Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.600
Filter
1.
Food Res Int ; 188: 114500, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823879

ABSTRACT

Located in Brazil's Central Plateau, the Cerrado Savannah is an emerging coffee-growing region with significant potential for the national coffee market. This study investigated the impact of potassium fertilization on Arabica coffee quality in the Cerrado, using three potassium sources (K2SO4, KCl, and KNO3) and five cultivars (Arara, Aranãs, IPR103, Catiguá and Topázio) across two consecutive harvests. We focused on productivity, granulometry, chemical composition, and sensory characteristics. No significant difference in productivity across the cultivars studied or potassium sources as isolated factors were observed. Regarding chemical parameters, potassium sources only affected NO3- and SO42- levels in the grains. Cultivar-specific differences were noted in caffeine (CAF), citric acid (CA), and sucrose (SUC), highlighting a strong genetic influence. K2SO4 improved productivity in Arara (15 %) and IPR103 (11 %), while KNO3 reduced flat grain percentage to 70 % in Catiguá. Sensory evaluation showed that all potassium sources and cultivars produced specialty coffees, with the Arara cultivar treated with K2SO4 achieving the highest SCA score (83.3) while IPR 103 treated with KCl scored the lowest at 78. Only three treatments were below but very close to the threshold (80). Multivariate analysis indicated a trend where specific treatments correlated with higher productivity and quality. Despite the subtle differences in productivity and quality among potassium sources, a cost-benefit analysis may favor KCl due to its affordability, suggesting its viability as a potassium fertilization option in coffee cultivation. Future research is needed to confirm these trends and optimize potassium source selection to enhance coffee quality in the Cerrado.


Subject(s)
Coffea , Potassium , Brazil , Coffea/chemistry , Coffea/growth & development , Potassium/analysis , Seeds/chemistry , Seeds/growth & development , Coffee/chemistry , Taste , Fertilizers , Humans , Caffeine/analysis
2.
Food Res Int ; 186: 114333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729693

ABSTRACT

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Subject(s)
Acrylamide , Asparaginase , Asparagine , Coffea , Coffee , Taste , Acrylamide/analysis , Asparagine/analysis , Coffea/chemistry , Coffee/chemistry , Humans , Volatile Organic Compounds/analysis , Cooking/methods , Alkaloids/analysis , Chlorogenic Acid/analysis , Caffeine/analysis , Male , Food Handling/methods , Maillard Reaction , Hot Temperature , Chromatography, High Pressure Liquid , Seeds/chemistry , Female
3.
J Sep Sci ; 47(9-10): e2400142, 2024 May.
Article in English | MEDLINE | ID: mdl-38726732

ABSTRACT

Catechins, renowned for their antioxidant properties and health benefits, are commonly present in beverages, particularly tea and wine. An efficient and cost-effective salting-out assisted liquid-liquid extraction (SALLE) method has been developed and validated for the simultaneous determination of six catechins and caffeine in tea and wine samples using high-performance liquid chromatography-ultraviolet (HPLC-UV). This method demonstrates outstanding performance: linearity (1-120 µg/mL, r2 > 0.999), accuracy (96.5%-103.4% recovery), and precision (≤14.7% relative standard deviation), meeting validation requirements set by the US Food and Drug Administration. The reduced sample size (0.1 g) minimizes matrix interferences and costs without compromising sensitivity. All analytes were detected in Camellia sinensis teas, with green tea displaying the highest total catechin content (47.5-100.1 mg/mL), followed by white and black teas. Analysis of wine samples reveals the presence of catechin in all red and white wines, and epigallocatechin gallate in all red wine samples, highlighting the impact of winemaking processes on catechin content. The SALLE-HPLC-UV approach represents a green alternative by eliminating organic waste, surpassing conventional dilution methods in specificity and sensitivity for catechin determination. AGREEprep assessment emphasizes the strengths of the SALLE procedure, including material reusability, throughput efficiency, minimal sample requirements, low energy consumption, and the absence of organic waste generation.


Subject(s)
Caffeine , Catechin , Liquid-Liquid Extraction , Tea , Wine , Chromatography, High Pressure Liquid/methods , Wine/analysis , Caffeine/analysis , Catechin/analysis , Tea/chemistry , Liquid-Liquid Extraction/methods , Spectrophotometry, Ultraviolet , Ultraviolet Rays
4.
An Acad Bras Cienc ; 96(2): e20230840, 2024.
Article in English | MEDLINE | ID: mdl-38747838

ABSTRACT

The extraction of valuable compounds from dried fruits and vegetables by microwave hydrodiffusion and gravity (MHG) requires previous hydration of the plant material. In this work, ultrasound was used to speed up the hydration of guarana powder before MHG extraction and increase caffeine recovery. The humidification step was speeded up with ultrasound taking only 15 min over 60 min without ultrasound. Water and 50% (v/v) ethanol were evaluated as green solvents for humidification, with a higher concentration of caffeine obtained for the hydroalcoholic solution. Ultrasound pretreatment allowed guarana extracts from MHG with two times more caffeine for both solvents evaluated. Therefore, ultrasound can be used in the hydration step before MHG extraction to reduce time and increase caffeine recovery from guarana powder.


Subject(s)
Caffeine , Microwaves , Paullinia , Plant Extracts , Powders , Caffeine/analysis , Caffeine/isolation & purification , Paullinia/chemistry , Plant Extracts/chemistry , Gravitation , Ultrasonics , Solvents
5.
Article in English | MEDLINE | ID: mdl-38781815

ABSTRACT

In this work, a new ultra-performance liquid chromatography method based on photodiode array detection (UPLC-PDA) was first developed for the quantitative analysis of the quaternary mixture of ascorbic acid (AA), paracetamol (PAR), caffeine (CAF) and chlorpheniramine maleate (CPA) in a commercial dosage form. The developed UPLC-PDA method offered a new possibility for the co-determination of four active ingredients in a drug combination with short run time and simple sample preparation. The successful chromatographic separation of the four drugs was performed using a Waters Acquity UPLC BEH C18 column (1.7 µm 2.1 × 100 mm) (Mildford, USA) and a mobile phase consisting of water (12 %), acetonitrile (13 %) and 0.1 M H3PO4 (75 %) at a flow rate of 0.25 mL/min. The validation of the proposed UPLC-PDA approach was verified by analyzing synthetic mixtures, inter- and intra-day experiments, and commercial powder samples and provided satisfactory results.


Subject(s)
Acetaminophen , Caffeine , Chlorpheniramine , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Caffeine/analysis , Caffeine/chemistry , Acetaminophen/analysis , Acetaminophen/chemistry , Linear Models , Chlorpheniramine/analysis , Chlorpheniramine/chemistry , Limit of Detection , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Drug Combinations
6.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792093

ABSTRACT

The scientific literature indicates that there is a limited number of data on the content of bioactive components in coffees consumed "on the go". Therefore, this study examined the polyphenol and caffeine content of different types of coffee from franchise coffee shops, and the caffeine/total polyphenol ratio. The five most popular types of coffee purchased in six franchise coffee shops in Warsaw were analysed. A total of 120 coffee samples were tested. A significant positive (r = 0.7407, p < 0.001) correlation was found between the total polyphenol and caffeine content in all coffee types tested. Per unit volume, espresso coffee had the highest significant (p < 0.005) average total polyphenol and caffeine contents (232.9 ± 63.9 mg/100 mL and 198.6 ± 68.3 mg/100 mL, respectively). After taking into account the coffee's serving size, a serving of Americano provided significantly (p < 0.05) the most total polyphenol (average 223.5 ± 81.5 mg), while the highest caffeine content was provided by a serving of ice latte/latte frappe (average 136 ± 57.0 mg). The most favourable ratio of caffeine to total polyphenols (0.56) was found in a serving of Americano coffee; therefore, it seems that this coffee can be considered optimal in terms of the content of both compounds. These findings demonstrate that the polyphenol and caffeine contents of coffees offered in franchise coffee shops are closely related to the serving size.


Subject(s)
Caffeine , Coffee , Polyphenols , Caffeine/analysis , Polyphenols/analysis , Coffee/chemistry , Humans
7.
Biofabrication ; 16(3)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38569494

ABSTRACT

The ever-stricter regulations on animal experiments in the field of cosmetic testing have prompted a surge in skin-related research with a special focus on recapitulation of thein vivoskin structurein vitro. In vitrohuman skin models are seen as an important tool for skin research, which in recent years attracted a lot of attention and effort, with researchers moving from the simplest 2-layered models (dermis with epidermis) to models that incorporate other vital skin structures such as hypodermis, vascular structures, and skin appendages. In this study, we designed a microfluidic device with a reverse flange-shaped anchor that allows culturing of anin vitroskin model in a conventional 6-well plate and assessing its barrier function without transferring the skin model to another device or using additional contraptions. Perfusion of the skin model through vascular-like channels improved the morphogenesis of the epidermis compared with skin models cultured under static conditions. This also allowed us to assess the percutaneous penetration of the tested caffeine permeation and vascular absorption, which is one of the key metrics for systemic drug exposure evaluation.


Subject(s)
Epidermis , Skin , Animals , Skin/metabolism , Epidermis/chemistry , Epidermis/metabolism , Skin Absorption , Caffeine/pharmacology , Caffeine/analysis , Caffeine/metabolism , Perfusion
8.
An Acad Bras Cienc ; 96(1): e20230067, 2024.
Article in English | MEDLINE | ID: mdl-38656055

ABSTRACT

Platinum nanoparticles supported by carbon nanotubes were obtained by a simple chemical route and used for preparation of electrochemical sensor towards caffeine determination. Carbon nanotubes were used before and after an acid treatment, yielding two different materials. Morphological and structural characterization of these materials showed platinum nanoparticles (size around 12 nm) distributed randomly along carbon nanotubes. Modified electrodes were directly prepared through a dispersion of these materials. Voltammetric studies in the presence of caffeine revealed an electrocatalytic effect of platinum oxides, electrochemically produced from the chemical oxidation of the platinum nanoparticles. This behavior was explored in the development a selective method for caffeine determination based on platinum oxide reduction at a lower potential value (+0.45 V vs. Ag/AgCl). Using the best set of experimental conditions, it was shown a linear relationship for the caffeine concentration ranging from 5.0 to 25 µmol L-1 with a sensitivity of 449 nA L µmol-1. Limits of detection and quantification of 0.54 and 1.80 µmol L-1 were calculated, respectively. Recovery values for real samples of caffeine pharmaceutical formulations between 98.6% and 101.0% (n = 3) were obtained using the proposed procedure. Statistical calculations showed good concordance (95% confidence level) between the added and recovery values.


Subject(s)
Caffeine , Electrochemical Techniques , Metal Nanoparticles , Nanotubes, Carbon , Platinum , Nanotubes, Carbon/chemistry , Caffeine/analysis , Caffeine/chemistry , Platinum/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Reproducibility of Results , Oxidation-Reduction
9.
Anal Methods ; 16(17): 2678-2683, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38623781

ABSTRACT

Caffeine is present in a large number of beverages and is an additive used in dietary supplements. Therefore, the concern about its quality and safety for consumers has been increasing and hence requires faster and simpler analytical methods to determine the caffeine amount. The high-throughput analysis is an appropriate solution to pharmaceuticals, bioanalysis, forensic and food laboratory routines. In this sense, Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS), a specific ambient ionization source, is suitable to enable direct analysis of sample solutions in real time and is appropriate to be coupled to liquid chromatography (LC). The development of an on-line solid phase extraction system coupled to V-EASI-MS optimizes the advantages of LC-MS hyphenation by enhancing the figures of merit of the analytical method according to AOAC guidelines and simultaneously minimizing the runtime analysis to 1.5 min per sample, as well as sample preparation steps and solvent consumption, which is currently a challenge for quantitative applications of ambient ionization MS.


Subject(s)
Caffeine , Dietary Supplements , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization , Caffeine/analysis , Solid Phase Extraction/methods , Dietary Supplements/analysis , Spectrometry, Mass, Electrospray Ionization/methods , High-Throughput Screening Assays/methods , Chromatography, Liquid/methods
10.
Food Chem ; 451: 139396, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670027

ABSTRACT

In the coffee industry, the use of natural coffee extracts with differentiated attributes is desirable to drive new product development. This study evaluates the impact of ultrafiltration membrane processing on the sensory, metabolic, and physicochemical attributes of four commercially available coffee extracts: cold brew, lightly roasted, freeze concentrated and evaporated standard. The sensory analysis revealed an increase in acidity in the permeate across all extracts, with the most significant profile changes observed in the lightly roasted evaporated and evaporated extracts, accompanied by an enhancement of fruity and floral attributes. Furthermore, the permeate showed reduced total dissolved solids, while the caffeine concentration increased. Metabolomic analysis highlighted key coffee-related metabolites like cinnamic and coumaric acids, explaining observed variations due to their passage through the membrane. Our findings emphasize the potential of permeate as a coffee-based ingredient for ready-to-drink products development, providing a unique coffee experience with organoleptic profiles distinct from traditional beverages.


Subject(s)
Coffea , Coffee , Plant Extracts , Taste , Ultrafiltration , Plant Extracts/chemistry , Coffee/chemistry , Coffea/chemistry , Humans , Food Handling , Caffeine/analysis , Caffeine/metabolism
11.
Sensors (Basel) ; 24(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38544236

ABSTRACT

Caffeine is the most widely consumed stimulant and is the subject of significant ongoing research and discussions due to its impact on human health. The industry's need to comply with country-specific food and beverage regulations underscores the importance of monitoring caffeine levels in commercial products. In this study, we propose an alternative technique for caffeine analysis that relies on mid-infrared laser-based photothermal spectroscopy (PTS). PTS exploits the high-power output of the quantum cascade laser (QCL) sources to enhance the sensitivity of the mid-IR measurement. The laser-induced thermal gradient in the sample scales with the analytes' absorption coefficient and concentration, thus allowing for both qualitative and quantitative assessment. We evaluated the performance of our experimental PTS spectrometer, incorporating a tunable QCL and a Mach-Zehnder interferometer, for detecting caffeine in coffee, black tea, and an energy drink. We calibrated the setup with caffeine standards (0.1-2.5 mg mL-1) and we benchmarked the setup's capabilities against gas chromatography (GC) and Fourier-transform infrared (FTIR) spectroscopy. Quantitative results aligned with GC analysis, and limits of detection matched the research-grade FTIR spectrometer, indicating an excellent performance of our custom-made instrument. This method offers an alternative to established techniques, providing a platform for fast, sensitive, and non-destructive analysis without consumables as well as with high potential for miniaturization.


Subject(s)
Beverages , Caffeine , Humans , Caffeine/analysis , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared/methods , Beverages/analysis , Lasers, Semiconductor
12.
PLoS One ; 19(3): e0298331, 2024.
Article in English | MEDLINE | ID: mdl-38530838

ABSTRACT

Electrochemical measurements, which exhibit high accuracy and sensitivity under low contamination, controlled electrolyte concentration, and pH conditions, have been used in determining various compounds. The electrochemical quantification capability decreases with an increase in the complexity of the measurement object. Therefore, solvent pretreatment and electrolyte addition are crucial in performing electrochemical measurements of specific compounds directly from beverages owing to the poor measurement quality caused by unspecified noise signals from foreign substances and unstable electrolyte concentrations. To prevent such signal disturbances from affecting quantitative analysis, spectral data of voltage-current values from electrochemical measurements must be used for principal component analysis (PCA). Moreover, this method enables highly accurate quantification even though numerical data alone are challenging to analyze. This study utilized boron-doped diamond (BDD) single-chip electrochemical detection to quantify caffeine content in commercial beverages without dilution. By applying PCA, we integrated electrochemical signals with known caffeine contents and subsequently utilized principal component regression to predict the caffeine content in unknown beverages. Consequently, we addressed existing research problems, such as the high quantification cost and the long measurement time required to obtain results after quantification. The average prediction accuracy was 93.8% compared to the actual content values. Electrochemical measurements are helpful in medical care and indirectly support our lives.


Subject(s)
Caffeine , Coffee , Caffeine/analysis , Boron/chemistry , Electrodes , Machine Learning , Electrolytes
13.
Huan Jing Ke Xue ; 45(3): 1468-1479, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471862

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) are a group of emerging contaminants causing detrimental effects on aquatic living organisms even at low doses. To investigate the contamination characteristics and ecological risks of PPCPs in drains flowing into the Yellow River of Ningxia, 21 PPCPs were detected and analyzed using solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry in this study. All 21 targeted compounds were detected in the drains, with total concentrations ranging from 47.52 to 1 700.96 ng·L-1. Ciprofloxacin, acetaminophen, benzophenone-3, and diethyltoluamide were the more commonly detected compounds, with detection frequencies exceeding 80%. The five highest-concentration PPCPs were acetaminophen, diethyltoluamide, caffeine, benzophenone-3, and levofloxacin, with the maximum concentrations of 597.21, 563.23, 559.00, 477.28, and 473.07 ng·L-1, respectively. Spatial analysis showed that the pollution levels of PPCPs in the drains of the four cities were different, with average concentrations of ∑PPCPs in the order of Yinchuan>Shizuishan>Wuzhong>Zhongwei. The total concentration of PPCPs before flowing into the Yellow River ranged from 124.82 to 1 046.61 ng·L-1. Source analysis showed that livestock and poultry breeding wastewater was the primary source for sulfadiazine and oxytetracycline, whereas medical wastewater was the primary source for levofloxacin and ciprofloxacin. The primary sources of triclocarban and triclosan were domestic sewage and industrial wastewater, whereas the primary source of caffeine and diethyltoluamide was domestic sewage. The pollution of diciofenac, cimetidine, triclocarban, and triclosan in the drains was positively correlated with the regional population and economic development level. The ecological risk assessment indicated that levofloxacin, diclofenac, gemfibrozil, benzophenone-3, and triclocarban posed high risks to aquatic organisms in drains flowing into the Yellow River. It is worthwhile to consider the mixture risk of the PPCPs that exhibited high risk at most sampling sites.


Subject(s)
Benzophenones , Carbanilides , Cosmetics , Triclosan , Water Pollutants, Chemical , Acetaminophen , Aquatic Organisms , Caffeine/analysis , Ciprofloxacin , Cosmetics/analysis , Environmental Monitoring/methods , Levofloxacin/analysis , Pharmaceutical Preparations , Risk Assessment , Rivers/chemistry , Sewage/analysis , Wastewater , Water Pollutants, Chemical/analysis
14.
Environ Sci Pollut Res Int ; 31(19): 28124-28138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38530524

ABSTRACT

The present study aimed to investigate the occurrence of caffeine residues in the Nile River according to drainage of treated wastewater at Assiut, Egypt, and the effects of physicochemical parameters and zinc on its concentration. Four different sites were selected to perform the study: S, wastewater treatment plant (WWTP) canal (source site); J, a junction site between WWTP canal and the Nile; R, a reference site in the Nile before J site; and A, a site located after J site in the Nile. Water and sediment samples were collected in Summer 2022 and Winter 2023. Caffeine and Zn concentrations and physicochemical parameters were measured in the collected samples. The caffeine concentrations in water samples ranged from 5.73 to 53.85 µg L-1 at S in winter and summer, respectively, while those in sediment ranged from 0.14 mg kg-1 at R in winter to 1.54 mg kg-1 at S in summer. Caffeine and Zn concentrations were higher in summer samples. The Water Quality Index (WQI) of the collected samples recorded the lowest values in winter season at S and J sites. The study found that caffeine and zinc concentrations are positively correlated with water temperature and conductivity, while negatively correlated with pH. The association between caffeine and Zn highlights the environmental impact of heavy metals and pharmaceutical residues, and stresses the need for future research on these interactions.


Subject(s)
Caffeine , Environmental Monitoring , Rivers , Wastewater , Water Pollutants, Chemical , Zinc , Caffeine/analysis , Wastewater/chemistry , Zinc/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Egypt , Waste Disposal, Fluid , Seasons
15.
J Hum Lact ; 40(2): 307-313, 2024 05.
Article in English | MEDLINE | ID: mdl-38407091

ABSTRACT

BACKGROUND: Human milk banks have been established to provide human milk to preterm infants who are unable to obtain milk from their mothers. Donor screening methods vary, and prospective donors are commonly screened for drug and recreational substance use through behavioral screening. Although the risk of illegal drug consumption in Japan is extremely low, caffeine may be consumed unknowingly and can be found in human milk. To date, only a few reports have been conducted on the concentration of caffeine in donor milk. RESEARCH AIM: This study aimed to examine the pre-pasteurization levels of caffeine in human milk donated to a milk bank in Japan. METHODS: This was a cross-sectional, observational study of caffeine concentrations in human milk donated to a human milk bank in Japan. Caffeine concentration in the donor milk was measured using high-performance liquid chromatography. RESULTS: Caffeine was detected in 70% of the donor milk samples (N = 350). The median (range) of caffeine concentration was 0.46 [< 0.10, 7.54] mg/L, and 64.0% of the samples had less than 1 mg/L of caffeine. The caffeine concentration varied widely among as well as within individuals. CONCLUSION: The average caffeine concentration in Japanese donor milk samples was higher than that previously reported in samples from Spain, but the range was similar. Donors should be informed that caffeine intake should be within a moderate range, to further increase the safety of donor milk.


Subject(s)
Milk Banks , Milk, Human , Female , Infant , Infant, Newborn , Humans , Milk, Human/chemistry , Caffeine/analysis , Japan , Cross-Sectional Studies , Infant, Premature , Breast Feeding
16.
Article in English | MEDLINE | ID: mdl-38309045

ABSTRACT

A UV-HPLC method optimized by Box-Behnken design model was developed to determine caffeine in pharmaceutical preparations and urine samples. The chromatographic conditions followed were mobile phase: methanol/water/ citrate buffer (pH 4.6) (40:25:35, v/v/v),AcclaimTMDionex C18 column (ODS 100A˚, 5 µm; 4.6 × 250 mm),flow rate (0.9 mL min-1), column temperature (30 °C) and UV-detection wavelength (204 nm). The chromatographic variables: pH (A), % methanol fraction (B), flow rate(C) and column temperature (D) were optimized at 50 µg mL-1caffeine using BBD model. The chromatogram resulted in the asymmetry factor (1.23), theoretical plate 13,786 and retention time (5.79 min). The proposed HPLC method's greenness point was assessed byAnalytical Eco-scale and found to be 78 (as per guidelines, ranked as excellent). The linearity was ranged from2.0 to 70 µg mL-1 with coefficient of correlation (r = 0.999) and detection limit of 0.19 µg mL-1. The proposedmethod was developed successfully and applied for the assay of active caffeine in pharmaceutical preparations and urine samples. The % recovery obtained by both (proposed and reference) methods ranged from 99.98 to 100.05 % followed the compliance (100 ± 2 %) with Canadian Health Protection regulatory guidelines. The performance of the proposed method was compared with published papers and found to be acceptable and superior. The proposed method was quite effective as the reference method, and hence can be used as an alternative method for the assay of active caffeine in pharmaceutical preparations and urine samples.


Subject(s)
Caffeine , Methanol , Caffeine/analysis , Chromatography, High Pressure Liquid/methods , Canada , Pharmaceutical Preparations
17.
Prev Med ; 180: 107889, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325607

ABSTRACT

The consumption of energy drinks poses significant risks to minors' health, and strict regulations are urgently needed to protect them. The high caffeine, high sugar, and high caloric content of energy drinks have drawn concern from health professionals. The consumption of energy drinks has been linked to unhealthy dietary behaviors, obesity, and mental health problems in adolescents. The psychoactive and stimulant effects of energy drinks are particularly worrisome, and the marketing of these drinks on social media platforms is also a cause for alarm. In light of these concerns, we strongly recommend policy measures, such as restrictions on the sale of energy drinks to minors, to prevent their health risks. The evidence clearly suggests that energy drinks pose significant risks to minors' health and well-being, and regulatory standards must be implemented without further delay.


Subject(s)
Energy Drinks , Adolescent , Humans , Energy Drinks/adverse effects , Caffeine/analysis , Europe , Marketing , Commerce
18.
Chemosphere ; 352: 141444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346513

ABSTRACT

This study assessed the occurrence of five antibiotics, three hormones, caffeine, and long and short-chain perfluoroalkyl and polyfluoroalkyl substances (PFASs) in surface water and feedstuff samples obtained from aquaculture cages in Três Marias reservoir in Brazil. This is the first work to evaluate the presence of PFAS in surface water used for aquaculture in Brazil. Solid-phase extraction and low temperature partitioning extraction followed by liquid chromatography coupled to mass spectrometry (LC-MS) were performed to process and analyze surface water samples and feedstuff, respectively. The ecotoxicological risk quotient was calculated for target compounds detected in water. Ciprofloxacin and caffeine were detected in all surface water samples. Pharmaceutical drugs ranged from 0.7 ng L-1 (trimethoprim) to 389.2 ng L -1 (ß-estradiol). Estrone (10.24 ng g-1) and ß-estradiol (66.20 ng g-1) were also found in feedstuff. Four PFASs (PFOA, PFDoA, PFTeDA, and PFBS) were detected (9.40-15.2 µg L-1) at levels higher than reported in studies conducted worldwide. Ecotoxicological risk assessment indicated high risks for caffeine and PFOA, PFDoA, and PFTeDA with RQ values from 10 to 103. These findings reveal risks to biodiversity, ecosystem integrity and human health considering possible intake of these contaminants by fish consumption due to potential bioaccumulation of these substances. Hence, it is critical to conduct more studies in this direction in Brazil and other low and middle-low-income countries.


Subject(s)
Alkanesulfonic Acids , Cichlids , Fluorocarbons , Water Pollutants, Chemical , Humans , Animals , Water/analysis , Brazil , Environmental Monitoring , Anti-Bacterial Agents/analysis , Alkanesulfonic Acids/analysis , Caffeine/analysis , Ecosystem , Estradiol/analysis , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis
19.
PLoS One ; 19(2): e0296526, 2024.
Article in English | MEDLINE | ID: mdl-38324553

ABSTRACT

The study introduces a methodology that utilizes data-driven approaches to optimize coffee drying operations. This is achieved through the integration of ambient sensor data and chemical analysis. This statement underscores the significance of temperature regulation, humidity levels, and light intensity within the context of coffee production. There exists a positive correlation between elevated temperatures and increased rates of drying, but humidity has a role in determining the duration of the drying process and the preservation of aromatic compounds. The significance of light intensity in dry processing is also crucial, since excessive exposure can compromise both the taste and quality of the product. The findings of chemical investigations demonstrate a correlation between environmental factors and the composition of coffee. Specifically, increased temperatures are associated with higher quantities of caffeine, while the concentration of chlorogenic acid is influenced by humidity levels. The research additionally underscores the variations in sensory characteristics among various processing techniques, underscoring the significance of procedure choice in attaining desirable taste profiles. The integration of weather monitoring, chemical analysis, and sensory assessments is a robust approach to augmenting quality control within the coffee sector, thereby facilitating the provision of great coffee products to discerning consumers.


Subject(s)
Coffee , Volatile Organic Compounds , Coffee/chemistry , Caffeine/analysis , Desiccation/methods , Chromatography, Gas , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...