Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Mutagenesis ; 39(1): 13-23, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37555614

ABSTRACT

Cadmium chloride (CdCl2) is a known genotoxic carcinogen, with a mechanism of action thought to partly involve the generation of reactive oxygen species (ROS). We applied here a multi-endpoint approach in vitro to explore the impact of CdCl2 on both the genome and on wider cell biology pathways relevant to cancer. Multi-endpoint approaches are believed to offer greater promise in terms of understanding the holistic effects of carcinogens in vitro. This richer understanding may help better classification of carcinogens as well as allowing detailed mechanisms of action to be identified. We found that CdCl2 caused DNA damage [micronuclei (MN)] in both TK6 and NH32 cells in a dose-dependent manner after 4 h exposure (plus 23 h recovery), with lowest observable effect levels (LOELs) for MN induction of 1 µM (TK6) and 1.6 µM (NH32). This DNA damage induction in TK6 cells was ROS dependent as pretreatment with the antioxidant N-Acetyl Cysteine (1 mM), abrogated this effect. However, 2',7'-dichlorofluorescin diacetate was not capable of detecting the ROS induced by CdCl2. The use of NH32 cells allowed an investigation of the role of p53 as they are a p53 null cell line derived from TK6. NH32 showed a 10-fold increase in MN in untreated cells and a similar dose-dependent effect after CdCl2 treatment. In TK6 cells, CdCl2 also caused activation of p53 (accumulation of total and phosphorylated p53), imposition of cell cycle checkpoints (G2/M) and intriguingly the production of smaller and more eccentric (elongated) cells. Overall, this multi-endpoint study suggests a carcinogenic mechanism of CdCl2 involving ROS generation, oxidative DNA damage and p53 activation, leading to cell cycle abnormalities and impacts of cell size and shape. This study shows how the integration of multiple cell biology endpoints studied in parallel in vitro can help mechanistic understanding of how carcinogens disrupt normal cell biology.


Subject(s)
Cadmium Chloride , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Reactive Oxygen Species/metabolism , Cadmium Chloride/toxicity , Cadmium Chloride/metabolism , DNA Damage , Cell Cycle , Carcinogens/toxicity
2.
Zhonghua Nan Ke Xue ; 29(1): 3-9, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-37846825

ABSTRACT

OBJECTIVE: To investigate the role of autophagy in cadmium chloride (CdCl2)-induced damage to the blood-testis barrier (BTB) in mice. METHODS: Twenty four-week-old male C57BL/6 mice were randomly divided into four groups and intraperitoneally injected with CdCl2 at 0 mg/kg/d (the control), 0.5 mg/kg/d (low-dose), 1.0 mg/kg/d (medium-dose) and 2.0 mg/kg/d (high-dose) respectively for 28 consecutive days. Then the morphological changes of the testis tissue was observed by HE staining, the integrity of BTB measured with the biotracer, and the expressions of the BTB components ZO-1 and N-Cadherin proteins detected by Western blot. The TM4 Sertoli cells were treated with CdCl2at 0, 2.5, 5 and 10 µmol/L respectively for 24 hours, followed by determination of the expression levels of ZO-1 and N-Cadherin as well as the autophagy-related proteins LC3II and p62. Then the cells were again treated with CdCl2 in the presence of the autophagy inhibitor chloroquine (CQ) at 5 µmol/L or the autophagy inducer rapamycin (Rap) at 50 nmol/L for 24 hours, followed by measurement of the expressions of LC3II, p62, ZO-1 and N-Cadherin by Western blot. RESULTS: Compared with the control group, the cadmium-exposed mice showed increased interstitial space in the seminiferous tubules, formation of intracellular cavitation in the germ cells with decreased layers and disordered arrangement, and damaged integrity of the BTB. The expressions of the ZO-1 and N-Cadherin proteins were significantly down-regulated in the testis tissue of the mice in the medium- and high-dose CdCl2 groups (P < 0.05), and even more significantly in the CdCl2-exposed cells in comparison with those in the control mice (P < 0.01), while the expressions of the LC3II and p62 proteins were remarkably up-regulated (P < 0.05). The expressions of ZO-1, N-Cadherin, LC3II and p62 were also up-regulated in the cells co-treated with CQ and CdCl2 (P < 0.01), those of ZO-1, N-Cadherin and p62 down-regulated (P< 0.05) and that of LC3II up-regulated (P < 0.05) in the cells co-treated with Rap and CdCl2. CONCLUSION: CdCl2 can damage the integrity of the mouse BTB, which may be attributed to its ability to enhance the autophagy in Sertoli cells and regulate the expressions of BTB proteins.


Subject(s)
Blood-Testis Barrier , Cadmium , Mice , Male , Animals , Blood-Testis Barrier/metabolism , Cadmium Chloride/toxicity , Cadmium Chloride/metabolism , Mice, Inbred C57BL , Sertoli Cells/metabolism , Cadherins/metabolism , Autophagy , Testis/metabolism
3.
Article in Chinese | MEDLINE | ID: mdl-37400398

ABSTRACT

Objective: To study the effects of cadmium chloride (CdCl(2)) exposure on testicular autophagy levels and blood-testis barrier integrity in prepubertal male SD rats and testicular sertoli (TM4) cells. Methods: In July 2021, 9 4-week-old male SD rats were randomly divided into 3 groups: control group (normal saline), low dose group (1 mg/kg·bw CdCl(2)) and high dose group (2 mg/kg·bw CdCl(2)), and were exposed with CdCl(2) by intrabitoneal injection. 24 h later, HE staining was used to observe the morphological changes of testis of rats, biological tracer was used to observe the integrity of blood-testis barrier, and the expression levels of microtubule-associated protein light chain 3 (LC3) -Ⅰ and LC3-Ⅱ in testicular tissue were detected. TM4 cells were treated with 0, 2.5, 5.0 and 10.0 µmol/L CdCl(2) for 24 h to detect the toxic effect of cadmium. The cells were divided into blank group (no exposure), exposure group (10.0 µmol/L CdCl(2)), experimental group[10.0 µmol/L CdCl(2)+60.0 µmol/L 3-methyladenine (3-MA) ] and inhibitor group (60.0 µmol/L 3-MA). After 24 h of treatment, Western blot analysis was used to detect the expression levels of LC3-Ⅱ, ubiquitin binding protein p62, tight junction protein ZO-1 and adhesion junction protein N-cadherin. Results: The morphology and structure of testicular tissue in the high dose group were obvious changed, including uneven distribution of seminiferous tubules, irregular shape, thinning of seminiferous epithelium, loose structure, disordered arrangement of cells, abnormal deep staining of nuclei and vacuoles of Sertoli cells. The results of biological tracer method showed that the integrity of blood-testis barrier was damaged in the low and high dose group. Western blot results showed that compared with control group, the expression levels of LC3-Ⅱ in testicular tissue of rats in low and high dose groups were increased, the differences were statistically significant (P<0.05). Compared with the 0 µmol/L, after exposure to 5.0, 10.0 µmol/L CdCl(2), the expression levels of ZO-1 and N-cadherin in TM4 cells were significantly decreased, and the expression level of p62 and LC3-Ⅱ/LC3-Ⅰ were significantly increased, the differences were statistically significant (P<0.05). Compared with the exposure group, the relative expression level of p62 and LC3-Ⅱ/LC3-Ⅰ in TM4 cells of the experimental group were significantly decreased, while the relative expression levels of ZO-1 and N-cadherin were significantly increased, the differences were statistically significant (P<0.05) . Conclusion: The mechanism of the toxic effect of cadmium on the reproductive system of male SD rats may be related to the effect of the autophagy level of testicular tissue and the destruction of the blood-testis barrier integrity.


Subject(s)
Cadmium Chloride , Testis , Rats , Male , Animals , Cadmium Chloride/toxicity , Cadmium Chloride/metabolism , Cadmium , Blood-Testis Barrier/metabolism , Rats, Sprague-Dawley , Cadherins/metabolism , Autophagy
4.
Food Chem Toxicol ; 175: 113740, 2023 May.
Article in English | MEDLINE | ID: mdl-36958389

ABSTRACT

Epidemiological studies have reported an association between chronic cadmium (Cd) exposure and increased cardiovascular risk; however, their causal relationship remains unclear. The aim of this study is to explore the effects of Cd exposure on the cardiac and arterial systems in mice. According to the concentration of cadmium chloride in drinking water, male mice were randomly divided into control and low-dose and high-dose Cd exposure groups. The intervention duration was 12 weeks. In cardiac tissues, Cd exposure led to focal necrosis, myofibril disarray, perivascular and interstitial fibrosis, and disorganized sarcomere structures. Cd also induced the apoptosis of cardiomyocytes and increased the expression levels of matrix metalloproteinase (MMP)-2 and MMP-14 in cardiac tissues. In the arterial tissues, Cd exposure damaged the intimal and medial layers of the aorta. Cd further reduced the viability of aortic smooth muscle cells in vitro. This study provides evidence for the Cd-induced damage of the cardiovascular system, which may contribute to various cardiovascular diseases.


Subject(s)
Cadmium , Heart , Mice , Male , Animals , Cadmium/toxicity , Cadmium/metabolism , Cadmium Chloride/metabolism , Lung/metabolism , Aorta
5.
Toxicol Mech Methods ; 33(6): 437-451, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36718047

ABSTRACT

Cadmium (Cd) accumulates in the body through contaminated foods or water and causes pathological damage to the liver via oxidative stress and inflammatory reactions. This study was conducted to explore the effects of dendropanoxide (DPx) on Cd-induced hepatotoxicity in rats. Sprague-Dawley (SD) rats were injected with CdCl2 (7 mg/kg body weight) intraperitoneally for 14 days for the induction of liver dysfunction. The CdCl2-exposed rats were subjected to DPx (10 mg/kg) or silymarin (50 mg/kg). The animals were euthanized after 24 h of the last CdCl2 injection and the serum biochemical parameters, lipid content, pro-inflammatory cytokine levels, apoptotic cell death and histopathology of the tissues were analyzed. Additionally, the activity of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), was measured. Compared to controls, Cd-injected rats showed significantly elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol, and pro-inflammatory cytokines, and a remarkable decrease in SOD and CAT activities. Importantly, Cd-induced liver damage was drastically ameliorated by treatment with DPx or silymarin. Treatment with DPx protected the Cd-induced histopathological hepatic injury, as confirmed by the evaluation of TUNEL assay. DPx treatment significantly reduced Bax and caspase-3 expression in Cd-injected rats. Additionally, HO-1 and NRF2 expressions were significantly increased after DPx administration in the liver of Cd-injected rats. Our data indicate that DPx successfully prevents Cd-induced hepatotoxicity by emphasizing the antioxidant and anti-inflammatory effect.


Subject(s)
Chemical and Drug Induced Liver Injury , Silymarin , Rats , Animals , Cadmium/toxicity , Cadmium/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Rats, Sprague-Dawley , Cadmium Chloride/toxicity , Cadmium Chloride/metabolism , Liver , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Superoxide Dismutase/metabolism , Chemical and Drug Induced Liver Injury/pathology
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-986039

ABSTRACT

Objective: To study the effects of cadmium chloride (CdCl(2)) exposure on testicular autophagy levels and blood-testis barrier integrity in prepubertal male SD rats and testicular sertoli (TM4) cells. Methods: In July 2021, 9 4-week-old male SD rats were randomly divided into 3 groups: control group (normal saline), low dose group (1 mg/kg·bw CdCl(2)) and high dose group (2 mg/kg·bw CdCl(2)), and were exposed with CdCl(2) by intrabitoneal injection. 24 h later, HE staining was used to observe the morphological changes of testis of rats, biological tracer was used to observe the integrity of blood-testis barrier, and the expression levels of microtubule-associated protein light chain 3 (LC3) -Ⅰ and LC3-Ⅱ in testicular tissue were detected. TM4 cells were treated with 0, 2.5, 5.0 and 10.0 μmol/L CdCl(2) for 24 h to detect the toxic effect of cadmium. The cells were divided into blank group (no exposure), exposure group (10.0 μmol/L CdCl(2)), experimental group[10.0 μmol/L CdCl(2)+60.0 μmol/L 3-methyladenine (3-MA) ] and inhibitor group (60.0 μmol/L 3-MA). After 24 h of treatment, Western blot analysis was used to detect the expression levels of LC3-Ⅱ, ubiquitin binding protein p62, tight junction protein ZO-1 and adhesion junction protein N-cadherin. Results: The morphology and structure of testicular tissue in the high dose group were obvious changed, including uneven distribution of seminiferous tubules, irregular shape, thinning of seminiferous epithelium, loose structure, disordered arrangement of cells, abnormal deep staining of nuclei and vacuoles of Sertoli cells. The results of biological tracer method showed that the integrity of blood-testis barrier was damaged in the low and high dose group. Western blot results showed that compared with control group, the expression levels of LC3-Ⅱ in testicular tissue of rats in low and high dose groups were increased, the differences were statistically significant (P<0.05). Compared with the 0 μmol/L, after exposure to 5.0, 10.0 μmol/L CdCl(2), the expression levels of ZO-1 and N-cadherin in TM4 cells were significantly decreased, and the expression level of p62 and LC3-Ⅱ/LC3-Ⅰ were significantly increased, the differences were statistically significant (P<0.05). Compared with the exposure group, the relative expression level of p62 and LC3-Ⅱ/LC3-Ⅰ in TM4 cells of the experimental group were significantly decreased, while the relative expression levels of ZO-1 and N-cadherin were significantly increased, the differences were statistically significant (P<0.05) . Conclusion: The mechanism of the toxic effect of cadmium on the reproductive system of male SD rats may be related to the effect of the autophagy level of testicular tissue and the destruction of the blood-testis barrier integrity.


Subject(s)
Rats , Male , Animals , Testis , Cadmium Chloride/metabolism , Cadmium , Blood-Testis Barrier/metabolism , Rats, Sprague-Dawley , Cadherins/metabolism , Autophagy
7.
J Immunotoxicol ; 19(1): 81-92, 2022 12.
Article in English | MEDLINE | ID: mdl-36067115

ABSTRACT

Cadmium (Cd) is an immunotoxic metal frequently found in the environment. The in vitro study undertaken here evaluated the immunotoxic effects of Cd in isolated human peripheral blood monocytes (hPBM). The results of the studies of exposures to varying doses of Cd (0, 0.1, 1, 10, and 100 µM, as cadmium dichloride [CdCl2]) for 3, 6, 12, 24, 48, and 72 hr showed the test agent was cytotoxic to the cells in time- and concentration-related manners. Thereafter, using only those doses found to not cause extreme cell lethality a 48-hr period, the impact of 0.1 or 1 µM CdCl2 on the cells was evaluated. Functionally, CdCl2 treatment led to time- and concentration-related decreases in hPBM phagocytic activities as well as in the ability of the cells to form/release cytokines (including tumor necrosis factor [TNF]-α and interleukin [IL]-6 and -8). The CdCl2 also led to significantly decreased ATP production (in part, via inhibition of mitochondrial complexes I and III) as well as in mitochondrial membrane potentials (MMP) and oxygen consumption rates (OCR; associated with parallel increases in cell lactate production) in the cells. In addition, CdCl2 treatment resulted in significant increases in mitochondrial membrane fluidity (MMF) and cell unsaturated fatty acid content. Based on the results here, one might conclude that some of the effects that arose during the CdCl2-induced dysfunction of the isolated hPBM (i.e. changes phagocytic activity, cytokine formation/secretion) could have evolved secondary to CdCl2-induced disruptions of hPBM cell bioenergetics - an effect that itself was a culmination of an overall toxicity from CdCl2 upon the mitochondria within these cells.


Subject(s)
Cadmium , Monocytes , Cadmium/metabolism , Cadmium/toxicity , Cadmium Chloride/metabolism , Cadmium Chloride/toxicity , Humans , Mitochondria , Tumor Necrosis Factor-alpha/metabolism
8.
Synapse ; 76(9-10): 1-16, 2022 08.
Article in English | MEDLINE | ID: mdl-35709361

ABSTRACT

Cadmium (Cd) is a heavy metal classified as a carcinogen whose exposure could affect the function of the central nervous system. Studies suggest that Cd modifies neuronal morphology in the hippocampus and affects cognitive tasks. The oxidative stress pathway is proposed as a mechanism of toxicity. However, this mechanism is not precise yet. This study aimed to evaluate the effect of Cd administration on oxidative stress markers in the male rat's hippocampus. Male Wistar rats were divided into (1) control (drinking water) and (2) treatment with Cd (32.5 ppm of cadmium chloride (CdCl2 ) in water). The Cd was administered for 2, 3, and 4 months. The results show that the oral administration of CdCl2 increased the concentration of Cd in plasma and hippocampus, and this response is time-dependent on its administration. Likewise, it caused an increase in lipid peroxidation and nitrosative stress markers. Moreover, it increased reactive astrogliosis and antioxidant enzyme activity. Consequently, the progression of the oxidative response exacerbated neurodegeneration in hippocampal cells. Our results suggest that Cd exposure induces a severe oxidative response that contributes critically to hippocampal neurodegeneration. It is suggested that exposure to Cd increases the risk of developing neurological diseases, which contributes to a decrease in the quality of life of the human and the environment in which it lives.


Subject(s)
Antioxidants , Cadmium , Animals , Antioxidants/pharmacology , Cadmium/metabolism , Cadmium/toxicity , Cadmium Chloride/metabolism , Cadmium Chloride/toxicity , Hippocampus/metabolism , Humans , Lipid Peroxidation , Male , Oxidative Stress , Quality of Life , Rats , Rats, Wistar
9.
Article in English | MEDLINE | ID: mdl-35206604

ABSTRACT

Environmental exposure to cadmium (Cd) contributes to a decline in the quality of human semen. Although the testis is sensitive to Cd exposure, the mechanism underlying how cadmium affects the testis remains to be defined. In this study, male mice were treated with intraperitoneal injections of 0, 0.5, 1.5 and 2.5 mg CdCl2/kg/day for 10 days, respectively. Both the testicular weight and the 3ß-HSD activity of Leydig cells were significantly reduced with the administration of 2.5 mg CdCl2/kg/day. The height of endothelial cells in the interstitial blood vessels significantly increased with the use of 2.5 mg CdCl2/kg/day compared with the control. Western blot data showed that the protein levels of CD31, αSMA, caveolin and Ng2 increased with cadmium exposure, and this increase was particularly significant with the administration of 2.5 mg CdCl2/kg/day. CD31, αSMA, caveolin and Ng2 are related to angiogenesis. Based on our data, cadmium exposure may stimulate the proliferation of the mural cells and endothelial cells of blood vessels, which may lead to abnormal function of the testis.


Subject(s)
Leydig Cells , Testis , Animals , Antioxidants/metabolism , Cadmium/metabolism , Cadmium Chloride/metabolism , Cadmium Chloride/pharmacology , Endothelial Cells , Leydig Cells/metabolism , Male , Mice , Testis/metabolism
10.
Environ Sci Pollut Res Int ; 29(19): 28194-28207, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34993805

ABSTRACT

RATIONALE: Cadmium (Cd) is an environmental and occupational toxin that represents a serious health hazard to humans and other animals. One of the negative consequences of cadmium exposure is testicular injury. OBJECTIVE: This study aimed to investigate the therapeutic effect of etanercept against cadmium chloride-induced testicular damage and the probable underlying mechanisms of its action. METHODS: A total of sixty rats were divided into six groups: control, cadmium chloride (CdCl2) (7 mg/ kg i.p.), and CdCl2 treated with etanercept (5,10 and 15 mg/kg s.c.) and etanercept only (15 mg/kg s.c.). CdCl2 was administrated as a single dose, while etanercept was administered every 3 days for 3 weeks. RESULTS: CdCl2 reduced serum testosterone, testicular glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). However, it elevated the levels of malondialdehyde (MDA) and microtubule-associated protein light chain 3B (LC3B) in the testes. Cadmium caused pathogenic alterations as well as increased levels of inflammatory biomarkers such as tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB). Besides, the gene expressions of caspase-3 and inducible nitric oxide synthase (i-NOS) and Beclin-1 protein increased with CdCl2 exposure. Interestingly, etanercept relieved the previous toxic effects induced by CdCl2 in a dose-dependent manner as evidenced by inhibition of oxidative stress, inflammatory markers, Beclin-1, LC3B, and caspase-3 accompanied by improvement in histopathological changes. CONCLUSION: Etanercept provides a potential therapeutic approach to treat testicular tissue against the damaging effects of Cd by reducing oxidative stress, inflammation, apoptosis, and autophagy.


Subject(s)
Cadmium Chloride , Cadmium , Animals , Antioxidants/metabolism , Apoptosis , Autophagy , Cadmium/metabolism , Cadmium Chloride/metabolism , Caspase 3/metabolism , Etanercept/metabolism , Etanercept/pharmacology , Glutathione/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Male , Oxidative Stress , Rats , Testis/metabolism
11.
Clin Exp Pharmacol Physiol ; 49(2): 275-290, 2022 02.
Article in English | MEDLINE | ID: mdl-34570918

ABSTRACT

This study evaluated the protective effect of resolvin D1 (RVD1) against cadmium chloride (CdCl2 )-induced hippocampal damage and memory loss in rats and investigated if such protection is mediated by modulating the PTEN/PI3K/Akt/mTOR pathway. Adult male Wistar rats (n = 18/group) were divided as control, control + RVD1, CdCl2 , CdCl2  + RVD1 and CdCl2  + RVD1 + bpV(pic), a PTEN inhibitor. All treatments were conducted for 4 weeks. Resolvin D1 improved the memory function as measured by Morris water maze (MWM), preserved the structure of CA1 area of the hippocampus, and increased hippocampal levels of RVD1 in the CdCl2 -treated rats. Resolvin D1 also suppressed the generation of reactive oxygen species (ROS), tumour necrosis factor-α and interleukine-6 (IL-6), inhibited nuclear factor κB (NF-κB) p65, stimulated levels of glutathione (GSH), manganese superoxide dismutase (MnSOD), and Bcl2 but reduced the expression of Bax and cleaved caspase 3 in hippocampi of CdCl2 -treated rats. Concomitantly, it stimulated levels and activity of PTEN and reduced the phosphorylation (activation) of PI3K, Akt and mTOR in hippocampi of CdCl2 -treated rats. In conclusion, RVD1 attenuates CdCl2 -induced memory loss and hippocampal damage in rats mainly by activating PTEN-induced suppression of PI3K/Akt/mTOR, an effect that seems secondary to its' anti-oxidant and anti-inflammatory potential.


Subject(s)
Cadmium Chloride , Proto-Oncogene Proteins c-akt , Animals , Cadmium Chloride/metabolism , Cadmium Chloride/toxicity , Docosahexaenoic Acids/pharmacology , Hippocampus , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/prevention & control , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Up-Regulation
12.
Mol Biol Rep ; 49(2): 1201-1211, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34792728

ABSTRACT

BACKGROUND: The potential protective properties of carvacrol (CRV), which possesses various biological and pharmacological properties, against lung toxicity caused by cadmium (Cd), a major environmental pollutant, were investigated in the present study. METHODS AND RESULTS: In the study, rats were given 25 or 50 mg/kg CRV orally 30 min after administrating 25 mg/kg cadmium chloride for seven days. Subsequently, the levels of 8-OHdG, MMP-2, and MMP-9, as well as markers of oxidative stress, inflammation, and apoptosis, were analyzed in the lung tissue of the animals. The results revealed that CRV exhibited antioxidant characteristics and raised SOD, CAT, GPx, and CAT levels and decreased the MDA levels induced by Cd. It also suppressed proinflammatory cytokines by lowering the levels of CRV NF-κB and p38 MAPK, thus exerting an anti-inflammatory effect against Cd. It was found that the levels of Bax, Caspase-3, and cytochrome c increased by Cd were decreased by the application of CRV. CRV also showed an anti-apoptotic effect by increasing Bcl-2 levels. The levels of 8-OHdG, MMP2, and MMP9, which increased with Cd administration, were observed to reduce after treatment with CRV. CONCLUSIONS: The results indicate that CRV has protective properties against Cd-induced lung toxicity.


Subject(s)
Cymenes/pharmacology , DNA Damage/physiology , Oxidative Stress/physiology , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Biomarkers/metabolism , Cadmium/adverse effects , Cadmium/pharmacology , Cadmium Chloride/metabolism , Cell Line, Tumor , Cymenes/metabolism , DNA Damage/drug effects , Inflammation/drug therapy , Inflammation/physiopathology , Kidney/metabolism , Lipid Peroxidation/drug effects , Lung/metabolism , Male , Metalloproteases/drug effects , Metalloproteases/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
13.
Environ Sci Pollut Res Int ; 29(10): 13917-13929, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34599712

ABSTRACT

This study evaluated the protective effect of kaempferol, a natural flavonoid, against cadmium chloride (CdCl2)-induced liver damage and examined the possible anti-inflammatory and antioxidant mechanisms of protection. Adult male rats were divided into 4 groups (each of 8 rats) as control, kaempferol (50 mg/kg/day orally), CdCl2 (15 ppm/day), and CdCl2 (15 ppm/day) + kaempferol (50 mg/kg/day). All treatments were given for 30 days. With no effect on attenuating the reduced food intake, kaempferol significantly increased body weight and lowered serum levels of liver injury markers including bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase 1 (γ-GTT1) in the CdCl2-treated rats. It also restored normal liver architectures, prevented hepatocyte, loss, and swelling and reduced inflammatory cell infiltration. These effects were associated with a reduction in mitochondrial permeability transition pore, as well as in the expression of cytochrome-c and cleaved caspase-3, markers of mitochondrial damage, and intrinsic cell death. In both the control positive and CdCl2-treated rats, kaempferol significantly lowered the hepatic levels of reactive oxygen species, malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), Interleukine-6 (IL-6), and the nuclear activity and localization of NF-κB p65. Besides, kaempferol significantly increased the hepatic total and nuclear levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1, as well as levels of superoxide dismutase (SOD) and reduced glutathione (GSH) but reduced the cytoplasmic protein levels of keap1. In conclusion, the protective effect of kaempferol against CdCl2-induced hepatic damage is mediated by antioxidant and anti-inflammatory effects driven by upregulating Nrf2/HO-1 axis and suppressing the NF-κB p65 and keap1.


Subject(s)
Cadmium Chloride , NF-E2-Related Factor 2 , Animals , Cadmium Chloride/metabolism , Cadmium Chloride/toxicity , Kaempferols/metabolism , Kaempferols/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Liver/metabolism , Male , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Rats
14.
Food Chem Toxicol ; 158: 112654, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34743973

ABSTRACT

Cadmium (Cd) is a toxic heavy metal pollutant that can be accumulated in organs including the spleen, thereby threatening human health. In this study, the effect of caffeic acid phenethyl ester (CAPE, a bioactive component of honeybee propolis) on CdCl2-induced spleen toxicity and underlying mechanisms were examined in mice. Histological examinations revealed that CAPE (10 µmol/kg/day b.w.) could mitigate spleen damage induced by CdCl2 (1.5 mg/kg/day b.w.) in mice. Compared to the mice treated only by CdCl2, CAPE administration increased the body weight while decreasing the spleen weight, spleen Cd content and spleen to body ratio of the CdCl2-treated mice. Western blot and ELISA tests revealed that CAPE suppressed CdCl2-induced inflammation (indicated by the decreases in the levels of inflammatory indictors). TUNEL and Western blot results showed that CAPE suppressed CdCl2-induced apoptosis through reducing the percentage of TUNEL-positive cells and regulating apoptosis factors. The antagonistic effect of CAPE against CdCl2-induced spleen toxicity was realized by increasing miR-182-5p expression to regulate the TLR4/NF-κB pathway. Therefore, CAPE could be a food-derived spleen protector to counteract Cd-induced spleen toxicity through alleviating apoptosis and inflammation via the miR-182-5p/TLR4/NF-κB axis.


Subject(s)
Cadmium/toxicity , Caffeic Acids/pharmacology , MicroRNAs/metabolism , NF-kappa B/metabolism , Phenylethyl Alcohol/analogs & derivatives , Propolis/chemistry , Spleen/drug effects , Toll-Like Receptor 4/metabolism , Animals, Outbred Strains , Apoptosis , Biological Products/pharmacology , Biological Products/therapeutic use , Blotting, Western , Body Weight/drug effects , Cadmium/metabolism , Cadmium Chloride/metabolism , Cadmium Chloride/toxicity , Caffeic Acids/therapeutic use , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Enzyme-Linked Immunosorbent Assay , In Situ Nick-End Labeling , Inflammation/prevention & control , Mice , Organ Size/drug effects , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Spleen/metabolism , Spleen/pathology
15.
Cell Biol Int ; 45(5): 957-964, 2021 May.
Article in English | MEDLINE | ID: mdl-33372726

ABSTRACT

The objective of the present study is to identify the possible regulatory role of trehalose (Tre) against cadmium chloride (CdCl2 )-induced endothelial cell dysfunction. To screen the dose-dependent effect of both Tre and CdCl2 , a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed. Interestingly, MTT assay results have shown that co-incubation of Tre (1 mM) with CdCl2 significantly decreased the CdCl2 (5 µM) cytotoxicity. Nitric oxide (NO) measurement using Griess assay and 4-amino-5-methylamino-2',7'-difluorofluorescein fluorescence probe results have shown that CdCl2 decreases NO production in endothelial cells. Western blotting analysis results showed that CdCl2 decreases endothelial nitric oxide synthase (eNOS) and phospho endothelial nitric oxide synthase (peNOS) expression. The present study results have also observed that CdCl2 treatment increases reactive oxygen species (ROS) production. However, combination treatment (Tre + CdCl2 ) could restore the NO production in CdCl2 -treated cells. In addition, combination treatment could also restore eNOS and peNOS expression in endothelial cells. Moreover, Tre treatment was found to decrease CdCl2 -induced ROS production. Collectively, the present study results demonstrate that Tre possesses a significant protective action against CdCl2 -mediated endothelial dysfunction by increasing NO production, eNOS and peNOS expression, and by decreasing oxidative stress.


Subject(s)
Endothelial Cells/drug effects , Trehalose/metabolism , Trehalose/pharmacology , Cadmium Chloride/adverse effects , Cadmium Chloride/metabolism , Cadmium Chloride/pharmacology , Cells, Cultured , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Nitric Oxide/metabolism , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism
17.
Ecotoxicol Environ Saf ; 193: 110322, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32109582

ABSTRACT

The γ-aminobutyric acid (GABA) shunt is closely associated with plant tolerance; however, little is known about its mechanism. This study aimed to decipher the responses of the GABA shunt and related carbon-nitrogen metabolism in poplar seedlings (Populus alba × Populus glandulosa) treated with different NaCl and CdCl2 concentrations for 30 h. The results showed that the activities of glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T) were activated, as well as α-ketoglutarate dehydrogenase (α-KGDH) and succinate dehydrogenase (SDH) activities were enhanced by NaCl and CdCl2 stresses, except for SDH under CdCl2 stress. Meanwhile, the expression levels of GADs, GABA-Ts SDHs, succinyl-CoA ligases (SCSs), and succinic acid aldehyde dehydrogenases (SSADHs) were also increased. Notably, significant increases in the key components of GABA shunt, Glu and GABA, were observed under both stresses. Soluble sugars and free amino acids were enhanced, whereas citrate, malate and succinate were almost inhibited by both NaCl and CdCl2 stresses except that citrate was not changed or just increased by 50-mM NaCl stress. Thus, these results suggested that the carbon-nitrogen balance could be altered by activating the GABA shunt when main TCA-cycle intermediates were inhibited under NaCl and CdCl2 stresses. This study can enhance the understanding about the functions of the GABA shunt in woody plants under abiotic stresses and may be applied to the genetic improvement of trees for phytoremediation.


Subject(s)
Cadmium Chloride/toxicity , Carbon/metabolism , Nitrogen/metabolism , Populus/drug effects , Sodium Chloride/toxicity , Stress, Physiological/drug effects , gamma-Aminobutyric Acid/metabolism , Amino Acids/metabolism , Cadmium Chloride/metabolism , Citric Acid Cycle/drug effects , Glutamate Decarboxylase/metabolism , Populus/growth & development , Populus/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Sodium Chloride/metabolism
18.
Braz J Microbiol ; 51(3): 939-948, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32067210

ABSTRACT

The present research describes the synthesis of cadmium sulfide (CdS) nanoparticles from Escherichia coli under the influence of bacterial enzyme sulphate reductase and study on their cytotoxicity for applications in cancer therapy. Escherichia coli cells were used to synthesize CdS nanoparticles under different concentrations of cadmium chloride and sodium sulfide. The morphology of the nanoparticles was analysed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) was used for elemental analysis of nanoparticles. Fourier-transform infrared spectroscopy analysis (FTIR) was performed to assess the functional groups of the nanoparticles. Crystalline nature of nanoparticles was assessed using powder X-ray diffraction (XRD). Antibacterial studies of CdS nanoparticles were carried out on foodborne pathogens and cytotoxicity studies were carried out on Mus musculus skin melanoma (B16F10) and human epidermoid carcinoma (A431) cell lines. CdS nanoparticle showed more cytotoxic effect on cancer cells compared with standard 5-aminolevulinic acid (5-ALA). The Escherichia coli-synthesized CdS nanoparticles showed highest zone of inhibition in the ratio 4:1 of cadmium chloride and sodium sulfide on all tested bacterial strains. The nanoparticles were also tested for haemolytic activity on RBC cells, which exhibited lower cytotoxicity than sodium dodecyl sulphate which was used as positive control. The cytotoxicity of CdS nanoparticles assessed on A431 cells showed an inhibition of 81.53% at 100 µM concentration while the cytotoxicity assessed on B16F10 cells showed an inhibition of 75.71% at 200 µM concentration which was much efficient than 5-ALA which showed an inhibition of 31.95% at a concentration against B16F10 cells and 33.45% against A431 cells at a concentration of 1 mM. Cadmium sulfide nanoparticles were thus found to be highly toxic on cancer cells compare with standard anticancerous drug 5-ALA.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Cadmium Compounds/pharmacology , Escherichia coli/metabolism , Metal Nanoparticles/chemistry , Sulfides/pharmacology , Animals , Bacteria/drug effects , Cadmium Chloride/metabolism , Cadmium Compounds/chemistry , Cadmium Compounds/metabolism , Cell Line, Tumor , Fungi/drug effects , Hemolysis/drug effects , Humans , Mice , Sulfides/chemistry , Sulfides/metabolism
19.
J Photochem Photobiol B ; 199: 111603, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31473431

ABSTRACT

Photodynamic therapy (PDT) is used for killing of malignant cells in tumors including brain cancer. It can also damage normal neurons and glial cells. Nitric oxide (NO) is known to control PDT-induced cell death. To study the mechanisms that regulate NO generation in photosensitized neurons and glial cells, we used a simple model object - isolated crayfish mechanoreceptor that consists of a single sensory neuron surrounded by glial cells. PDT induced NO generation in glial cells, neuronal dendrites, and, less, in soma and axon. Using modulators of the cytosolic Ca2+ level and nuclear factor-kappa B (NF-κB) activity, we showed that Ca2+ and NF-κB regulate NO generation in the photosensitized neurons and glia. Actually, NO production was stimulated by 4-fold cadmium chloride (CdCl2) concentration in the saline, Ca2+ ionophore ionomycine, or inhibition of Ca2+-ATPase in the endoplasmic reticulum by 2,5-ditert-butylbenzene-1,4-diol (tBuBHQ). Oppositely, CdCl2 or nifedipine, blockers of Ca2+ channels in the plasma membrane, decreased NO generation. NO production was also inhibited by S-methylthiouronium sulfate (SMT), inhibitor of Ca2+-independent inducible NO synthase. SMT also prevented the stimulation of PDT-induced NO generation by NF-κB activator prostratin. This suggests the involvement of both Ca2+-dependent neuronal NO synthase and Ca2+-independent inducible NO synthase, which is regulated by NF-κB, in NO production in the crayfish neurons and glia.


Subject(s)
Cadmium Chloride/metabolism , NF-kappa B/metabolism , Neuroglia/radiation effects , Neurons/metabolism , Nitric Oxide/metabolism , Photosensitizing Agents/metabolism , Adenosine Triphosphatases/metabolism , Animals , Apoptosis/radiation effects , Astacoidea , Calcium Channels/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Nitric Oxide Synthase Type II/metabolism , Photochemotherapy
20.
Chem Res Toxicol ; 32(8): 1491-1503, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31251591

ABSTRACT

Quantum dots (QDs) are engineered nanoparticles (NPs) of semiconductor structure that possess unique optical and electronic properties and are widely used in biomedical applications; however, their risks are not entirely understood. This study investigated the tissue distribution and toxic effects of cadmium telluride quantum dots (CdTe-QDs) in male BALB/c mice for up to 1 week after single-dose intravenous injections. CdTe-QDs were detected in the blood, lung, heart, liver, spleen, kidney, testis and brain. Most CdTe-QDs accumulated in the liver, followed by the spleen and kidney. At high doses, exposure to CdTe-QDs resulted in mild dehydration, lethargy, ruffled fur, hunched posture, and body weight loss. Histological analysis of the tissues, upon highest dose exposures, revealed hepatic hemorrhage and necrotic areas in the spleen. The sera of mice treated with high doses of CdTe-QDs showed significant increases in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin levels, as well as a reduction in albumin. CdTe-QD exposure also led to a reduced number of platelets and elevated total white blood cell counts, including monocytes and neutrophils, serum amyloid A, and several pro-inflammatory cytokines. These results demonstrated that the liver is the main target of CdTe-QDs and that exposure to CdTe-QDs leads to hepatic and splenic injury, as well as systemic effects, in mice. By contrast, cadmium chloride (CdCl2), at an equivalent concentration of cadmium, appeared to have a different pharmacokinetic pattern from that of CdTe-QDs, having minimal effects on the aforementioned parameters, suggesting that cadmium alone cannot fully explain the toxicity of CdTe-QDs.


Subject(s)
Cadmium Compounds/pharmacokinetics , Nanoparticles/chemistry , Quantum Dots/chemistry , Tellurium/pharmacokinetics , Alanine Transaminase/chemistry , Alanine Transaminase/metabolism , Albumins/chemistry , Albumins/metabolism , Animals , Aspartate Aminotransferases/chemistry , Aspartate Aminotransferases/metabolism , Bilirubin/blood , Cadmium Chloride/administration & dosage , Cadmium Chloride/metabolism , Cadmium Chloride/pharmacokinetics , Cadmium Compounds/administration & dosage , Cadmium Compounds/metabolism , Injections, Intravenous , Male , Mice , Mice, Inbred BALB C , Nanoparticles/metabolism , Quantum Dots/metabolism , Tellurium/administration & dosage , Tellurium/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...