Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.569
Filter
1.
Sci Rep ; 14(1): 12756, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38830930

ABSTRACT

Caenorhabditis elegans is an appealing tool for experimental evolution and for working with antiparasitic drugs, from understanding the molecular mechanisms of drug action and resistance to uncover new drug targets. We present a new methodology for studying the impact of antiparasitic drugs in C. elegans. Viscous medium was initially designed for C. elegans maintenance during long-term evolution experiments. Viscous medium provides a less structured environment than the standard nematode growth media agar, yet the bacteria food source remains suspended. Further, the Viscous medium offers the worm population enough support to move freely, mate, and reproduce at a rate comparable to standard agar cultures. Here, the Viscous medium was adapted for use in antiparasitic research. We observed a similar sensitivity of C. elegans to anthelmintic drugs as in standard liquid media and statistical difference to the standard agar media through a larval development assay. Using Viscous medium in C. elegans studies will considerably improve antiparasitic resistance research, and this medium could be used in studies aimed at understanding long-term multigenerational drug activity.


Subject(s)
Anthelmintics , Caenorhabditis elegans , Culture Media , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/growth & development , Animals , Anthelmintics/pharmacology , Culture Media/chemistry , Viscosity , Agar , Drug Resistance/drug effects , Larva/drug effects
3.
PLoS One ; 19(5): e0295701, 2024.
Article in English | MEDLINE | ID: mdl-38771761

ABSTRACT

The Polarity/Protusion model of UNC-6/Netrin function in axon repulsion does not rely on a gradient of UNC-6/Netrin. Instead, the UNC-5 receptor polarizes the VD growth cone such that filopodial protrusions are biased to the dorsal leading edge. UNC-5 then inhibits growth cone protrusion ventrally based upon this polarity, resulting in dorsally-biased protrusion and dorsal migration away from UNC-6/Netrin. While previous studies have shown that UNC-5 inhibits growth cone protrusion by destabilizing actin, preventing microtubule + end entry, and preventing vesicle fusion, the signaling pathways involved are unclear. The SRC-1 tyrosine kinase has been previously shown to physically interact with and phosphorylate UNC-5, and to act with UNC-5 in axon guidance and cell migration. Here, the role of SRC-1 in VD growth cone polarity and protrusion is investigated. A precise deletion of src-1 was generated, and mutants displayed unpolarized growth cones with increased size, similar to unc-5 mutants. Transgenic expression of src-1(+) in VD/DD neurons resulted in smaller growth cones, and rescued growth cone polarity defects of src-1 mutants, indicating cell-autonomous function. Transgenic expression of a putative kinase-dead src-1(D831A) mutant caused a phenotype similar to src-1 loss-of-function, suggesting that this is a dominant negative mutation. The D381A mutation was introduced into the endogenous src-1 gene by genome editing, which also had a dominant-negative effect. Genetic interactions of src-1 and unc-5 suggest they act in the same pathway on growth cone polarity and protrusion, but might have overlapping, parallel functions in other aspects of axon guidance. src-1 function was not required for the effects of activated myr::unc-5, suggesting that SRC-1 might be involved in UNC-5 dimerization and activation by UNC-6, of which myr::unc-5 is independent. In sum, these results show that SRC-1 acts with UNC-5 in growth cone polarity and inhibition of protrusion.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Polarity , Growth Cones , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Growth Cones/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Netrin Receptors/metabolism , Netrin Receptors/genetics , Cell Movement , Animals, Genetically Modified , Netrins , Receptors, Cell Surface
4.
Nat Commun ; 15(1): 4273, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769103

ABSTRACT

Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Sex Characteristics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Male , Female , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Sensory Receptor Cells/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Profiling
5.
Curr Biol ; 34(11): 2387-2402.e5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38776905

ABSTRACT

The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2 ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Movement , Gonads , Organogenesis , Signal Transduction , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Gonads/metabolism , Gonads/growth & development , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Organogenesis/genetics , rac GTP-Binding Proteins/metabolism , rac GTP-Binding Proteins/genetics
6.
Curr Biol ; 34(11): 2373-2386.e5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38776903

ABSTRACT

Proper distribution of organelles can play an important role in a moving cell's performance. During C. elegans gonad morphogenesis, the nucleus of the leading distal tip cell (DTC) is always found at the front, yet the significance of this localization is unknown. Here, we identified the molecular mechanism that keeps the nucleus at the front, despite a frictional force that pushes it backward. The Klarsicht/ANC-1/Syne homology (KASH) domain protein UNC-83 links the nucleus to the motor protein kinesin-1 that moves along a polarized acentrosomal microtubule network. Interestingly, disrupting nuclear positioning on its own did not affect gonad morphogenesis. However, reducing actomyosin contractility on top of nuclear mispositioning led to a dramatic phenotype: DTC splitting and gonad bifurcation. Long-term live imaging of the double knockdown revealed that, while the gonad attempted to perform a planned U-turn, the DTC was stretched due to the lagging nucleus until it fragmented into a nucleated cell and an enucleated cytoplast, each leading an independent gonadal arm. Remarkably, the enucleated cytoplast had polarity and invaded, but it could only temporarily support germ cell proliferation. Based on a qualitative biophysical model, we conclude that the leader cell employs two complementary mechanical approaches to preserve its integrity and ensure proper organ morphogenesis while navigating through a complex 3D environment: active nuclear positioning by microtubule motors and actomyosin-driven cortical contractility.


Subject(s)
Actomyosin , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Nucleus , Gonads , Animals , Actomyosin/metabolism , Gonads/metabolism , Gonads/growth & development , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/physiology , Cell Nucleus/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Microtubules/metabolism , Morphogenesis , Kinesins/metabolism , Kinesins/genetics , Cell Movement
7.
Genetics ; 227(2)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38785371

ABSTRACT

Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.


Subject(s)
Caenorhabditis elegans , Dendrites , Morphogenesis , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/cytology , Dendrites/metabolism , Morphogenesis/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/cytology
8.
J Agric Food Chem ; 72(17): 9746-9754, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602331

ABSTRACT

The latex of Euphorbia peplus and its major component 20-deoxyingenol-3-angelate (DI3A) displayed significant nematicidal activity against Caenorhabditis elegans and Panagrellus redivivus. DI3A treatment inhibited the growth and development of nematodes and caused significantly negative effects on locomotion behavior, reproduction, and accumulation of reactive oxygen species. Transcriptome analysis indicated that differential expression genes in DI3A-treated C. elegans were mainly associated with the metabolism, growth, and development process, which were further confirmed by RT-qPCR experiments. The expression level of TPA-1 gene encoding a protein kinase C isotype was obviously upregulated by DI3A treatment, and knockdown of TPA-1 by RNAi technology in the nematode could relieve the growth-inhibitory effect of DI3A. Metabolic analysis indicated that DI3A was hardly metabolized by C. elegans, but a glycosylated indole derivative was specifically accumulated likely due to the activation of detoxification. Overall, our findings suggested that DI3A from E. peplus latex exerted a potent nematicidal effect through the gene TPA-1, which provides a potential target for the control of nematodes and also suggests the potential application value of E. peplus latex and DI3A as botanical nematicides.


Subject(s)
Antinematodal Agents , Caenorhabditis elegans , Euphorbia , Latex , Protein Kinase C , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/growth & development , Latex/chemistry , Latex/metabolism , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Antinematodal Agents/metabolism , Euphorbia/chemistry , Protein Kinase C/metabolism , Protein Kinase C/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry
9.
Nucleic Acids Res ; 52(9): 5336-5355, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38381904

ABSTRACT

Temporally and spatially controlled accumulation underlies the functions of microRNAs (miRNAs) in various developmental processes. In Caenorhabditis elegans, this is exemplified by the temporal patterning miRNAs lin-4 and let-7, but for most miRNAs, developmental expression patterns remain poorly resolved. Indeed, experimentally observed long half-lives may constrain possible dynamics. Here, we profile miRNA expression throughout C. elegans postembryonic development at high temporal resolution, which identifies dynamically expressed miRNAs. We use mathematical models to explore the underlying mechanisms. For let-7, we can explain, and experimentally confirm, a striking stepwise accumulation pattern through a combination of rhythmic transcription and stage-specific regulation of precursor processing by the RNA-binding protein LIN-28. By contrast, the dynamics of several other miRNAs cannot be explained by regulation of production rates alone. Specifically, we show that a combination of oscillatory transcription and rhythmic decay drive rhythmic accumulation of miR-235, orthologous to miR-92 in other animals. We demonstrate that decay of miR-235 and additional miRNAs depends on EBAX-1, previously implicated in target-directed miRNA degradation (TDMD). Taken together, our results provide insight into dynamic miRNA decay and establish a resource to studying both the developmental functions of, and the regulatory mechanisms acting on, miRNAs.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Larva , MicroRNAs , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Larva/genetics , Larva/growth & development , Larva/metabolism , RNA Stability/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Repressor Proteins
10.
Development ; 151(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38078543

ABSTRACT

The kinase PAR-4/LKB1 is a major regulator of intestinal homeostasis, which prevents polyposis in humans. Moreover, its ectopic activation is sufficient to induce polarization and formation of microvilli-like structures in intestinal cell lines. Here, we use Caenorhabditis elegans to examine the role of PAR-4 during intestinal development in vivo. We show that it is not required to establish enterocyte polarity and plays only a minor role in brush border formation. By contrast, par-4 mutants display severe deformations of the intestinal lumen as well as supernumerary intestinal cells, thereby revealing a previously unappreciated function of PAR-4 in preventing intestinal hyperplasia. The presence of supernumerary enterocytes in par-4 mutants is not due to excessive cell proliferation, but rather to the abnormal expression of the intestinal cell fate factors end-1 and elt-2 outside the E lineage. Notably, par-4 mutants also display reduced expression of end-1 and elt-2 inside the E lineage. Our work thereby unveils an essential and dual role of PAR-4, which both restricts intestinal specification to the E lineage and ensures its robust differentiation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/metabolism , Cell Polarity , Endoderm/metabolism , Hyperplasia/metabolism , Intestines , Embryo, Nonmammalian/metabolism
11.
PLoS Genet ; 19(11): e1011015, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37910589

ABSTRACT

Heterotrimeric G (αßγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cilia , Guanine Nucleotide Exchange Factors , Heterotrimeric GTP-Binding Proteins , Morphogenesis , Animals , Humans , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cilia/genetics , Cilia/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Morphogenesis/genetics , Nucleotides/metabolism , Sensory Receptor Cells/metabolism
12.
Cell Rep ; 42(8): 112902, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37531250

ABSTRACT

Aging is characterized by a global decline in physiological function. However, by constructing a complete single-cell gene expression atlas, we find that Caenorhabditis elegans aging is not random in nature but instead is characterized by coordinated changes in functionally related metabolic, proteostasis, and stress-response genes in a cell-type-specific fashion, with downregulation of energy metabolism being the only nearly universal change. Similarly, the rates at which cells age differ significantly between cell types. In some cell types, aging is characterized by an increase in cell-to-cell variance, whereas in others, variance actually decreases. Remarkably, multiple resilience-enhancing transcription factors known to extend lifespan are activated across many cell types with age; we discovered new longevity candidates, such as GEI-3, among these. Together, our findings suggest that cells do not age passively but instead react strongly, and individualistically, to events that occur during aging. This atlas can be queried through a public interface.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Transcription Factors , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Aging , Cellular Senescence , Energy Metabolism , Longevity , Transcription Factors/genetics , Transcription Factors/metabolism , Homeostasis , Single-Cell Gene Expression Analysis , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Physiological Phenomena
13.
Cell Mol Life Sci ; 80(8): 205, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37450052

ABSTRACT

Dietary intake and nutrient composition regulate animal growth and development; however, the underlying mechanisms remain elusive. Our previous study has shown that either the mammalian deafness homolog gene tmc-1 or its downstream acetylcholine receptor gene eat-2 attenuates Caenorhabditis elegans development in a chemically defined food CeMM (C. elegans maintenance medium) environment, but the underpinning mechanisms are not well-understood. Here, we found that, in CeMM food environment, for both eat-2 and tmc-1 fast-growing mutants, several fatty acid synthesis and elongation genes were highly expressed, while many fatty acid ß-oxidation genes were repressed. Accordingly, dietary supplementation of individual fatty acids, such as monomethyl branch chain fatty acid C17ISO, palmitic acid and stearic acid significantly promoted wild-type animal development on CeMM, and mutations in either C17ISO synthesis gene elo-5 or elo-6 slowed the rapid growth of eat-2 mutant. Tissue-specific rescue experiments showed that elo-6 promoted animal development mainly in the intestine. Furthermore, transcriptome and metabolome analyses revealed that elo-6/C17ISO regulation of C. elegans development may be correlated with up-regulating expression of cuticle synthetic and hedgehog signaling genes, as well as promoting biosynthesis of amino acids, amino acid derivatives and vitamins. Correspondingly, we found that amino acid derivative S-adenosylmethionine and its upstream metabolite methionine sulfoxide significantly promoted C. elegans development on CeMM. This study demonstrated that C17ISO, palmitic acid, stearic acid, S-adenosylmethionine and methionine sulfoxide inhibited or bypassed the TMC-1 and EAT-2-mediated attenuation of development via metabolic remodeling, and allowed the animals to adapt to the new nutritional niche.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Fatty Acids , Nutrients , Receptors, Nicotinic , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Animals , Eating , Nutrients/metabolism , Pharyngeal Muscles/metabolism , Fatty Acids/metabolism , Ion Channels/genetics , Ion Channels/metabolism
14.
Dev Biol ; 489: 34-46, 2022 09.
Article in English | MEDLINE | ID: mdl-35660370

ABSTRACT

Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/ß-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans , Transcription Factors/metabolism , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , High Mobility Group Proteins/genetics , Humans , Wnt Proteins/metabolism , beta Catenin/metabolism
17.
Proc Natl Acad Sci U S A ; 119(21): e2015576119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35576466

ABSTRACT

Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.


Subject(s)
Caenorhabditis elegans , Cellular Senescence , Oocytes , Oogenesis , Sex Attractants , Animals , Caenorhabditis elegans/growth & development , Cellular Senescence/drug effects , Cellular Senescence/physiology , Female , Male , Oocytes/drug effects , Oocytes/physiology , Oogenesis/drug effects , Oogenesis/physiology , Sex Attractants/pharmacology , Sex Attractants/physiology
18.
Proc Natl Acad Sci U S A ; 119(11): e2123110119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35263226

ABSTRACT

SignificanceAn enduring mystery of development is how its timing is controlled, particularly for development after birth, where timing is highly flexible and depends on environmental conditions, such as food availability and diet. We followed timing of cell- and organism-level events in individual Caenorhabditis elegans larvae developing from hatching to adulthood, uncovering widespread variations in event timing, both between isogenic individuals in the same environment and when changing conditions and genotypes. However, in almost all cases, we found that events occurred at the same time, when time was rescaled by the duration of development measured in each individual. This observation of "temporal scaling" poses strong constraints on models to explain timing of larval development.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Circadian Clocks , Transcription Factors , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Gene Expression Regulation, Developmental , Larva , Transcription Factors/genetics , Transcription Factors/physiology
19.
Nat Struct Mol Biol ; 29(2): 85-96, 2022 02.
Article in English | MEDLINE | ID: mdl-35102319

ABSTRACT

Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-61 is physiologically relevant.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Animals , Animals, Genetically Modified , Biocatalysis , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Silencing , Heterochromatin/genetics , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Methylation , Models, Biological , Mutation , Transcription, Genetic
20.
Gut Microbes ; 14(1): 2013762, 2022.
Article in English | MEDLINE | ID: mdl-35112996

ABSTRACT

Dietary and symbiotic bacteria can exert powerful influence on metazoan lipid metabolism. Recent studies have emerged that microbiota have a role in animal obesity and related health disorders, but the mechanisms by which bacteria influence lipid storage in their host are unknown. To reduce the complexity of the relationship between gut microbiota and the host, Caenorhabditis elegans (C. elegans) has been chosen as a model organism to study interspecies interaction. Here, we demonstrate that feeding C. elegans with an opportunistic pathogenic bacterium Stenotrophomonas maltophilia (S. maltophilia) retards growth and promotes excessive neutral lipid storage. Gene expression analysis reveals that dietary S. maltophilia induces a lipogenic transcriptional response that includes the SREBP ortholog SBP-1, and fatty acid desaturases FAT-6 and FAT-7. Live imaging and ultrastructural analysis suggest that excess neutral lipid is stored in greatly expanded lipid droplets (LDs), as a result of enhanced endoplasmic reticulum (ER)-LD interaction. We also report that loss of function mutations in dpy-9 in C. elegans confers resistance to S. maltophilia. Dietary S. maltophilia induces supersized LDs by enhancing lipogenesis and ER-LD contacts in C. elegans. This work delineates a new model for understanding microbial regulation of metazoan physiology.


Subject(s)
Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Lipid Droplets/metabolism , Lipogenesis , Stenotrophomonas maltophilia/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Female , Gastrointestinal Microbiome , Male , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...