Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.819
Filter
1.
World J Microbiol Biotechnol ; 40(7): 229, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825655

ABSTRACT

Biocementation, driven by ureolytic bacteria and their biochemical activities, has evolved as a powerful technology for soil stabilization, crack repair, and bioremediation. Ureolytic bacteria play a crucial role in calcium carbonate precipitation through their enzymatic activity, hydrolyzing urea to produce carbonate ions and elevate pH, thus creating favorable conditions for the precipitation of calcium carbonate. While extensive research has explored the ability of ureolytic bacteria isolated from natural environments or culture conditions, bacterial synergy is often unexplored or under-reported. In this study, we isolated bacterial strains from the local eutrophic river canal and evaluated their suitability for precipitating calcium carbonate polymorphs. We identified two distinct bacterial isolates with superior urea degradation ability (conductivity method) using partial 16 S rRNA gene sequencing. Molecular identification revealed that they belong to the Comamonas and Bacillus genera. Urea degradation analysis was performed under diverse pH (6,7 and 8) and temperature (15 °C,20 °C,25 °C and 30 °C) ranges, indicating that their ideal pH is 7 and temperature is 30 °C since 95% of the urea was degraded within 96 h. In addition, we investigated these strains individually and in combination, assessing their microbially induced carbonate precipitation (MICP) in silicate fine sand under low (14 ± 0.6 °C) and ideal temperature 30 °C conditions, aiming to optimize bio-mediated soil enhancement. Results indicated that 30 °C was the ideal temperature, and combining bacteria resulted in significant (p ≤ 0.001) superior carbonate precipitation (14-16%) and permeability (> 10- 6 m/s) in comparison to the average range of individual strains. These findings provide valuable insights into the potential of combining ureolytic bacteria for future MICP research on field applications including soil erosion mitigation, soil stabilization, ground improvement, and heavy metal remediation.


Subject(s)
Bacillus , Biodegradation, Environmental , Calcium Carbonate , RNA, Ribosomal, 16S , Sand , Soil Microbiology , Urea , Urea/metabolism , Bacillus/genetics , Bacillus/metabolism , Bacillus/enzymology , Hydrogen-Ion Concentration , RNA, Ribosomal, 16S/genetics , Sand/microbiology , Calcium Carbonate/metabolism , Calcium Carbonate/chemistry , Temperature , Phylogeny , Chemical Precipitation
2.
World J Microbiol Biotechnol ; 40(7): 232, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834810

ABSTRACT

Microbially induced carbonate precipitation (MICP) has been used to cure rare earth slags (RES) containing radionuclides (e.g. Th and U) and heavy metals with favorable results. However, the role of microbial extracellular polymeric substances (EPS) in MICP curing RES remains unclear. In this study, the EPS of Lysinibacillus sphaericus K-1 was extracted for the experiments of adsorption, inducing calcium carbonate (CaCO3) precipitation and curing of RES. The role of EPS in in MICP curing RES and stabilizing radionuclides and heavy metals was analyzed by evaluating the concentration and morphological distribution of radionuclides and heavy metals, and the compressive strength of the cured body. The results indicate that the adsorption efficiencies of EPS for Th (IV), U (VI), Cu2+, Pb2+, Zn2+, and Cd2+ were 44.83%, 45.83%, 53.7%, 61.3%, 42.1%, and 77.85%, respectively. The addition of EPS solution resulted in the formation of nanoscale spherical particles on the microorganism surface, which could act as an accumulating skeleton to facilitate the formation of CaCO3. After adding 20 mL of EPS solution during the curing process (Treat group), the maximum unconfined compressive strength (UCS) of the cured body reached 1.922 MPa, which was 12.13% higher than the CK group. The contents of exchangeable Th (IV) and U (VI) in the cured bodies of the Treat group decreased by 3.35% and 4.93%, respectively, compared with the CK group. Therefore, EPS enhances the effect of MICP curing RES and reduces the potential environmental problems that may be caused by radionuclides and heavy metals during the long-term sequestration of RES.


Subject(s)
Bacillaceae , Calcium Carbonate , Extracellular Polymeric Substance Matrix , Metals, Heavy , Thorium , Uranium , Uranium/chemistry , Uranium/metabolism , Calcium Carbonate/chemistry , Thorium/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Bacillaceae/metabolism , Metals, Rare Earth/chemistry , Adsorption , Chemical Precipitation
3.
Glob Chang Biol ; 30(6): e17345, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831686

ABSTRACT

Observations from the California Current System (CalCS) indicate that the long-term trend in ocean acidification (OA) and the naturally occurring corrosive conditions for the CaCO3 mineral aragonite (saturation state Ω < 1) have a damaging effect on shelled pteropods, a keystone group of calcifying organisms in the CalCS. Concern is heightened by recent findings suggesting that shell formation and developmental progress are already impacted when Ω falls below 1.5. Here, we quantify the impact of low Ω conditions on pteropods using an individual-based model (IBM) with life-stage-specific mortality, growth, and behavior in a high-resolution regional hindcast simulation of the CalCS between 1984 and 2019. Special attention is paid to attributing this impact to different processes that lead to such low Ω conditions, namely natural variability, long-term trend, and extreme events. We find that much of the observed damage in the CalCS, and specifically >70% of the shell CaCO3 loss, is due to the pteropods' exposure to naturally occurring low Ω conditions as a result of their diel vertical migration (DVM). Over the hindcast period, their exposure to damaging waters (Ω < 1.5) increases from 9% to 49%, doubling their shell CaCO3 loss, and increasing their mortality by ~40%. Most of this increased exposure is due to the shoaling of low Ω waters driven by the long-term trend in OA. Extreme OA events amplify this increase by ~40%. Our approach can quantify the health of pteropod populations under shifting environmental conditions, and attribute changes in fitness or population structure to changes in the stressor landscape across hierarchical time scales.


Subject(s)
Calcium Carbonate , Seawater , Calcium Carbonate/analysis , Animals , Seawater/chemistry , California , Animal Shells/chemistry , Hydrogen-Ion Concentration , Water Movements , Gastropoda/physiology , Gastropoda/growth & development , Climate Change
4.
PLoS One ; 19(6): e0305099, 2024.
Article in English | MEDLINE | ID: mdl-38843257

ABSTRACT

This study investigated the effects of different doses of limestone, light durations, light intensities, and vitamins on both the productive performance and egg quality. The study utilized two rearing houses (control and treatment), each accommodating 75000 Lohmann Brown Classic chicks reared in open-sided rearing cages from one day old until they reached 89 weeks of age. Throughout the laying period, the hens were subjected to a specific light regimen (light = 14 h; dark = 10 h a day). At the end of experiment, the treatment group displayed significant (p<0.05) differences compared to the control group across various parameters. Notably, the treatment group exhibited lower daily feed intake (treatment: 112 g/bird vs control: 115 g/bird), 9.6% higher egg production (treatment: 78.5% vs control: 68.9%), lower body weight (treatment: 2057 g vs control: 2073 g), lower feed conversion ratio (FCR)/egg (treatment: 1.44 vs control: 1.69), higher egg weight (treatment: 69.4 g vs control: 68.5 g), greater egg mass (treatment: 56.14 vs control: 48.76), greater shell thickness (treatment: 3.52 mm vs control: 3.44 mm), and greater shell weight (treatment: 9.3 g vs control: 8.79 g). However, the albumin weight, yolk weight, yolk diameter, shape index, and Haugh units (HU) were not significantly (p˃0.05) affected after 75 weeks of treatment when compared with those of the control group. Therefore, this study is the first of its kind to demonstrate that different ratios of limestone, different durations and intensities of light, and different vitamin supplementation doses in the treatment group (subjected to the novel rearing recommendations described in this study) may yield a profit of 180,541 USD, exceeding the baseline profit of the control group (subjected to conventional rearing methods).


Subject(s)
Chickens , Animals , Female , Eggs , Animal Feed/analysis , Animal Husbandry/methods , Calcium Carbonate , Vitamins/administration & dosage , Vitamins/pharmacology , Egg Shell , Light , Body Weight/drug effects
5.
Sci Rep ; 14(1): 10309, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705929

ABSTRACT

Aplacophoran molluscs are shell-less and have a worm-like body which is covered by biomineralized sclerites. We investigated sclerite crystallography and the sclerite mosaic of the Solenogastres species Dorymenia sarsii, Anamenia gorgonophila, and Simrothiella margaritacea with electron-backscattered-diffraction (EBSD), laser-confocal-microscopy and FE-SEM imaging. The soft tissue of the molluscs is covered by spicule-shaped, aragonitic sclerites. These are sub-parallel to the soft body of the organism. We find, for all three species, that individual sclerites are untwinned aragonite single crystals. For individual sclerites, aragonite c-axis is parallel to the morphological, long axis of the sclerite. Aragonite a- and b-axes are perpendicular to sclerite aragonite c-axis. For the scleritomes of the investigated species we find different sclerite and aragonite crystal arrangement patterns. For the A. gorgonophila scleritome, sclerite assembly is disordered such that sclerites with their morphological, long axis (always the aragonite c-axis) are pointing in many different directions, being, more or less, tangential to cuticle surface. For D. sarsii, the sclerite axes (equal to aragonite c-axes) show a stronger tendency to parallel arrangement, while for S. margaritacea, sclerite and aragonite organization is strongly structured into sequential rows of orthogonally alternating sclerite directions. The different arrangements are well reflected in the structured orientational distributions of aragonite a-, b-, c-axes across the EBSD-mapped parts of the scleritomes. We discuss that morphological and crystallographic preferred orientation (texture) is not generated by competitive growth selection (the crystals are not in contact), but is determined by templating on organic matter of the sclerite-secreting epithelial cells and associated papillae.


Subject(s)
Mollusca , Animals , Mollusca/chemistry , Calcium Carbonate/chemistry , Crystallography/methods , Biomineralization , Animal Shells/chemistry , Microscopy, Electron, Scanning
6.
ACS Appl Bio Mater ; 7(5): 2872-2886, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38721671

ABSTRACT

Antimicrobial coatings provide protection against microbes colonization on surfaces. This can prevent the stabilization and proliferation of microorganisms. The ever-increasing levels of microbial resistance to antimicrobials are urging the development of alternative types of compounds that are potent across broad spectra of microorganisms and target different pathways. This will help to slow down the development of resistance and ideally halt it. The development of composite antimicrobial coatings (CACs) that can host and protect various antimicrobial agents and release them on demand is an approach to address this urgent need. In this work, new CACs based on microsized hybrids of calcium carbonate (CaCO3) and silver nanoparticles (AgNPs) were designed using a drop-casting technique. Polyvinylpyrrolidone and mucin were used as additives. The CaCO3/AgNPs hybrids contributed to endowing colloidal stability to the AgNPs and controlling their release, thereby ensuring the antibacterial activity of the coatings. Moreover, the additives PVP and mucin served as a matrix to (i) control the distribution of the hybrids, (ii) ensure mechanical integrity, and (iii) prevent the undesired release of AgNPs. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques were used to characterize the 15 µm thick CAC. The antibacterial activity was determined against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa, three bacteria responsible for many healthcare infections. Antibacterial performance of the hybrids was demonstrated at concentrations between 15 and 30 µg/cm2. Unloaded CaCO3 also presented bactericidal properties against MRSA. In vitro cytotoxicity tests demonstrated that the hybrids at bactericidal concentrations did not affect human dermal fibroblasts and human mesenchymal stem cell viability. In conclusion, this work presents a simple approach for the design and testing of advanced multicomponent and functional antimicrobial coatings that can protect active agents and release them on demand.


Subject(s)
Anti-Bacterial Agents , Calcium Carbonate , Materials Testing , Metal Nanoparticles , Microbial Sensitivity Tests , Particle Size , Silver , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Metal Nanoparticles/chemistry , Humans , Cell Survival/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Surface Properties , Staphylococcus aureus/drug effects
7.
Chemosphere ; 358: 142226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704039

ABSTRACT

Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.


Subject(s)
Egg Shell , Flame Retardants , Phytic Acid , Egg Shell/chemistry , Phytic Acid/chemistry , Animals , Fires , Cellulose/chemistry , Calcium Carbonate/chemistry , Chickens
8.
Sci Total Environ ; 931: 172970, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705293

ABSTRACT

Rivers in agricultural countries widely suffer from diffuse nitrate (NO3-) pollution. Although pollution sources and fates of riverine NO3- have been reported worldwide, the driving mechanisms of riverine NO3- pollution associated with mineral dissolution in piedmont zones remain unclear. This study combined hydrogeochemical compositions, stable isotopes (δ18O-NO3-, δ15N-NO3-, δ18O-H2O, and δ2H-H2O), and molecular bioinformation to determine the pollution sources, biogeochemical evolution, and natural attenuation of riverine NO3- in a typical piedmont zone (Qingshui River). High NO3- concentration (37.5 ± 9.44 mg/L) was mainly observed in the agricultural reaches of the river, with ~15.38 % of the samples exceeding the acceptable limit for drinking purpose (44 mg/L as NO3-) set by the World Health Organization. Ammonium inputs, microbial nitrification, and HNO3-induced calcite dissolution were the dominant driving factors that control riverine NO3- contamination in the piedmont zone. Approximately 99.4 % of riverine NO3- contents were derived from NH4+-containing pollutants, consisted of manure & domestic sewage (74.0 % ± 13.0 %), NH4+-synthetic fertilizer (16.1 % ± 8.99 %), and soil organic nitrogen (9.35 % ± 4.49 %). These NH4+-containing pollutants were converted to HNO3 (37.2 ± 9.38 mg/L) by nitrifying bacteria, and then the produced HNO3 preferentially participated in the carbonate (mainly calcite) dissolution, which accounted for 40.0 % ± 12.1 % of the total riverine Ca2+ + Mg2+, also resulting in the rapid release of NO3- into the river water. Thus, microbial nitrification could be a new and non-negligible contributor of riverine NO3- pollution, whereas the involvement of HNO3 in calcite dissolution acted as an accelerator of riverine NO3- pollution. However, denitrification had lesser contribution to natural attenuation for high NO3- pollution. The obtained results indicated that the mitigation of riverine NO3- pollution should focus on the management of ammonium discharges, and the HNO3-induced carbonate dissolution needs to be considered in comprehensively understanding riverine NO3- pollution in piedmont zones.


Subject(s)
Ammonium Compounds , Calcium Carbonate , Environmental Monitoring , Nitrates , Nitrification , Rivers , Water Pollutants, Chemical , China , Rivers/chemistry , Nitrates/analysis , Water Pollutants, Chemical/analysis , Calcium Carbonate/chemistry
9.
Chemosphere ; 358: 142212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714251

ABSTRACT

The process of removing Ca2+ and Mg2+ ions typically results in the co-precipitation of Ca2+ and Mg2+ along with other salt waste. To improve water treatment efficiency towards a zero-waste goal, it is crucial to separate Ca2+ and Mg2+, and recover them in their purified form. This study proposes a two-step electrochemical approach that separately recovers Ca2+ as CaCO3 and Mg2+ as Mg(OH)2. The first step uses an undivided cell with 3D electrodes and controlled flow directions to selectively precipitate CaCO3 on the electrode, keeping the cell removal efficiency. The second step employs a two-compartment cell with a cationic exchange membrane to recover Mg(OH)2. This approach was evaluated on RO reject water with high Ca2+ to Mg2+ ratio and industrial effluent-polluted groundwater with a low ratio. Treatment of domestic RO reject water using undivided cell specifically recovered 64% of CaCO3, although the low conductivity of the RO reject water limited further Mg2+ recovery. Conversely, treating industrial effluent-polluted groundwater with this two-step process successfully recovered 80% of CaCO3 and 94% of Mg(OH)2. SEM, EDAX, and XRD analysis confirmed the quality of the recovered products.


Subject(s)
Calcium Carbonate , Electrochemical Techniques , Groundwater , Magnesium Hydroxide , Water Pollutants, Chemical , Water Purification , Calcium Carbonate/chemistry , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Electrochemical Techniques/methods , Magnesium Hydroxide/chemistry , Magnesium/chemistry , Waste Disposal, Fluid/methods
10.
J Environ Manage ; 359: 121048, 2024 May.
Article in English | MEDLINE | ID: mdl-38723498

ABSTRACT

The microbially induced calcium carbonate precipitation (MICP) technology is an emerging novel and sustainable technique for soil stabilization and remediation. MICP, a microorganism-mediated biomineralization process, has attracted interest for its potential to enhance soil characteristics. The inclusion of biochar, a carbon-rich substance formed by biomass pyrolysis, adds another degree of intricacy to this process. The study highlights the impact of the combination of biochar and MICP together, using a bacterium, Sporosarcina ureae, on soil improvement. This blend of MICP and biochar improved the soil in terms of its geotechnical properties and also enabled the sequestering of carbon safely. It was observed that addition of 4% biochar significantly increased the soil's shear strength parameters (c and φ) as well as its stiffness after 21 treatment cycles. This improvement was because the calcium carbonate precipitate, which acts as a crucial binding agent, increased significantly due to microbial action in the soil-biochar mixture compared to the pure soil sample. The excess carbonate precipitation on account of biochar addition was verified through SEM-EDAX analysis where the images showed noteworthy carbonate precipitation on the surface of particles and increment in the calcium mass at the same treatment cycles when compared with untreated sand. The collaboration between MICP and biochar effectively increased the carbon sequestration within the sand sample. It was observed that at 21 cycles of treatment, the carbon storage within the sand sample increased by almost 3 times at 4% biochar compared to sand without any biochar. The statistical analysis further affirmed that strength depends on both biochar and the number of treatment cycles, whereas carbon sequestration potential is primarily influenced by the biochar content alone. This strategy, as a sustainable and environmentally friendly approach, has the potential to reform soil improvement practices and contribute to both soil strength enhancement and climate change mitigation, supporting the maintenance of ecological balance.


Subject(s)
Calcium Carbonate , Charcoal , Soil , Sporosarcina , Calcium Carbonate/chemistry , Charcoal/chemistry , Soil/chemistry , Sand/chemistry
11.
Biomater Adv ; 161: 213904, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805763

ABSTRACT

Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.


Subject(s)
Calcium Carbonate , Lab-On-A-Chip Devices , Nanoparticles , Calcium Carbonate/chemistry , Nanoparticles/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Humans , Microfluidics/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Drug Carriers/chemistry , Particle Size , DNA/chemistry , DNA/administration & dosage
12.
J Mech Behav Biomed Mater ; 155: 106570, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762971

ABSTRACT

Living organisms form complex mineralized composite architectures that perform a variety of essential functions. These materials are commonly utilized for load-bearing purposes such as structural stability and mechanical strength in combination with high toughness and deformability, which are well demonstrated in various highly mineralized molluscan shell ultrastructures. Here, the mineral components provide the general stiffness to the composites, and the organic interfaces play a key role in providing these biogenic architectures with mechanical superiority. Although numerous studies employed state-of-the-art methods to measure and/or model and/or simulate the mechanical behavior of molluscan shells, our understanding of their performance is limited. This is partially due to the lack of the most fundamental knowledge of their mechanical characteristics, particularly, the anisotropic elastic properties of the mineral components and of the tissues they form. In fact, elastic constants of biogenic calcium carbonate, one of the most common biominerals in nature, is unknown for any organism. In this work, we employ the ultrasonic pulse-echo method to report the elasticity tensor of two common ultrastructural motifs in molluscan shells: the prismatic and the nacreous architectures made of biogenic calcite and aragonite, respectively. The outcome of this research not only provides information necessary for fundamental understanding of biological materials formation and performance, but also yields textbook knowledge on biogenic calcium carbonate required for future structural/crystallographic, theoretical and computational studies.


Subject(s)
Animal Shells , Calcium Carbonate , Elasticity , Calcium Carbonate/chemistry , Animal Shells/chemistry , Animal Shells/metabolism , Animals , Materials Testing , Mollusca/chemistry , Biomechanical Phenomena , Nacre/chemistry
13.
PLoS One ; 19(5): e0302646, 2024.
Article in English | MEDLINE | ID: mdl-38709766

ABSTRACT

The analysis of the DNA entrapped in ancient shells of molluscs has the potential to shed light on the evolution and ecology of this very diverse phylum. Ancient genomics could help reconstruct the responses of molluscs to past climate change, pollution, and human subsistence practices at unprecedented temporal resolutions. Applications are however still in their infancy, partly due to our limited knowledge of DNA preservation in calcium carbonate shells and the need for optimized methods for responsible genomic data generation. To improve ancient shell genomic analyses, we applied high-throughput DNA sequencing to 27 Mytilus mussel shells dated to ~111-6500 years Before Present, and investigated the impact, on DNA recovery, of shell imaging, DNA extraction protocols and shell sub-sampling strategies. First, we detected no quantitative or qualitative deleterious effect of micro-computed tomography for recording shell 3D morphological information prior to sub-sampling. Then, we showed that double-digestion and bleach treatment of shell powder prior to silica-based DNA extraction improves shell DNA recovery, also suggesting that DNA is protected in preservation niches within ancient shells. Finally, all layers that compose Mytilus shells, i.e., the nacreous (aragonite) and prismatic (calcite) carbonate layers, with or without the outer organic layer (periostracum) proved to be valuable DNA reservoirs, with aragonite appearing as the best substrate for genomic analyses. Our work contributes to the understanding of long-term molecular preservation in biominerals and we anticipate that resulting recommendations will be helpful for future efficient and responsible genomic analyses of ancient mollusc shells.


Subject(s)
Animal Shells , Genomics , Mollusca , Animals , Genomics/methods , Mollusca/genetics , X-Ray Microtomography , Calcium Carbonate , High-Throughput Nucleotide Sequencing , Fossils
14.
An Acad Bras Cienc ; 96(1): e20231088, 2024.
Article in English | MEDLINE | ID: mdl-38597494

ABSTRACT

The thorough redox alteration of a lava flow is an undescribed feature in intraplate basaltic provinces. The Early Cretaceous (134.5 Ma) Paraná Province displays that alteration in the major Muralha Flow. This oxidized and reduced flow from the southern part of the province was studied with satellite images, field surveying, petrography, and published whole rock geochemistry. The 100 x 100 km flow from the Cuesta de Haedo presents two hydrothermal tiers - lower Tier 1 is gray to white, upper Tier 2 is red. Iron oxyhydroxides characterize Tier 2. Tier 1 contains clay minerals, zeolites, pyrite and calcite, and agate (possibly amethyst) geodes. In a first event, the upper Tier 2 was oxidized by hot water from the underlying Guarani Paleoaquifer. The high water/rock ratio decreased due to porosity clogging by precipitation of secondary minerals, and the fluid became reducing. Lowering of Eh and pH was caused by reaction of water with reducing particles (calcite, organic molecules) present in the paleoerg sandstones and with fresh rock surfaces. A lower Tier 1 was then formed during slow, hot water percolation. Reduction was interrupted below 30 °C (calcite formation). Large scale, similar alteration occurred in all studied oceanic ridges and only rarely in continental environments.


Subject(s)
Calcium Carbonate , Minerals , Water/chemistry , Oxidation-Reduction , Brazil
15.
Geobiology ; 22(2): e12596, 2024.
Article in English | MEDLINE | ID: mdl-38591761

ABSTRACT

The formation of intracellular amorphous calcium carbonate (ACC) by various cyanobacteria is a widespread biomineralization process, yet its mechanism and importance in past and modern environments remain to be fully comprehended. This study explores whether calcium (Ca) isotope fractionation, linked to ACC-forming cyanobacteria, can serve as a reliable tracer for detecting these microorganisms in modern and ancient settings. Accordingly, we measured stable Ca isotope fractionation during Ca uptake by the intracellular ACC-forming cyanobacterium Cyanothece sp. PCC 7425. Our results show that Cyanothece sp. PCC 7425 cells are enriched in lighter Ca isotopes relative to the solution. This finding is consistent with the kinetic isotope effects observed in the Ca isotope fractionation during biogenic carbonate formation by marine calcifying organisms. The Ca isotope composition of Cyanothece sp. PCC 7425 was accurately modeled using a Rayleigh fractionation model, resulting in a Ca isotope fractionation factor (Δ44Ca) equal to -0.72 ± 0.05‰. Numerical modeling suggests that Ca uptake by these cyanobacteria is primarily unidirectional, with minimal back reaction observed over the duration of the experiment. Finally, we compared our Δ44Ca values with those of other biotic and abiotic carbonates, revealing similarities with organisms that form biogenic calcite. These similarities raise questions about the effectiveness of using the Ca isotope fractionation factor as a univocal tracer of ACC-forming cyanobacteria in the environment. We propose that the use of Δ44Ca in combination with other proposed tracers of ACC-forming cyanobacteria such as Ba and Sr isotope fractionation factors and/or elevated Ba/Ca and Sr/Ca ratios may provide a more reliable approach.


Subject(s)
Cyanobacteria , Cyanothece , Calcium Carbonate , Carbonates , Calcium Isotopes , Isotopes/analysis , Aquatic Organisms , Calcium
16.
Biotechnol J ; 19(4): e2300466, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581094

ABSTRACT

The bacterium Sporosarcina pasteurii is the most commonly used microorganism for Microbial Induced Calcite Precipitation (MICP) due to its high urease activity. To date, no proper fed-batch cultivation protocol for S. pasteurii has been published, even though this cultivation method has a high potential for reducing costs of producing microbial ureolytic biomass. This study focusses on fed-batch cultivation of S. pasteurii DSM33. The study distinguishes between limited fed-batch cultivation and extended batch cultivation. Simply feeding glucose to a S. pasteurii culture does not seem beneficial. However, it was exploited that S. pasteurii is auxotrophic for two vitamins and amino acids. Limited fed-batch cultivation was accomplished by feeding the necessary vitamins or amino acids to a culture lacking them. Feeding nicotinic acid to a nicotinic acid deprived culture resulted in a 24% increase of the specific urease activity compared to a fed culture without nicotinic acid limitation. Also, extended batch cultivation was explored. Feeding a mixture of glucose and yeast extract results in OD600 of ≈70 at the end of cultivation, which is the highest value published in literature so far. These results have the potential to make MICP applications economically viable.


Subject(s)
Calcium Carbonate , Nicotinic Acids , Sporosarcina , Calcium Carbonate/chemistry , Urease/metabolism , Biomass , Urea/chemistry , Urea/metabolism , Vitamins , Amino Acids , Glucose
17.
J Colloid Interface Sci ; 666: 244-258, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38598997

ABSTRACT

Starvation therapy has shown promise as a cancer treatment, but its efficacy is often limited when used alone. In this work, a multifunctional nanoscale cascade enzyme system, named CaCO3@MnO2-NH2@GOx@PVP (CMGP), was fabricated for enhanced starvation/chemodynamic combination cancer therapy. CMGP is composed of CaCO3 nanoparticles wrapped in a MnO2 shell, with glucose oxidase (GOx) adsorbed and modified with polyvinylpyrrolidone (PVP). MnO2 decomposes H2O2 in cancer cells into O2, which enhances the efficiency of GOx-mediated starvation therapy. CaCO3 can be decomposed in the acidic cancer cell environment, causing Ca2+ overload in cancer cells and inhibiting mitochondrial metabolism. This synergizes with GOx to achieve more efficient starvation therapy. Additionally, the H2O2 and gluconic acid produced during glucose consumption by GOx are utilized by MnO2 with catalase-like activity to enhance O2 production and Mn2+ release. This process accelerates glucose consumption, reactive oxygen species (ROS) generation, and CaCO3 decomposition, promoting the Ca2+ release. CMGP can alleviate tumor hypoxia by cycling the enzymatic cascade reaction, which increases enzyme activity and combines with Ca2+ overload to achieve enhanced combined starvation/chemodynamic therapy. In vitro and in vivo studies demonstrate that CMGP has effective anticancer abilities and good biosafety. It represents a new strategy with great potential for combined cancer therapy.


Subject(s)
Calcium Carbonate , Glucose Oxidase , Manganese Compounds , Oxides , Glucose Oxidase/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/pharmacology , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxides/chemistry , Oxides/pharmacology , Humans , Animals , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Calcium Carbonate/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Povidone/chemistry , Povidone/pharmacology , Tumor Hypoxia/drug effects , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Particle Size , Cell Line, Tumor , Hydrogen Peroxide/metabolism , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Surface Properties , Mice, Inbred BALB C
18.
Life Sci Space Res (Amst) ; 41: 146-157, 2024 May.
Article in English | MEDLINE | ID: mdl-38670641

ABSTRACT

Astronauts are exposed to severely stressful physiological conditions due to microgravity and increased space radiation. Space environment affects every organ and cell in the body and the significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia). Amorphous Calcium Carbonate (ACC) emerges as a promising candidate for prevention of these effects, owing to its unique physicochemical properties and its potential to address the intricately linked nature of bone-muscle crosstalk. Reported here are two studies carried out on the International Space Station (ISS). The first, performed in 2018 as a part of the Ramon-Spacelab project, was a preliminary experiment, in which stromal murine cells were differentiated into osteoblasts when ACC was added to the culture medium. A parallel experiment was done on Earth as a control. The second study was part of Axiom-1's Rakia project mission launched to the ISS on 2022 utilizing organ-on-a-chip methodology with a specially designed autonomous module. In this experiment, human bone-marrow derived mesenchymal stem cells (hBM-MSCs) and human primary muscle cells were cultured in the presence or absence of ACC, in duplicates. The results showed that ACC enhanced differentiation of human primary skeletal muscle cells into myotubes. Similarly, hBM-MSCs were differentiated significantly better into osteocytes in the presence of ACC leading to increased calcium deposits. The results, combined with previous data, support the use of ACC as an advantageous supplement for preventing muscle and bone deterioration in outer space conditions, facilitating extended extraterrestrial voyages and colonization.


Subject(s)
Calcium Carbonate , Cell Differentiation , Mesenchymal Stem Cells , Muscle Fibers, Skeletal , Osteogenesis , Weightlessness , Humans , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Osteogenesis/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Calcium Carbonate/chemistry , Cells, Cultured , Space Flight , Mice
19.
Birth Defects Res ; 116(4): e2336, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38624050

ABSTRACT

BACKGROUND: According to reports, prenatal exposure to valproic acid can induce autism spectrum disorder (ASD)-like symptoms in both humans and rodents. However, the exact cause and therapeutic method of ASD is not fully understood. Agmatine (AGM) is known for its neuroprotective effects, and this study aims to explore whether giving agmatine hydrochloride before birth can prevent autism-like behaviors in mouse offspring exposed prenatally to valproic acid. METHODS: In this study, we investigated the effects of AGM prenatally on valproate (VPA)-exposed mice. We established a mouse model of ASD by prenatally administering VPA. From birth to weaning, we evaluated mouse behavior using the marble burying test, open-field test, and three-chamber social interaction test on male offspring. RESULTS: The results showed prenatal use of AGM relieved anxiety and hyperactivity behaviors as well as ameliorated sociability of VPA-exposed mice in the marble burying test, open-field test, and three-chamber social interaction test, and this protective effect might be attributed to the activation of the ERK/CREB/BDNF signaling pathway. CONCLUSION: Therefore, AGM can effectively reduce the likelihood of offspring developing autism to a certain extent when exposed to VPA during pregnancy, serving as a potential therapeutic drug.


Subject(s)
Agmatine , Autism Spectrum Disorder , Animals , Female , Male , Mice , Pregnancy , Agmatine/pharmacology , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/prevention & control , Brain-Derived Neurotrophic Factor , Calcium Carbonate , Rodentia , Signal Transduction , Social Behavior , Valproic Acid/adverse effects
20.
Behav Neurol ; 2024: 4504858, 2024.
Article in English | MEDLINE | ID: mdl-38566972

ABSTRACT

Obsessive-compulsive disorder (OCD) is a disabling disease characterized by distressing obsessions and repetitive compulsions. The etiology of OCD is poorly known, and mouse modeling allows to clarify the genetic and neurochemical basis of this disorder and to investigate potential treatments. This study evaluates the impact of the 5-HT1B agonist RU24969 on the induction of OCD-like behaviours in female BALB/c mice (n = 30), distributed across five groups receiving varying doses of RU24969. Behavioural assessments, including marble test, tail suspension test, sucrose preference test, forced swim test, and nestlet shredding test, were conducted. Gene expression and protein quantitation of Gabra1 and serotonin transporter in mouse brain were also performed. Marble-burying behaviour increased significantly at high doses of RU24969 (15-20 mg/kg). The forced swimming test consistently showed elevated values at the same high concentrations, compared to the control. Altered reward-seeking behaviour was indicated by the sucrose preference test, notably at 15 and 20 mg/kg doses of RU24969. Nestlet shredding results did not show statistical significance among the tested animal groups. Gene expression analysis revealed reduced Gabra1 expression with increasing doses of RU, while serotonin transporter was not related to varying doses of RU24969. Western blotting corroborated these trends. The results underscore complex interactions between the serotonin system, GABAergic signaling, and OCD-relevant behaviours and suggest the use of intraperitoneal injection of 15 mg/kg of RU24969 to induce OCD-like behaviour in BALB/c mouse models.


Subject(s)
Obsessive-Compulsive Disorder , Female , Mice , Animals , Mice, Inbred BALB C , Obsessive-Compulsive Disorder/genetics , Serotonin 5-HT1 Receptor Agonists/pharmacology , Calcium Carbonate , Sucrose
SELECTION OF CITATIONS
SEARCH DETAIL
...