Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.392
Filter
1.
Commun Biol ; 7(1): 694, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844830

ABSTRACT

Wounding initiates intricate responses crucial for tissue repair and regeneration. Yet, the gene regulatory networks governing wound healing remain poorly understood. Here, employing single-worm RNA sequencing (swRNA-seq) across 12 time-points, we delineated a three-stage wound repair process in C. elegans: response, repair, and remodeling. Integrating diverse datasets, we constructed a dynamic regulatory network comprising 241 transcription regulators and their inferred targets. We identified potentially seven autoregulatory TFs and five cross-autoregulatory loops involving pqm-1 and jun-1. We revealed that TFs might interact with chromatin factors and form TF-TF combinatory modules via intrinsically disordered regions to enhance response robustness. We experimentally validated six regulators functioning in transcriptional and translocation-dependent manners. Notably, nhr-76, daf-16, nhr-84, and oef-1 are potentially required for efficient repair, while elt-2 may act as an inhibitor. These findings elucidate transcriptional responses and hierarchical regulatory networks during C. elegans wound repair, shedding light on mechanisms underlying tissue repair and regeneration.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Regulatory Networks , Wound Healing , Animals , Caenorhabditis elegans/genetics , Wound Healing/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Sequence Analysis, RNA , Gene Expression Regulation
2.
Sci Rep ; 14(1): 12936, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839826

ABSTRACT

Circadian rhythms are endogenous oscillations in nearly all organisms, from prokaryotes to humans, allowing them to adapt to cyclical environments for close to 24 h. Circadian rhythms are regulated by a central clock, based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1ε/δ (CK1ε/δ) phosphorylation. In the nematode Caenorhabditis elegans, period and casein kinase 1ε/δ are conserved as lin-42 and kin-20, respectively. Here, we studied the involvement of lin-42 and kin-20 in the circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and epidermal seam cells, as well as in other cells. Depletion of LIN-42 and KIN-20, specifically in neuronal cells after development, was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Circadian Rhythm , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Circadian Rhythm/genetics , Mutation , Circadian Clocks/genetics , Neurons/metabolism , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Gene Expression Regulation , Transcription Factors
3.
Biomed Environ Sci ; 37(4): 377-386, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727160

ABSTRACT

Objective: This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans (C. elegans). Methods: In this study, the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C. elegans. The worms were fed Escherichia coli OP50 ( E. coli OP50), glucose, and different concentrations of LFBEP-C1. Body size, lifespan, movement, triglyceride content, and gene expression were analyzed. The results were analyzed using ANOVA and Tukey's multiple comparison test. Results: Compared with the model group, the head-swing frequency of C. elegans in the group of LFBEP-C1 at 20 µg/mL increased by 33.88%, and the body-bending frequency increased by 27.09%. This indicated that LFBEP-C1 improved the locomotive ability of C. elegans. The average lifespan of C. elegans reached 13.55 days, and the body length and width of the C. elegans decreased after LFBEP-C1 intake. Additionally, LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels. The expression levels of sbp-1, daf-2, and mdt-15 significantly decreased, while those of daf-16, tph-1, mod-1, and ser-4 significantly increased after LFBEP-C1 intake. Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion: LFBEP-C1 significantly reduced lipid deposition in C. elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development, lifespan, and exercise behavior of C. elegans. In addition, LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein, insulin, and 5-hydroxytryptamine signaling pathways.


Subject(s)
Caenorhabditis elegans , Hordeum , Lipid Metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Hordeum/chemistry , Lipid Metabolism/drug effects , Fermentation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Lactobacillus plantarum , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
4.
Sci Rep ; 14(1): 10453, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714725

ABSTRACT

Recent research has highlighted the importance of the gut microbiome in regulating aging, and probiotics are interventions that can promote gut health. In this study, we surveyed several novel lactic acid bacteria to examine their beneficial effect on organismal health and lifespan in C. elegans. We found that animals fed some lactic acid bacteria, including L. acidophilus 1244 and L. paracasei subsp. paracasei 2004, grew healthy. Supplementation with the lactic acid bacterial strains L. acidophilus 1244 or L. paracasei subsp. paracasei 2004 significantly improved health, including food consumption, motility, and resistance to oxidative stressor, hydrogen peroxide. Our RNA-seq analysis showed that supplementation with L. paracasei subsp. paracasei 2004 significantly increased the expression of daf-16, a C. elegans FoxO homolog, as well as genes related to the stress response. Furthermore, daf-16 deletion inhibited the longevity effect of L. paracasei subsp. paracasei 2004 supplementation. Our results suggest that L. paracasei subsp. paracasei 2004 improves health and lifespan in a DAF-16-dependent manner.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Forkhead Transcription Factors , Longevity , Probiotics , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/microbiology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lacticaseibacillus paracasei/physiology , Lacticaseibacillus paracasei/genetics , Oxidative Stress , Gastrointestinal Microbiome
5.
Cell Mol Life Sci ; 81(1): 202, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691171

ABSTRACT

Glial cells constitute nearly half of the mammalian nervous system's cellular composition. The glia in C. elegans perform majority of tasks comparable to those conducted by their mammalian equivalents. The cephalic sheath (CEPsh) glia, which are known to be the counterparts of mammalian astrocytes, are enriched with two nuclear hormone receptors (NHRs)-NHR-210 and NHR-231. This unique enrichment makes the CEPsh glia and these NHRs intriguing subjects of study concerning neuronal health. We endeavored to assess the role of these NHRs in neurodegenerative diseases and related functional processes, using transgenic C. elegans expressing human alpha-synuclein. We employed RNAi-mediated silencing, followed by behavioural, functional, and metabolic profiling in relation to suppression of NHR-210 and 231. Our findings revealed that depleting nhr-210 changes dopamine-associated behaviour and mitochondrial function in human alpha synuclein-expressing strains NL5901 and UA44, through a putative target, pgp-9, a transmembrane transporter. Considering the alteration in mitochondrial function and the involvement of a transmembrane transporter, we performed metabolomics study via HR-MAS NMR spectroscopy. Remarkably, substantial modifications in ATP, betaine, lactate, and glycine levels were seen upon the absence of nhr-210. We also detected considerable changes in metabolic pathways such as phenylalanine, tyrosine, and tryptophan biosynthesis metabolism; glycine, serine, and threonine metabolism; as well as glyoxalate and dicarboxylate metabolism. In conclusion, the deficiency of the nuclear hormone receptor nhr-210 in alpha-synuclein expressing strain of C. elegans, results in altered mitochondrial function, coupled with alterations in vital metabolite levels. These findings underline the functional and physiological importance of nhr-210 enrichment in CEPsh glia.


Subject(s)
Caenorhabditis elegans , Disease Models, Animal , Mitochondria , Neuroglia , Parkinson Disease , alpha-Synuclein , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Mitochondria/metabolism , Neuroglia/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals, Genetically Modified , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Dopamine/metabolism , Metabolomics , RNA Interference
7.
Chem Biol Interact ; 395: 111036, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38705443

ABSTRACT

Gelsemium elegans Benth. (G. elegans) is a traditional medicinal herb that has anti-inflammatory, analgesic, sedative, and detumescence effects. However, it can also cause intestinal side effects such as abdominal pain and diarrhea. The toxicological mechanisms of gelsenicine are still unclear. The objective of this study was to assess enterotoxicity induced by gelsenicine in the nematodes Caenorhabditis elegans (C. elegans). The nematodes were treated with gelsenicine, and subsequently their growth, development, and locomotion behavior were evaluated. The targets of gelsenicine were predicted using PharmMapper. mRNA-seq was performed to verify the predicted targets. Intestinal permeability, ROS generation, and lipofuscin accumulation were measured. Additionally, the fluorescence intensities of GFP-labeled proteins involved in oxidative stress and unfolded protein response in endoplasmic reticulum (UPRER) were quantified. As a result, the treatment of gelsenicine resulted in the inhibition of nematode lifespan, as well as reductions in body length, width, and locomotion behavior. A total of 221 targets were predicted by PharmMapper, and 731 differentially expressed genes were screened out by mRNA-seq. GO and KEGG enrichment analysis revealed involvement in redox process and transmembrane transport. The permeability assay showed leakage of blue dye from the intestinal lumen into the body cavity. Abnormal mRNAs expression of gem-4, hmp-1, fil-2, and pho-1, which regulated intestinal development, absorption and catabolism, transmembrane transport, and apical junctions, was observed. Intestinal lipofuscin and ROS were increased, while sod-2 and isp-1 expressions were decreased. Multiple proteins in SKN-1/DAF-16 pathway were found to bind stably with gelsenicine in a predictive model. There was an up-regulation in the expression of SKN-1:GFP, while the nuclear translocation of DAF-16:GFP exhibited abnormality. The UPRER biomarker HSP-4:GFP was down-regulated. In conclusion, the treatment of gelsenicine resulted in the increase of nematode intestinal permeability. The toxicological mechanisms underlying this effect involved the disruption of intestinal barrier integrity, an imbalance between oxidative and antioxidant processes mediated by the SKN-1/DAF-16 pathway, and abnormal unfolded protein reaction.


Subject(s)
Caenorhabditis elegans , Reactive Oxygen Species , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Reactive Oxygen Species/metabolism , Quinoxalines/pharmacology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Oxidative Stress/drug effects , Intestines/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Gelsemium/chemistry , Unfolded Protein Response/drug effects , Permeability/drug effects , Lipofuscin/metabolism , Locomotion/drug effects , Indole Alkaloids
8.
Nat Commun ; 15(1): 4200, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760342

ABSTRACT

The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Differentiation , Extracellular Matrix , Germ Cells , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Extracellular Matrix/metabolism , Germ Cells/metabolism , Germ Cells/cytology , Cell Differentiation/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Signal Transduction , Cell Lineage/genetics , Oocytes/metabolism , Oocytes/cytology
9.
PLoS Genet ; 20(5): e1011284, 2024 May.
Article in English | MEDLINE | ID: mdl-38743783

ABSTRACT

The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.


Subject(s)
Argonaute Proteins , Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA, Small Nuclear , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Animals , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Alternative Splicing/genetics , RNA Interference , RNA Processing, Post-Transcriptional , Spliceosomes/metabolism , Spliceosomes/genetics
10.
Biomolecules ; 14(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786006

ABSTRACT

Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.


Subject(s)
3-Hydroxyanthranilic Acid , Amyloid beta-Peptides , Caenorhabditis elegans , Paralysis , Peptides , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Peptides/pharmacology , 3-Hydroxyanthranilic Acid/metabolism , Paralysis/chemically induced , Paralysis/metabolism , Paralysis/genetics , Disease Models, Animal , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Dioxygenases/metabolism , Dioxygenases/genetics
11.
PLoS One ; 19(5): e0304064, 2024.
Article in English | MEDLINE | ID: mdl-38787850

ABSTRACT

Asymmetric cell division is an important mechanism that generates cellular diversity during development. Not only do asymmetric cell divisions produce daughter cells of different fates, but many can also produce daughters of different sizes, which we refer to as Daughter Cell Size Asymmetry (DCSA). In Caenorhabditis elegans, apoptotic cells are frequently produced by asymmetric divisions that exhibit DCSA, where the smaller daughter dies. We focus here on the divisions of the Q.a and Q.p neuroblasts, which produce larger surviving cells and smaller apoptotic cells and divide with opposite polarity using both distinct and overlapping mechanisms. Several proteins regulate DCSA in these divisions. Previous studies showed that the PIG-1/MELK and TOE-2 proteins regulate DCSA in both the Q.a and Q.p divisions, and the non-muscle myosin NMY-2 regulates DCSA in the Q.a division but not the Q.p division. In this study, we examined endogenously tagged NMY-2, TOE-2, and PIG-1 reporters and characterized their distribution at the cortex during the Q.a and Q.p divisions. In both divisions, TOE-2 localized toward the side of the dividing cell that produced the smaller daughter, whereas PIG-1 localized toward the side that produced the larger daughter. As previously reported, NMY-2 localized to the side of Q.a that produced the smaller daughter and did not localize asymmetrically in Q.p. We used temperature-sensitive nmy-2 mutants to determine the role of nmy-2 in these divisions and were surprised to find that these mutants only displayed DCSA defects in the Q.p division. We generated double mutant combinations between the nmy-2 mutations and mutations in toe-2 and pig-1. Because previous studies indicate that DCSA defects result in the transformation of cells fated to die into their sister cells, the finding that the nmy-2 mutations did not significantly alter the Q.a and Q.p DCSA defects of toe-2 and pig-1 mutants but did alter the number of daughter cells produced by Q.a and Q.p suggests that nmy-2 plays a role in specifying the fates of the Q.a and Q.p that is independent of its role in DCSA.


Subject(s)
Asymmetric Cell Division , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Cell Size , Myosins/metabolism , Myosins/genetics , Protein Serine-Threonine Kinases
12.
Sci Rep ; 14(1): 12280, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811827

ABSTRACT

Loss of the tumor suppressor PTEN homolog daf-18 in Caenorhabditis elegans (C. elegans) triggers diapause cell division during L1 arrest. While prior studies have delved into established pathways, our investigation takes an innovative route. Through forward genetic screening in C. elegans, we pinpoint a new player, F12E12.11, regulated by daf-18, impacting cell proliferation independently of PTEN's typical phosphatase activity. F12E12.11 is an ortholog of human estradiol 17-beta-dehydrogenase 8 (HSD17B8), which converts estradiol to estrone through its NAD-dependent 17-beta-hydroxysteroid dehydrogenase activity. We found that PTEN engages in a physical interplay with HSD17B8, introducing a distinctive suppression mechanism. The reduction in estrone levels and accumulation of estradiol may arrest tumor cells in the G2/M phase of the cell cycle through MAPK/ERK. Our study illuminates an unconventional protein interplay, providing insights into how PTEN modulates tumor suppression by restraining cell division through intricate molecular interactions.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Proliferation , PTEN Phosphohydrolase , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Humans , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/genetics , Estradiol/metabolism , Estrone/metabolism
13.
Cell Rep ; 43(5): 114204, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748878

ABSTRACT

Amyotrophic lateral sclerosis can be caused by abnormal accumulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm of neurons. Here, we use a C. elegans model for TDP-43-induced toxicity to identify the biological mechanisms that lead to disease-related phenotypes. By applying deep behavioral phenotyping and subsequent dissection of the neuromuscular circuit, we show that TDP-43 worms have profound defects in GABA neurons. Moreover, acetylcholine neurons appear functionally silenced. Enhancing functional output of repressed acetylcholine neurons at the level of, among others, G-protein-coupled receptors restores neurotransmission, but inefficiently rescues locomotion. Rebalancing the excitatory-to-inhibitory ratio in the neuromuscular system by simultaneous stimulation of the affected GABA- and acetylcholine neurons, however, not only synergizes the effects of boosting individual neurotransmitter systems, but instantaneously improves movement. Our results suggest that interventions accounting for the altered connectome may be more efficient in restoring motor function than those solely focusing on diseased neuron populations.


Subject(s)
Caenorhabditis elegans , DNA-Binding Proteins , Disease Models, Animal , Animals , Caenorhabditis elegans/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , GABAergic Neurons/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Motor Neurons/metabolism , Locomotion , Synaptic Transmission , Movement , Cholinergic Neurons/metabolism
14.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38740431

ABSTRACT

Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Longevity , Mechanistic Target of Rapamycin Complex 1 , RNA Polymerase III , Signal Transduction , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Longevity/genetics , RNA Polymerase III/metabolism , RNA Polymerase III/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Aging/metabolism , Aging/genetics , Aging/physiology
15.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727263

ABSTRACT

Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.


Subject(s)
Caenorhabditis elegans , Copper , Homeostasis , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Copper/metabolism , Animals , Humans , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Molecular Chaperones/metabolism
16.
Nat Commun ; 15(1): 4273, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769103

ABSTRACT

Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Sex Characteristics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Male , Female , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Sensory Receptor Cells/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Profiling
17.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38767515

ABSTRACT

Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by a mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet it negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. Additionally, nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1∆ mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1∆ cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PEST∆) mutant resembled the ccpp-1∆ mutant with dye-filling defects and B-tubule breaks. The nekl-4(PEST∆) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cilia , Microtubules , Mitochondria , Neurons , Animals , Microtubules/metabolism , Microtubules/genetics , Mitochondria/metabolism , Mitochondria/genetics , Cilia/metabolism , Cilia/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Neurons/metabolism , Mutation/genetics
18.
Sci Total Environ ; 934: 173214, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754507

ABSTRACT

Zinc oxide nanoparticles (ZnO-NPs) are one of the most widely used metal oxide nanomaterials. The increased use of ZnO-NPs has exacerbated environmental pollution and raised the risk of neurological disorders in organisms through food chains, and it is urgent to look for detoxification strategies. γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter that has been shown to have anxiolytic, anti-aging and inhibitory effects on nervous system excitability. However, there are few reports on the prevention and control of the toxicity of nano-metal ions by GABA. In zebrafish, ZnO-NPs exposure led to increased mortality and behavioral abnormalities of larva, which could be moderated by GABA intervention. Similar results were investigated in Caenorhabditis elegans, showing lifespan extension, abnormal locomotor frequency and behavior recovery when worms fed with GABA under ZnO-NPs exposure. Moreover, GABA enhanced antioxidant enzyme activities by upregulating the expression of antioxidant-related genes and thus scavenged excessive O2-. In the case of ZnO-NPs exposure, inhibition of nuclear translocation of DAF-16 and SKN-1 was restored by GABA. Meanwhile, the protective effect of GABA was blocked in daf-16 (-) and skn-1 (-) mutant, suggesting that DAF-16/FoxO and SKN-1/Nrf2 pathways is the key targets of GABA. This study provides a new solution for the application of GABA and mitigation of metal nanoparticle neurotoxicity.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Forkhead Transcription Factors , NF-E2-Related Factor 2 , Oxidative Stress , Zebrafish , Zinc Oxide , gamma-Aminobutyric Acid , Zinc Oxide/toxicity , Animals , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , gamma-Aminobutyric Acid/metabolism , Forkhead Transcription Factors/metabolism , Metal Nanoparticles/toxicity , Transcription Factors/metabolism , Transcription Factors/genetics , Signal Transduction/drug effects , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Nanoparticles/toxicity , DNA-Binding Proteins/metabolism
19.
J Hazard Mater ; 472: 134598, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743975

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) is an emerging pollutant transformed from 6-PPD. However, the effect of 6-PPDQ exposure on mitochondrion and underlying mechanism remains largely unclear. Using Caenorhabditis elegans as animal model, exposed to 6-PPDQ at 0.1-10 µg/L was performed form L1 larvae to adult day-1. Exposure to 6-PPDQ (1 and 10 µg/L) could increase oxygen consumption rate and decease adenosine 5'-triphosphate (ATP) content, suggesting induction of mitochondrial dysfunction. Activities of NADH dehydrogenase (complex I) and succinate dehydrogenase (complex II) were inhibited, accompanied by a decrease in expressions of gas-1, nuo-1, and mev-1. RNAi of gas-1 and mev-1 enhanced mitochondrial dysfunction and reduced lifespan of 6-PPDQ exposed nematodes. GAS-1 and MEV-1 functioned in parallel to regulate 6-PPDQ toxicity to reduce the lifespan. Insulin peptides and the insulin signaling pathway acted downstream of GAS-1 and MEV-1 to control the 6-PPDQ toxicity on longevity. Moreover, RNAi of sod-2 and sod-3, targeted genes of daf-16, caused susceptibility to 6-PPDQ toxicity in reducing lifespan and in causing reactive oxygen species (ROS) production. Therefore, 6-PPDQ at environmentally relevant concentrations (ERCs) potentially caused mitochondrial dysfunction by affecting mitochondrial complexes I and II, which was associated with lifespan reduction by affecting insulin signaling in organisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Electron Transport Complex I , Longevity , Mitochondria , Animals , Caenorhabditis elegans/drug effects , Longevity/drug effects , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex II/metabolism , Electron Transport Complex II/genetics , Insulin/metabolism , Adenosine Triphosphate/metabolism , Reactive Oxygen Species/metabolism , NADH Dehydrogenase , Cytochromes b
20.
Proc Natl Acad Sci U S A ; 121(21): e2406565121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753507

ABSTRACT

While depolarization of the neuronal membrane is known to evoke the neurotransmitter release from synaptic vesicles, hyperpolarization is regarded as a resting state of chemical neurotransmission. Here, we report that hyperpolarizing neurons can actively signal neural information by employing undocked hemichannels. We show that UNC-7, a member of the innexin family in Caenorhabditis elegans, functions as a hemichannel in thermosensory neurons and transmits temperature information from the thermosensory neurons to their postsynaptic interneurons. By monitoring neural activities in freely behaving animals, we find that hyperpolarizing thermosensory neurons inhibit the activity of the interneurons and that UNC-7 hemichannels regulate this process. UNC-7 is required to control thermotaxis behavior and functions independently of synaptic vesicle exocytosis. Our findings suggest that innexin hemichannels mediate neurotransmission from hyperpolarizing neurons in a manner that is distinct from the synaptic transmission, expanding the way of neural circuitry operations.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Interneurons , Neurons , Synaptic Transmission , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Synaptic Transmission/physiology , Interneurons/metabolism , Interneurons/physiology , Neurons/physiology , Neurons/metabolism , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology , Taxis Response/physiology , Connexins/metabolism , Connexins/genetics , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...