Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.938
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 592-597, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825905

ABSTRACT

Objective: To investigate the expression of DARS2 and its clinical significance in colorectal cancer. Methods: In this study, bioinformatics tools, especially gene expression profile interactive analysis 2 (GEPIA2), were used to conduct an in-depth analysis of DARS2 expression in colorectal cancer tissues. Immunohistochemical staining was carried out in 108 colorectal cancer specimens and 30 normal colorectal tissues obtained from the First Affiliated Hospital of Nanchang University, Nanchang, China. Colorectal cancer cell lines (HCT116 and SW480) were transfected with small interfering RNA (siRNA) and DARS2 overexpression plasmid to examine the effects of DARS2 knockdown and overexpression on cell function. To assess the effects on cell function, CCK8 and transwell migration assays were used to assess proliferation and cell motility, respectively. Additionally, protein immunoblotting was employed to scrutinize the expression of proteins associated with the epithelial-mesenchymal transition of colorectal cancer cells. Results: DARS2 exhibited a pronounced upregulation in expression within colorectal cancer tissues compared to their normal epithelial counterparts. Furthermore, DARS2 expression was higher in colorectal cancer of stage Ⅲ-Ⅳ than those of stage Ⅰ-Ⅱ, exhibiting a significant correlation with N staging, M staging, and pathological staging (P<0.05). Kaplan-Meier analyses showed a decreased overall survival rate in colorectal cancer with DARS2 expression compared to those without DARS2 expression (P<0.05). In the siRNA transfection group, there was a significant reduction in cell proliferation and migration (P<0.01 and P<0.05, respectively). Conversely, the transfection of DARS2 overexpression plasmids substantially increased both cell proliferation and migration (P<0.05). Additionally, immunoblotting revealed that DARS2 knockdown led to an upregulation of E-cadherin expression and a downregulation of N-cadherin and vimentin expression. In contrast, DARS2 overexpression resulted in increased N-cadherin and vimentin expression, coupled with reduction in E-cadherin expression. Conclusions: There is a strong association between DARS2 expression and colorectal cancer progression. Silencing DARS2 inhibits cell proliferation and migration, exerting a discernible influence on the epithelial-mesenchymal transition process.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , RNA, Small Interfering , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , RNA, Small Interfering/genetics , Cell Line, Tumor , Vimentin/metabolism , Vimentin/genetics , Cadherins/metabolism , Cadherins/genetics , Survival Rate , HCT116 Cells , Neoplasm Staging , Up-Regulation , Gene Expression Regulation, Neoplastic , Clinical Relevance
2.
J Nanobiotechnology ; 22(1): 312, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840221

ABSTRACT

Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cadherins , Endocytosis , Epidermis , Mechanistic Target of Rapamycin Complex 1 , Zinc Oxide , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Endocytosis/drug effects , Mice , Cadherins/metabolism , Epidermis/metabolism , Epidermis/drug effects , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Desmosomes/metabolism , Nanoparticles/chemistry , Stress, Mechanical
3.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38847494

ABSTRACT

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.


Subject(s)
Cadherins , Morphogenesis , Zebrafish Proteins , Zebrafish , beta Catenin , Animals , Zebrafish/embryology , Zebrafish/metabolism , beta Catenin/metabolism , Cadherins/metabolism , Cadherins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Adherens Junctions/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/cytology , Antigens, CD
4.
Medicine (Baltimore) ; 103(23): e38244, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847676

ABSTRACT

BACKGROUND: Numerous studies have investigated the association between CDH1 polymorphisms and gastric cancer (GC) risk. However, the results have been inconsistent and controversial. To further determine whether CDH1 polymorphisms increase the risk of GC, we conducted a meta-analysis by pooling the data. METHODS: Relevant case-control studies were collected from PubMed, Embase, Web of Science and Cochrane databases up to January 7, 2024. Subsequently, odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of correlations. A sensitivity analysis was performed to evaluate the robustness and reliability of these included studies. RESULTS: A total of 25 articles including 44 studies, were included in this meta-analysis, including 26 studies on rs16260, 6 studies on rs3743674, 7 studies on rs5030625, and 5 studies on rs1801552. The pooled results showed that rs16260 was remarkably associated with an increased GC risk of GC among Caucasians. Moreover, the rs5030625 variation dramatically enhanced GC predisposition in the Asian population. However, no evident correlations between CDH1 rs3743674 and rs1801552 polymorphisms and GC risk were observed. CONCLUSIONS: Our findings suggested that CDH1 gene polymorphisms were significantly correlated with GC risk, especially in rs16260 and rs5030625 polymorphisms.


Subject(s)
Antigens, CD , Cadherins , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Stomach Neoplasms , Stomach Neoplasms/genetics , Humans , Cadherins/genetics , Antigens, CD/genetics , Asian People/genetics , Case-Control Studies , White People/genetics , Risk Factors
5.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822516

ABSTRACT

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Subject(s)
Cadherins , Diphtheria Toxin , Epithelial-Mesenchymal Transition , Promoter Regions, Genetic , Humans , A549 Cells , Antigens, CD/genetics , Antigens, CD/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Cadherins/genetics , Cadherins/metabolism , Cell Movement/genetics , Cell Movement/drug effects , Diphtheria Toxin/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Genes, Transgenic, Suicide , Promoter Regions, Genetic/genetics , Vimentin/genetics , Vimentin/metabolism
6.
Elife ; 122024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842917

ABSTRACT

The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including the Drosophila wing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth in Drosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth.


Subject(s)
Cadherins , Cell Cycle , Drosophila Proteins , Drosophila melanogaster , Signal Transduction , Wings, Animal , Animals , Wings, Animal/growth & development , Wings, Animal/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Cadherins/metabolism , Larva/growth & development , Larva/metabolism , Cell Proliferation , Cell Adhesion Molecules
7.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855867

ABSTRACT

In rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA). EC-specific deletion of S1PR1 or pharmacological blockade of S1PR1 promoted vascular leak and amplified SIA, whereas overexpression of EC S1PR1 or treatment with an S1PR1 agonist delayed SIA. Blockade of EC S1PR1 induced membrane metalloproteinase-dependent cleavage of vascular endothelial cadherin (VE-cadherin), a principal adhesion molecule that maintains EC junctional integrity. We identified a disintegrin and a metalloproteinase domain 10 (ADAM10) as the principal VE-cadherin "sheddase." Mice expressing a stabilized VE-cadherin construct had decreased extravascular VE-cadherin and vascular leakage in response to S1PR1 blockade, and they were protected from SIA. Importantly, patients with active rheumatoid arthritis had decreased circulating S1P and microvascular expression of S1PR1, suggesting a dysregulated S1P/S1PR1 axis favoring vascular permeability and vulnerability. We present a model in which EC S1PR1 signaling maintains homeostatic vascular barrier function by limiting VE-cadherin shedding mediated by ADAM10 and suggest this signaling axis as a therapeutic target in inflammatory arthritis.


Subject(s)
ADAM10 Protein , Antigens, CD , Arthritis, Experimental , Arthritis, Rheumatoid , Cadherins , Endothelial Cells , Sphingosine-1-Phosphate Receptors , Animals , Cadherins/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Mice , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Antigens, CD/metabolism , Antigens, CD/genetics , Endothelial Cells/metabolism , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/genetics , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/metabolism , Signal Transduction , Mice, Knockout , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Lysophospholipids/metabolism , Capillary Permeability , Female
8.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891919

ABSTRACT

Developmental and epileptic encephalopathy-9 (DEE9) is characterized by seizure onset in infancy, mild to severe intellectual impairment, and psychiatric features and is caused by a mutation in the PCDH19 gene on chromosome Xq22. The rare, unusual X-linked type of disorder affects heterozygous females and mosaic males; transmitting males are unaffected. In our study, 165 patients with epilepsy were tested by Next Generation Sequencing (NGS)-based panel and exome sequencing using Illumina technology. PCDH19 screening identified three point mutations, one indel, and one 29 bp-long deletion in five unrelated female probands. Two novel mutations, c.1152_1180del (p.Gln385Serfs*6) and c.830_831delinsAA (p.Phe277*), were identified and found to be de novo pathogenic. Moreover, among the three inherited mutations, two originated from asymptomatic mothers and one from an affected father. The PCDH19 c.1682C>T and c.1711G>T mutations were present in the DNA samples of asymptomatic mothers. After targeted parental testing, X chromosome inactivation tests and Sanger sequencing were carried out for mosaicism examination on maternal saliva samples in the two asymptomatic PCDH19 mutation carrier subjects. Tissue mosaicism and X-inactivation tests were negative. Our results support the opportunity for reduced penetrance in DEE9 and contribute to expanding the genotype-phenotype spectrum of PCDH19-related epilepsy.


Subject(s)
Cadherins , Epilepsy , High-Throughput Nucleotide Sequencing , Mutation , Protocadherins , Humans , Female , Cadherins/genetics , Epilepsy/genetics , Pedigree , Male , Child, Preschool , Child , Infant , Age of Onset
9.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892455

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Female , Male , Adult , Middle Aged , Membrane Proteins/genetics , Cadherins/genetics , Desmosomes/genetics , Desmosomes/metabolism , Genetic Predisposition to Disease , Genetic Variation , Filamins/genetics , Retrospective Studies , Italy , Calcium-Binding Proteins/genetics , Antigens, CD/genetics
10.
PLoS One ; 19(6): e0305490, 2024.
Article in English | MEDLINE | ID: mdl-38875295

ABSTRACT

Ewing sarcoma is the second most common bone cancer in children, and while patients who present with metastatic disease at the time of diagnosis have a dismal prognosis. Ewing sarcoma tumors are driven by the fusion gene EWS/Fli1, and while these tumors are genetically homogenous, the transcriptional heterogeneity can lead to a variety of cellular processes including metastasis. In this study, we demonstrate that in Ewing sarcoma cells, the canonical Wnt/ß-Catenin signaling pathway is heterogeneously activated in vitro and in vivo, correlating with hypoxia and EWS/Fli1 activity. Ewing sarcoma cells predominantly express ß-Catenin on the cell membrane bound to CDH11, which can respond to exogenous Wnt ligands leading to the immediate activation of Wnt/ß-Catenin signaling within a tumor. Knockdown of CDH11 leads to delayed and decreased response to exogenous Wnt ligand stimulation, and ultimately decreased metastatic propensity. Our findings strongly indicate that CDH11 is a key component of regulating Wnt//ß-Catenin signaling heterogeneity within Ewing sarcoma tumors, and is a promising molecular target to alter Wnt//ß-Catenin signaling in Ewing sarcoma patients.


Subject(s)
Cadherins , Sarcoma, Ewing , Wnt Signaling Pathway , beta Catenin , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Sarcoma, Ewing/genetics , Humans , Cadherins/metabolism , Cadherins/genetics , Cell Line, Tumor , beta Catenin/metabolism , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Mice , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/metabolism , RNA-Binding Protein EWS/genetics
11.
Front Immunol ; 15: 1369073, 2024.
Article in English | MEDLINE | ID: mdl-38855103

ABSTRACT

FAT1, a substantial transmembrane protein, plays a pivotal role in cellular adhesion and cell signaling. Numerous studies have documented frequent alterations in FAT1 across various cancer types, with its aberrant expression being linked to unfavorable survival rates and tumor progression. In the present investigation, we employed bioinformatic analyses, as well as in vitro and in vivo experiments to elucidate the functional significance of FAT1 in pan-cancer, with a primary focus on lung cancer. Our findings unveiled FAT1 overexpression in diverse cancer types, including lung cancer, concomitant with its association with an unfavorable prognosis. Furthermore, FAT1 is intricately involved in immune-related pathways and demonstrates a strong correlation with the expression of immune checkpoint genes. The suppression of FAT1 in lung cancer cells results in reduced cell proliferation, migration, and invasion. These collective findings suggest that FAT1 has potential utility both as a biomarker and as a therapeutic target for lung cancer.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/genetics , Animals , Immunotherapy/methods , Mice , Cadherins/metabolism , Cadherins/genetics , Cell Line, Tumor , Prognosis , Gene Expression Regulation, Neoplastic , Cell Proliferation , Cell Movement , Computational Biology/methods
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 818-826, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862439

ABSTRACT

OBJECTIVE: To investigate the effects of an adeno-associated virus (AAV2) vector expressing secretory transforming growth factor-ß (TGF-ß) type Ⅱ receptor (sTßRⅡ) extracellular domain-IgG2a Fc fusion protein (sTßRⅡ-Fc) on proliferation and migration of triple-negative murine breast cancer 4T1 cells in mice. METHODS: The pAAV-sTßRⅡ-Fc vector expressing sTßRⅡ-Fc fusion protein constructed by molecular cloning, the capsid protein-expressing vector pAAV2 and the helper vector were co-transfected into HEK 293T cells to prepare the recombinant AAV2-sTßRⅡ virus, which was purified by density gradient centrifugation with iodixanol. Western blotting was used to examine the effects of AAV-sTßRⅡ virus on Smad2/3 phosphorylation in 4T1 cells and on expression levels of E-cadherin, vimentin and p-Smad2/3 in 4T1 cell xenografts in mice. BALB/c mice bearing subcutaneous xenografts of luciferase-expressing 4T1 cells received intravenous injections of AAV-sTßRⅡ virus, AAV-GFP virus or PBS (n=6) through the tail vein, and the proliferation and migration of 4T1 cells were analyzed with in vivo imaging. Ki67 expression in the tumor tissues and sTßRⅡ protein expressions in mouse livers were detected with immunohistochemistry and immunofluorescence staining, and tumor metastases in the vital organs were examined with HE staining. RESULTS: The recombinant pAAV-sTßRⅡ-Fc vector successfully expressed sTßRⅡ in HEK 293T cells. Infection with AAV2-sTßRⅡ virus significantly reduced TGF-ß1-induced Smad2/3 phosphorylation in 4T1 cells and effectively inhibited proliferation and lung metastasis of 4T1 xenografts in mice (P<0.05). In the tumor-bearing mice, intravenous injection of AAV-sTßRⅡ virus significantly increased E-cadherin expression, reduced vimentin and Ki67 protein expressions and Smad2/3 phosphorylation level in the tumor tissues (P<0.05 or 0.01), and induced liver-specific sTßRⅡ expression without causing body weight loss or heart, liver, spleen or kidney pathologies. CONCLUSION: The recombinant AVV2 vector encoding sTßRⅡ extracellular domain is capable of blocking the TGF-ß signaling pathway to inhibit the proliferation and lung metastasis of 4T1 cells in mice.


Subject(s)
Cell Proliferation , Dependovirus , Genetic Vectors , Lung Neoplasms , Mice, Inbred BALB C , Receptor, Transforming Growth Factor-beta Type II , Animals , Mice , Dependovirus/genetics , Humans , HEK293 Cells , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Female , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Cell Line, Tumor , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cadherins/metabolism , Cadherins/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Cell Movement , Smad2 Protein/metabolism , Smad2 Protein/genetics
13.
Open Biol ; 14(6): 240113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889770

ABSTRACT

Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions associated with deficits in social interaction and communication, together with repetitive behaviours. The cell adhesion molecule protocadherin10 (PCDH10) is linked to ASD in humans. Pcdh10 is expressed in the nervous system during embryonic and early postnatal development and is important for neural circuit formation. In mice, strong expression of Pcdh10 in the ganglionic eminences and in the basolateral complex (BLC) of the amygdala was observed at mid and late embryonic stages, respectively. Both inhibitory and excitatory neurons expressed Pcdh10 in the BLC at perinatal stages and vocalization-related genes were enriched in Pcdh10-expressing neurons in adult mice. An epitope-tagged Pcdh10-HAV5 mouse line revealed endogenous interactions of PCDH10 with synaptic proteins in the young postnatal telencephalon. Nuanced socio-affective communication changes in call emission rates, acoustic features and call subtype clustering were primarily observed in heterozygous pups of a conditional knockout (cKO) with selective deletion of Pcdh10 in Gsh2-lineage interneurons. These changes were less prominent in heterozygous ubiquitous Pcdh10 KO pups, suggesting that altered anxiety levels associated with Gsh2-lineage interneuron functioning might drive the behavioural effects. Together, loss of Pcdh10 specifically in interneurons contributes to behavioural alterations in socio-affective communication with relevance to ASD.


Subject(s)
Amygdala , Cadherins , Interneurons , Mice, Knockout , Protocadherins , Animals , Cadherins/metabolism , Cadherins/genetics , Interneurons/metabolism , Mice , Protocadherins/metabolism , Amygdala/metabolism , Amygdala/growth & development , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Vocalization, Animal/physiology , Male , Social Behavior
14.
Physiol Rep ; 12(11): e16048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872467

ABSTRACT

Studying acute changes in vascular endothelial cells in humans is challenging. We studied ten African American women and used the J-wire technique to isolate vein endothelial cells before and after a four-hour lipid and heparin infusion. Dynamic changes in lipid-induced oxidative stress and inflammatory markers were measured with fluorescence-activated cell sorting. We used the surface markers CD31 and CD144 to identify human endothelial cells. Peripheral blood mononuclear cells isolated from blood were used as a negative control. The participants received galantamine (16 mg/day) for 3 months. We previously demonstrated that galantamine treatment effectively suppresses lipid-induced oxidative stress and inflammation. In this study, we infused lipids to evaluate its potential to increase the activation of endothelial cells, as assessed by the levels of CD54+ endothelial cells and expression of Growth arrest-specific 6 compared to the baseline sample. Further, we aimed to investigate whether lipid infusion led to increased expression of the oxidative stress markers IsoLGs and nitrotyrosine in endothelial cells. This approach will expedite the in vivo identification of novel pathways linked with endothelial cell dysfunction induced by oxidative stress and inflammatory cytokines. This study describes an innovative method to harvest and study human endothelial cells and demonstrates the dynamic changes in oxidative stress and inflammatory markers release induced by lipid infusion.


Subject(s)
Endothelial Cells , Inflammation , Oxidative Stress , Humans , Oxidative Stress/drug effects , Female , Inflammation/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Adult , Galantamine/pharmacology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Tyrosine/metabolism , Tyrosine/analogs & derivatives , Tyrosine/pharmacology , Middle Aged , Intercellular Adhesion Molecule-1/metabolism , Lipids/pharmacology
15.
Int Immunopharmacol ; 136: 112375, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823182

ABSTRACT

Lung fibrosis is a critical interstitial lung disease with poor prognosis. There is an urgent need to develop a proper and cost-effective therapeutic modality that can reverse and/or ameliorate lung fibrosis. Vitamin E is one of the widely investigated dietary antioxidants which has been linked to improvement of many health problems. The current study was conducted to evaluate the possible roles of vitamin E in prevention and treatment of bleomycin (BLM) induced lung fibrosis. Physiological, anatomical, histopathological and immunohistochemical studies were done to assess and compare between the structure and function of the lung tissue in lung fibrosis model, early and late treated groups with vitamin E. Furthermore, measurement of transforming growth factor-ß(TGF-ß), E-cadherin, Smad-3, BAX, BCL2, malondialdehyde (MDA), and superoxide dismutase (SOD) were done. The study revealed that administration of vitamin E helped to improve signs of lung fibrosis, as reflected by amelioration of structure and functions of lungs as well as the decrease in TGF-ß levels and inhibition of α-SMA/collagen I profibrotic pathway. These findings highlight the importance of administration of vitamin E as a prophylactic agent prior to BLM therapy and as an adjuvant treatment in cases of lung fibrosis.


Subject(s)
Antioxidants , Bleomycin , Lung , Pulmonary Fibrosis , Transforming Growth Factor beta , Vitamin E , Animals , Vitamin E/therapeutic use , Vitamin E/pharmacology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Lung/pathology , Lung/drug effects , Rats , Transforming Growth Factor beta/metabolism , Male , Antioxidants/therapeutic use , Antioxidants/pharmacology , Smad3 Protein/metabolism , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Cadherins/metabolism , Rats, Wistar , Actins/metabolism , Disease Models, Animal , Humans
16.
Zhen Ci Yan Jiu ; 49(6): 566-576, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-38897800

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) on the Wnt/ß-catenin signaling pathway and epithelial-mesenchymal transition (EMT)-related proteins in rats with intrauterine adhesions (IUA), so as to explore the possible mechanisms of EA in repairing endometrial damage in IUA. METHODS: Female SD rats were randomly divided into blank, model, EA, and ICG-001 groups, with 10 rats in each group. The IUA model was established by using mechanical scraping combined with lipopolysaccharide infection for double injury. In the EA group, "Guanyuan" (CV4) was needled and EA (2 Hz/15 Hz, 1-2 mA) was applied to "Zusanli" (ST36) and "Sanyinjiao"(SP6) on both sides. In the ICG-001 group, ICG-001 (5 mg/kg), the inhibitor of ß-catenin was intraperitoneally injected. After intervention, samples were taken from 5 rats in each group, and uterine endometrium morphology, endometrial thickness, and gland counts were observed using HE staining. Masson staining was used to assess the degree of fibrosis in the endometrial tissue. Immunohistochemistry was used to detect the positive expression of transforming growth factor ß1 (TGF-ß1), α-smooth muscle actin (α-SMA), fibronectin (FN), connective tissue growth factor (CTGF), type I collagen (Col- Ⅰ), glycogen synthase kinase-3ß (GSK-3ß), ß-catenin, E-cadherin, N-cadherin, and Vimentin in the endometrial tissue. Western blot was used to detect the relative expression of GSK-3ß, ß-catenin, E-cadherin, N-cadherin, and Vimentin proteins in the endometrial tissue. Another 5 rats from each group were placed in cages with male rats after intervention to record the number of embryo implantations. RESULTS: Necrosis and loss of endometrial tissue in the model group observed after HE staining were alleviated in the EA group, better than those in the ICG-001 group. Compared with the blank group, the numbers of glands and endometrial thickness in the uterine endometrial tissue, relative expression and positive expression of E-cadherin and GSK-3ß proteins in the uterine endometrial tissue, and embryo implantation numbers were reduced(P<0.000 1, P<0.001, P<0.01) in the model group, while fibrosis area ratio in the uterine endometrial tissue, TGF- ß 1, α -SMA, FN, CTGF, Col- Ⅰ positive expressions, N-cadherin, Vimentin, and ß-catenin proteins expression and positive expression were increased(P<0.000 1, P<0.001, P<0.01). Compared with the model group, the number of glands and endometrial thickness, E-cadherin and GSK-3ß proteins expression and positive expression, and embryo implantation numbers were increased (P<0.001, P<0.05, P<0.01) in the EA and ICG-001 groups, while the fibrosis area ratio in the uterine endometrial tissue, TGF-ß1, α-SMA, FN, CTGF, Col- Ⅰ positive expression, and N-cadherin, Vimentin, and ß-catenin proteins expression and positive expression were decreased(P<0.001, P<0.01, P<0.05). Compared with the EA group, the differences of the above-mentioned indicators in the ICG-001 group were not statistically significant. CONCLUSIONS: EA may reverse the EMT process and reduce the degree of fibrosis in endometrial tissue by inhibiting the Wnt/ß-catenin signaling pathway, thereby promoting the repair of endometrial damage in IUA.


Subject(s)
Electroacupuncture , Endometrium , Epithelial-Mesenchymal Transition , Fibrosis , Rats, Sprague-Dawley , Wnt Signaling Pathway , beta Catenin , Animals , Female , Rats , Humans , beta Catenin/metabolism , beta Catenin/genetics , Endometrium/metabolism , Fibrosis/therapy , Fibrosis/genetics , Tissue Adhesions/therapy , Tissue Adhesions/metabolism , Tissue Adhesions/genetics , Uterine Diseases/therapy , Uterine Diseases/metabolism , Uterine Diseases/genetics , Cadherins/metabolism , Cadherins/genetics , Acupuncture Points , Uterus/metabolism
17.
Sci Rep ; 14(1): 12383, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811772

ABSTRACT

Mesotrypsin, encoded by the PRSS3 gene, is a distinctive trypsin isoform renowned for its exceptional resistance to traditional trypsin inhibitors and unique substrate specificity. Within the skin epidermis, this protein primarily expresses in the upper layers of the stratified epidermis and plays a crucial role in processing pro-filaggrin (Pro-FLG). Although prior studies have partially elucidated its functions using primary cultured keratinocytes, challenges persist due to these cells' differentiation-activated cell death program. In the present study, HaCaT keratinocytes, characterized by minimal endogenous mesotrypsin expression and sustained proliferation in differentiated states, were utilized to further scrutinize the function of mesotrypsin. Despite the ready degradation of the intact form of active mesotrypsin in these cells, fusion with Venus, flanked by a peptide linker, enables evasion from the protein elimination machinery, thus facilitating activation of the Pro-FLG processing system. Inducing Venus-mesotrypsin expression in the cells resulted in a flattened phenotype and reduced proliferative capacity. Moreover, these cells displayed altered F-actin assembly, enhanced E-cadherin adhesive activity, and facilitated tight junction formation without overtly influencing epidermal differentiation. These findings underscore mesotrypsin's potentially pivotal role in shaping the characteristic cellular morphology of upper epidermal layers.


Subject(s)
Cadherins , Cell Differentiation , Cell Proliferation , Filaggrin Proteins , Keratinocytes , Trypsin , Keratinocytes/metabolism , Humans , Trypsin/metabolism , Filaggrin Proteins/metabolism , Cadherins/metabolism , Epidermis/metabolism , Actins/metabolism , HaCaT Cells , Tight Junctions/metabolism , Cell Adhesion , Cell Line , Epidermal Cells/metabolism
18.
Sci Rep ; 14(1): 12153, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802496

ABSTRACT

Hypoxia-inducible factors (HIF) 1 and 2 regulate similar but distinct sets of target genes. Although HIFs are best known for their roles in mediating the hypoxia response accumulating evidence suggests that under certain conditions HIFs, particularly HIF2, may function also under normoxic conditions. Here we report that HIF2α functions under normoxic conditions in kidney epithelial cells to regulate formation of adherens junctions. HIF2α expression was required to induce Dock4/Rac1/Pak1-signaling mediating stability and compaction of E-cadherin at nascent adherens junctions. Impaired adherens junction formation in HIF2α- or Dock4-deficient cells led to aberrant cyst morphogenesis in 3D kidney epithelial cell cultures. Taken together, we show that HIF2α functions in normoxia to regulate epithelial morphogenesis.


Subject(s)
Adherens Junctions , Basic Helix-Loop-Helix Transcription Factors , Cell Polarity , Signal Transduction , rac1 GTP-Binding Protein , Adherens Junctions/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , rac1 GTP-Binding Protein/metabolism , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Cadherins/metabolism , Cadherins/genetics , Mice , Humans , Epithelial Cells/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Cell Line
19.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697304

ABSTRACT

Prostate cancer (PCa) is the second leading cause of death in males. It has been reported that δ-catenin expression is upregulated during the late stage of prostate cancer. Palmitoylation promotes protein transport to the cytomembrane and regulates protein localization and function. However, the effect of δ-catenin palmitoylation on the regulation of cancer remains unknown. In this study, we utilized prostate cancer cells overexpressing mutant δ-catenin (J6A cells) to induce a depalmitoylation phenotype and investigate its effect on prostate cancer. Our results indicated that depalmitoylation of δ-catenin not only reduced its membrane expression but also promoted its degradation in the cytoplasm, resulting in a decrease in the effect of EGFR and E-cadherin signaling. Consequently, depalmitoylation of δ-catenin reduced the proliferation and metastasis of prostate cancer cells. Our findings provide novel insights into potential therapeutic strategies for controlling the progression of prostate cancer through palmitoylation-based targeting of δ-catenin.


Subject(s)
Cadherins , Catenins , Cell Proliferation , Delta Catenin , Disease Progression , Lipoylation , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Catenins/metabolism , Catenins/genetics , Cell Line, Tumor , Cadherins/metabolism , Cadherins/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Signal Transduction , Animals , Cell Movement , Gene Expression Regulation, Neoplastic
20.
Toxicol Appl Pharmacol ; 487: 116955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710373

ABSTRACT

Lung cancer is one of the most aggressive malignancies with a high mortality rate. In large cities, particulate matter (PM) is a common air pollutant. High PM levels with aerodynamic size ≤2.5 µm (PM2.5) associates with lung cancer incidence and mortality. In this work, we explored PM2.5 effects on the behavior of lung cancer cells. To this, we chronically exposed A549 cells to increasing PM2.5 concentrations collected in México City, then evaluating cell proliferation, chemoresponse, migration, invasion, spheroid formation, and P-glycoprotein and N-cadherin expression. Chronic PM2.5 exposure from 1 µg/cm2 stimulated A549 cell proliferation, migration, and chemoresistance and upregulated P-glycoprotein and N-cadherin expression. PM2.5 also induced larger multicellular tumor spheroids (MCTS) and less disintegration compared with control cells. Therefore, these results indicate lung cancer patients exposed to airborne PM2.5 as urban pollutant could develop more aggressive tumor phenotypes, with increased cell proliferation, migration, and chemoresistance.


Subject(s)
Air Pollutants , Cell Movement , Cell Proliferation , Drug Resistance, Neoplasm , Lung Neoplasms , Particulate Matter , Humans , Particulate Matter/toxicity , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , A549 Cells , Cell Proliferation/drug effects , Cell Movement/drug effects , Air Pollutants/toxicity , Phenotype , Cadherins/metabolism , Particle Size , Mexico , Spheroids, Cellular/drug effects , Neoplasm Invasiveness , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antigens, CD/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...