
Sci Rep ; 14(1): 12348, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811688

ABSTRACT

X-ray Phase Contrast Tomography (XPCT) based on wavefield propagation has been established as a high resolution three-dimensional (3D) imaging modality, suitable to reconstruct the intricate structure of soft tissues, and the corresponding pathological alterations. However, for biomedical research, more is needed than 3D visualisation and rendering of the cytoarchitecture in a few selected cases. First, the throughput needs to be increased to cover a statistically relevant number of samples. Second, the cytoarchitecture has to be quantified in terms of morphometric parameters, independent of visual impression. Third, dimensionality reduction and classification are required for identification of effects and interpretation of results. To address these challenges, we here design and implement a novel integrated and high throughput XPCT imaging and analysis workflow for 3D histology, pathohistology and drug testing. Our approach uses semi-automated data acquisition, reconstruction and statistical quantification. We demonstrate its capability for the example of lung pathohistology in Covid-19. Using a small animal model, different Covid-19 drug candidates are administered after infection and tested in view of restoration of the physiological cytoarchitecture, specifically the alveolar morphology. To this end, we then use morphometric parameter determination followed by a dimensionality reduction and classification based on optimal transport. This approach allows efficient discrimination between physiological and pathological lung structure, thereby providing quantitative insights into the pathological progression and partial recovery due to drug treatment. Finally, we stress that the XPCT image chain implemented here only used synchrotron radiation for validation, while the data used for analysis was recorded with laboratory µ CT radiation, more easily accessible for pre-clinical research.


Subject(s)
COVID-19 , Imaging, Three-Dimensional , Lung , SARS-CoV-2 , Animals , COVID-19/diagnostic imaging , COVID-19/virology , COVID-19/pathology , Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Lung/pathology , Lung/virology , SARS-CoV-2/isolation & purification , Tomography, X-Ray Computed/methods , Cricetinae , Disease Models, Animal , Drug Evaluation, Preclinical/methods , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...