Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 47(13): e75, 2019 07 26.
Article in English | MEDLINE | ID: mdl-30982889

ABSTRACT

The rapid development of CRISPR-Cas technologies brought a personalized and targeted treatment of genetic disorders into closer reach. To render CRISPR-based therapies precise and safe, strategies to confine the activity of Cas(9) to selected cells and tissues are highly desired. Here, we developed a cell type-specific Cas-ON switch based on miRNA-regulated expression of anti-CRISPR (Acr) proteins. We inserted target sites for miR-122 or miR-1, which are abundant specifically in liver and cardiac muscle cells, respectively, into the 3'UTR of Acr transgenes. Co-expressing these with Cas9 and sgRNAs resulted in Acr knockdown and released Cas9 activity solely in hepatocytes or cardiomyocytes, while Cas9 was efficiently inhibited in off-target cells. We demonstrate control of genome editing and gene activation using a miR-dependent AcrIIA4 in combination with different Streptococcus pyogenes (Spy)Cas9 variants (full-length Cas9, split-Cas9, dCas9-VP64). Finally, to showcase its modularity, we adapted our Cas-ON system to the smaller and more target-specific Neisseria meningitidis (Nme)Cas9 orthologue and its cognate inhibitors AcrIIC1 and AcrIIC3. Our Cas-ON switch should facilitate cell-specific activity of any CRISPR-Cas orthologue, for which a potent anti-CRISPR protein is known.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Editing/methods , Gene Expression Regulation , Transgenes , 3' Untranslated Regions/genetics , Binding Sites , CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Associated Protein 9/biosynthesis , Dependovirus/genetics , Enzyme Activation , Enzyme Induction , Genes, Reporter , HEK293 Cells , HeLa Cells , Hepatocytes/metabolism , Humans , Luciferases, Renilla/analysis , Luciferases, Renilla/genetics , MicroRNAs , Myocytes, Cardiac/metabolism , Organ Specificity , Protein Isoforms/antagonists & inhibitors
2.
J Neuroimmune Pharmacol ; 14(4): 537-550, 2019 12.
Article in English | MEDLINE | ID: mdl-30810907

ABSTRACT

Microglial cells are brain specific professional phagocytic immune cells that play a crucial role in the inflammation- mediated neurodegeneration especially in Parkinson's disease (PD) and Alzheimer's disease. Glia maturation factor (GMF) is a neuroinflammatory protein abundantly expressed in the brain. We have previously shown that GMF expression is significantly upregulated in the substantia nigra (SN) of PD brains. However, its possible role in PD progression is still not fully understood. The Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR Associated (Cas) protein9 (CRISPR/Cas9) system is a simple, rapid and often extremely efficient gene editing tool at desired loci, enabling complete gene knockout or homology directed repair. In this study, we examined the effect of GMF editing by using the CRISPR/Cas9 technique in BV2 microglial cells (hereafter referred to as BV2-G) on oxidative stress and nuclear factor erythroid 2-related factor 2 (NRF2)/Hemeoxygenase1 (HO-1)-dependent ferritin activation after treatment with (1-methyl-4-phenylpyridinium) MPP+. Knockout of GMF in BV2-G cells significantly attenuated oxidative stress via reduced ROS production and calcium flux. Furthermore, deficiency of GMF significantly reduced nuclear translocation of NRF2, which modulates HO-1 and ferritin activation, cyclooxygenase 2 (COX2) and nitric oxide synthase 2 (NOS2) expression in BV2 microglial cells. Lack of GMF significantly improved CD11b and CD68 positive microglial cells as compared with untreated cells. Our results also suggest that pharmacological and genetic intervention targeting GMF may represent a promising and a novel therapeutic strategy in controlling Parkinsonism by regulating microglial functions. Targeted regulation of GMF possibly mediates protein aggregation in microglial homeostasis associated with PD progression through regulation of iron metabolism by modulating NRF2-HO1 and ferritin expression.


Subject(s)
CRISPR-Cas Systems/physiology , Ferritins/genetics , Glia Maturation Factor/genetics , Heme Oxygenase-1/genetics , Membrane Proteins/genetics , Mitochondrial Dynamics/physiology , NF-E2-Related Factor 2/genetics , Neuroglia/physiology , 1-Methyl-4-phenylpyridinium/toxicity , Animals , CRISPR-Associated Protein 9/biosynthesis , CRISPR-Associated Protein 9/genetics , Cell Line , Ferritins/biosynthesis , Gene Editing/methods , Glia Maturation Factor/deficiency , Heme Oxygenase-1/biosynthesis , Membrane Proteins/biosynthesis , Mice , NF-E2-Related Factor 2/biosynthesis , Neuroglia/drug effects , Reactive Oxygen Species/metabolism
3.
Eur J Neurosci ; 50(3): 2224-2238, 2019 08.
Article in English | MEDLINE | ID: mdl-29779223

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs), prototype members of the cys-loop ligand-gated ion channel family, are key mediators of cholinergic transmission in the central nervous system. Despite their importance, technical gaps exist in our ability to dissect the function of individual subunits in the brain. To overcome these barriers, we designed CRISPR/Cas9 small guide RNA sequences (sgRNAs) for the production of loss-of-function alleles in mouse nAChR genes. These sgRNAs were validated in vitro via deep sequencing. We subsequently targeted candidate nAChR genes in vivo by creating herpes simplex virus (HSV) vectors delivering sgRNAs and Cas9 expression to mouse brain. The production of loss-of-function insertions or deletions (indels) by these 'all-in-one' HSV vectors was confirmed using brain slice patch clamp electrophysiology coupled with pharmacological analysis. Next, we developed a scheme for cell type-specific gene editing in mouse brain. Knockin mice expressing Cas9 in a Cre-dependent manner were validated using viral microinjections and genetic crosses to common Cre-driver mouse lines. We subsequently confirmed functional Cas9 activity by targeting the ubiquitous neuronal protein, NeuN, using adeno-associated virus (AAV) delivery of sgRNAs. Finally, the mouse ß2 nAChR gene was successfully targeted in dopamine transporter (DAT)-positive neurons via CRISPR/Cas9. The sgRNA sequences and viral vectors, including our scheme for Cre-dependent gene editing, should be generally useful to the scientific research community. These tools could lead to new discoveries related to the function of nAChRs in neurotransmission and behavioral processes.


Subject(s)
Brain/physiology , Cholinergic Neurons/physiology , Gene Editing/methods , Genetic Vectors/genetics , Receptors, Nicotinic/physiology , Synaptic Transmission/physiology , Animals , CRISPR-Associated Protein 9/biosynthesis , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/physiology , Female , Genetic Vectors/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques
4.
Nucleic Acids Res ; 47(3): e13, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30462300

ABSTRACT

CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses. Inspired by synthetic biology, here we built a synthetic switch that self-regulates Cas9 expression not only in the transcription step by guide RNA-aided self-cleavage of cas9 gene, but also in the translation step by L7Ae:K-turn repression system. We showed that the synthetic switch enabled simultaneous transcriptional and translational repression, hence stringently attenuating the Cas9 expression. The restricted Cas9 expression induced high efficiency on-target indel mutation while minimizing the off-target effects. Furthermore, we unveiled the correlation between Cas9 expression kinetics and on-target/off-target mutagenesis. The synthetic switch conferred detectable Cas9 expression and concomitant high frequency on-target mutagenesis at as early as 6 h, and restricted the Cas9 expression and off-target effects to minimal levels through 72 h. The synthetic switch is compact enough to be incorporated into viral vectors for self-regulation of Cas9 expression, thereby providing a novel 'hit and run' strategy for in vivo genome editing.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Expression Regulation , CRISPR-Associated Protein 9/biosynthesis , Cell Line , Gene Editing , Humans , Kinetics , Mutagenesis , Mutation , Protein Biosynthesis , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...