Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 373
Filter
1.
Exp Physiol ; 109(5): 779-790, 2024 May.
Article in English | MEDLINE | ID: mdl-38445814

ABSTRACT

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Subject(s)
Calcium Channel Blockers , Calcium Channels, T-Type , Endothelium, Vascular , Nifedipine , Nitrophenols , Humans , Male , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/drug effects , Aged , Calcium Channel Blockers/pharmacology , Nifedipine/pharmacology , Pilot Projects , Double-Blind Method , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Dihydropyridines/pharmacology , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/pharmacology , Blood Pressure/drug effects , Blood Pressure/physiology , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Organophosphorus Compounds/pharmacology , Acetylcholine/pharmacology , Leg/blood supply , Nitroprusside/pharmacology , Middle Aged
2.
J Biol Chem ; 299(9): 105066, 2023 09.
Article in English | MEDLINE | ID: mdl-37468103

ABSTRACT

Among the rare venomous mammals, the short-tailed shrew Blarina brevicauda has been suggested to produce potent neurotoxins in its saliva to effectively capture prey. Several kallikrein-like lethal proteases have been identified, but the active substances of B. brevicauda remained unclear. Here, we report Blarina paralytic peptides (BPPs) 1 and 2 isolated from its submaxillary glands. Synthetic BPP2 showed mealworm paralysis and a hyperpolarization shift (-11 mV) of a human T-type Ca2+ channel (hCav3.2) activation. The amino acid sequences of BPPs were similar to those of synenkephalins, which are precursors of brain opioid peptide hormones that are highly conserved among mammals. However, BPPs rather resembled centipede neurotoxic peptides SLPTXs in terms of disulfide bond connectivity and stereostructure. Our results suggested that the neurotoxin BPPs were the result of convergent evolution as homologs of nontoxic endogenous peptides that are widely conserved in mammals. This finding is of great interest from the viewpoint of the chemical evolution of vertebrate venoms.


Subject(s)
Calcium Channels, T-Type , Neurotoxins , Peptides , Shrews , Animals , Humans , Amino Acid Sequence , Neurotoxins/chemistry , Neurotoxins/genetics , Neurotoxins/pharmacology , Peptides/chemical synthesis , Peptides/genetics , Peptides/isolation & purification , Peptides/pharmacology , Calcium Channels, T-Type/drug effects , Evolution, Molecular , Shrews/classification , Shrews/genetics , Shrews/metabolism , Tenebrio/drug effects , HEK293 Cells , Electrophysiology
3.
Mov Disord ; 37(6): 1193-1201, 2022 06.
Article in English | MEDLINE | ID: mdl-35257414

ABSTRACT

BACKGROUND: Essential tremor is the most common movement disorder with clear unmet need. Mounting evidence indicates tremor is caused by increased neuronal burst firing and oscillations in cerebello-thalamo-cortical circuitry and may be dependent on T-type calcium channel activity. T-type calcium channels regulate sigma band electroencephalogram (EEG) power during non-rapid eye movement sleep, representing a potential biomarker of channel activity. PRAX-944 is a novel T-type calcium channel blocker in development for essential tremor. OBJECTIVES: Using a rat tremor model and sigma-band EEG power, we assessed pharmacodynamically-active doses of PRAX-944 and their translation into clinically tolerated doses in healthy participants, informing dose selection for future efficacy trials. METHODS: Harmaline-induced tremor and spontaneous locomotor activity were used to assess PRAX-944 efficacy and tolerability, respectively, in rats. Sigma-power was used as a translational biomarker of T-type calcium channel blockade in rats and, subsequently, in a phase 1 trial assessing pharmacologic activity and tolerability in healthy participants. RESULTS: In rats, PRAX-944 dose-dependently reduced tremor by 50% and 72% at 1 and 3 mg/kg doses, respectively, without locomotor side effects. These doses also reduced sigma-power by ~30% to 50% in rats. In healthy participants, sigma-power was similarly reduced by 34% to 50% at 10 to 100 mg, with no further reduction at 120 mg. All doses were well tolerated. CONCLUSIONS: In rats, PRAX-944 reduced sigma-power at concentrations that reduced tremor without locomotor side effects. In healthy participants, comparable reductions in sigma-power indicate that robust T-type calcium channel blockade was achieved at well-tolerated doses that may hold promise for reducing tremor in patients with essential tremor. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Calcium Channel Blockers , Calcium Channels, T-Type , Essential Tremor , Animals , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channels, T-Type/drug effects , Drug Development , Essential Tremor/drug therapy , Rats
4.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35216466

ABSTRACT

General anesthetics mainly act by modulating synaptic inhibition on the one hand (the potentiation of GABA transmission) or synaptic excitation on the other (the inhibition of NMDA receptors), but they can also have effects on numerous other proteins, receptors, and channels. The effects of general anesthetics on ion channels have been the subject of research since the publication of reports of direct actions of these drugs on ion channel proteins. In particular, there is considerable interest in T-type voltage-gated calcium channels that are abundantly expressed in the thalamus, where they control patterns of cellular excitability and thalamocortical oscillations during awake and sleep states. Here, we summarized and discussed our recent studies focused on the CaV3.1 isoform of T-channels in the nonspecific thalamus (intralaminar and midline nuclei), which acts as a key hub through which natural sleep and general anesthesia are initiated. We used mouse genetics and in vivo and ex vivo electrophysiology to study the role of thalamic T-channels in hypnosis induced by a standard general anesthetic, isoflurane, as well as novel neuroactive steroids. From the results of this study, we conclude that CaV3.1 channels contribute to thalamocortical oscillations during anesthetic-induced hypnosis, particularly the slow-frequency range of δ oscillations (0.5-4 Hz), by generating "window current" that contributes to the resting membrane potential. We posit that the role of the thalamic CaV3.1 isoform of T-channels in the effects of various classes of general anesthetics warrants consideration.


Subject(s)
Anesthetics, General/pharmacology , Calcium Channels, T-Type/drug effects , Hypnotics and Sedatives/pharmacology , Neurons/metabolism , Animals , Humans , Membrane Potentials , Mice , Neurons/drug effects , Neurons/physiology
5.
Am J Physiol Renal Physiol ; 321(4): F548-F557, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34486399

ABSTRACT

Chronic kidney disease (CKD) is characterized by the progressive functional loss of nephrons and hypertension (HTN). Some antihypertensive regimens attenuate the progression of CKD (blockers of the renin-angiotensin system). Although studies have suggested that calcium channel blocker (CCB) therapy mitigates the decline in renal function in humans with essential HTN, there are few long-term clinical studies that have determined the impact of CCBs in patients with hypertensive CKD. Dihydropyridine (DHP) or L-type CCBs preferentially vasodilate the afferent arteriole and have been associated with glomerular HTN and increases in proteinuria in animal models with low renal function. Small clinical studies in vulnerable populations with renal disease such as African Americans, children, and diabetics have also suggested that DHP CCBs exacerbate glomerular injury, which questions the renoprotective effect of this class of antihypertensive drug. We used an established integrative mathematical model of human physiology, HumMod, to test the hypothesis that DHP CCB therapy exacerbates pressure-induced glomerular injury in hypertensive CKD. Over a simulation of 3 yr, CCB therapy reduced mean blood pressure by 14-16 mmHg in HTN both with and without CKD. Both impaired tubuloglomerular feedback and low baseline renal function exacerbated glomerular pressure, glomerulosclerosis, and the decline in renal function during L-type CCB treatment. However, simulating CCB therapy that inhibited both L- and T-type calcium channels increased efferent arteriolar vasodilation and alleviated glomerular damage. These simulations support the evidence that DHP (L-type) CCBs potentiate glomerular HTN during CKD and suggest that T/L-type CCBs are valuable in proteinuric renal disease treatment.NEW & NOTEWORTHY Our physiological model replicates clinical trial results and provides unique insights into possible mechanisms that play a role in glomerular injury and hypertensive kidney disease progression during chronic CCB therapy. Specifically, these simulations predict the temporal changes in renal function with CCB treatment and demonstrate important roles for tubuloglomerular feedback and efferent arteriolar conductance in the control of chronic kidney disease progression.


Subject(s)
Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Calcium Channel Blockers/therapeutic use , Calcium Channels, L-Type/drug effects , Calcium Channels, T-Type/drug effects , Hypertension/drug therapy , Kidney Glomerulus/blood supply , Models, Biological , Renal Insufficiency, Chronic/drug therapy , Vasodilator Agents/therapeutic use , Antihypertensive Agents/adverse effects , Calcium Channel Blockers/adverse effects , Calcium Channels, L-Type/metabolism , Calcium Channels, T-Type/metabolism , Computer Simulation , Humans , Hypertension/diagnosis , Hypertension/metabolism , Hypertension/physiopathology , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology , Time Factors , Treatment Outcome , Vasodilator Agents/adverse effects
6.
Neuropharmacology ; 197: 108739, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34339750

ABSTRACT

BACKGROUND: Many neuroactive steroids induce sedation/hypnosis by potentiating γ-aminobutyric acid (GABAA) currents. However, we previously demonstrated that an endogenous neuroactive steroid epipregnanolone [(3ß,5ß)-3-hydroxypregnan-20-one] (EpiP) exerts potent peripheral analgesia and blocks T-type calcium currents while sparing GABAA currents in rat sensory neurons. This study seeks to investigate the behavioral effects elicited by systemic administration of EpiP and to characterize its use as an adjuvant agent to commonly used general anesthetics (GAs). METHODS: Here, we utilized electroencephalographic (EEG) recordings to characterize thalamocortical oscillations, as well as behavioral assessment and mouse genetics with wild-type (WT) and different knockout (KO) models of T-channel isoforms to investigate potential sedative/hypnotic and immobilizing properties of EpiP. RESULTS: Consistent with increased oscillations in slower EEG frequencies, EpiP induced an hypnotic state in WT mice when injected alone intra-peritoneally (i.p.) and effectively facilitated anesthetic effects of isoflurane (ISO) and sevoflurane (SEVO). The CaV3.1 (Cacna1g) KO mice demonstrated decreased sensitivity to EpiP-induced hypnosis when compared to WT mice, whereas no significant difference was noted between CaV3.2 (Cacna1h), CaV3.3 (Cacna1i) and WT mice. Finally, when compared to WT mice, onset of EpiP-induced hypnosis was delayed in CaV3.2 KO mice but not in CaV3.1 and CaV3.3 KO mice. CONCLUSION: We posit that EpiP may have an important role as novel hypnotic and/or adjuvant to volatile anesthetic agents. We speculate that distinct hypnotic effects of EpiP across all three T-channel isoforms is due to their differential expression in thalamocortical circuitry.


Subject(s)
Calcium Channels, T-Type/drug effects , Hypnotics and Sedatives/pharmacology , Pregnanolone/pharmacology , Adjuvants, Anesthesia/pharmacology , Anesthetics, Inhalation/pharmacology , Animals , Behavior, Animal/drug effects , Calcium Channels, T-Type/genetics , Electroencephalography/drug effects , Isoflurane/pharmacology , Isomerism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sevoflurane/pharmacology
7.
Neuropeptides ; 90: 102185, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34419803

ABSTRACT

It has been shown that systemic and local administration of ultra-low dose morphine induced a hyperalgesic response via mu-opioid receptors. However, its exact mechanism(s) has not fully been clarified. It is documented that mu-opioid receptors functionally couple to T-type voltage dependent Ca+2 channels. Here, we investigated the role of T-type calcium channels, amiloride and mibefradil, on the induction of low-dose morphine hyperalgesia in male Wistar rats. The data showed that morphine (0.01 µg i.t. and 1 µg/kg i.p.) could elicit hyperalgesia as assessed by the tail-flick test. Administration of amiloride (5 and 10 µg i.t.) and mibefradil (2.5 and 5 µg i.t.) completely blocked low-dose morphine-induced hyperalgesia in spinal dorsal horn. Amiloride at doses of 1 and 5 mg/kg (i.p.) and mibefradil (9 mg/kg ip) 10 min before morphine (1 µg/kg i.p.) inhibited morphine-induced hyperalgesia. Our results indicate a role for T-type calcium channels in low dose morphine-induced hyperalgesia in rats.


Subject(s)
Analgesics, Opioid/adverse effects , Calcium Channels, T-Type/drug effects , Hyperalgesia/chemically induced , Morphine/adverse effects , Amiloride/pharmacology , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Injections, Intraperitoneal , Male , Mibefradil/pharmacology , Morphine/administration & dosage , Morphine/antagonists & inhibitors , Pain Measurement/drug effects , Pain Threshold/drug effects , Posterior Horn Cells/drug effects , Rats , Rats, Wistar , Receptors, Opioid, mu
8.
J Pharmacol Sci ; 146(1): 1-9, 2021 May.
Article in English | MEDLINE | ID: mdl-33858649

ABSTRACT

Alzheimer's disease (AD) accounts for the majority of dementia among the elderly. In addition to cognitive impairment, behavioral and psychological symptoms (BPSD) such as depression tendency and increased aggression impose a great burden on the patient. However, there is still no rational therapeutic drug for BPSD. Recently, we developed a novel AD therapeutic candidate, SAK3, and demonstrated that it improved cognitive dysfunction in AppNL-G-F/NL-G-F knock-in (NL-G-F) mice. In this study, we investigated whether acute SAK3 administration improved BPSD in addition to cognitive improvement. Acute SAK3 administration improved BPSD, including anxiolytic and depressive-like behaviors, and ameliorated aggressive behaviors. Furthermore, continuous SAK3 administration improved anxiolytic and depressive-like behaviors. Intriguingly, the anti-anxiolytic and cognitive improvement lasted two weeks after the withdrawal of SAK3, whereas the anti-depressive action did not. Taken together, SAK3 had comprehensive beneficial effects on BPSD behavior.


Subject(s)
Alzheimer Disease/complications , Behavior, Animal/drug effects , Calcium Channels, T-Type/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Imidazoles/administration & dosage , Imidazoles/pharmacology , Mental Disorders/drug therapy , Mental Disorders/etiology , Spiro Compounds/administration & dosage , Spiro Compounds/pharmacology , Animals , Anti-Anxiety Agents , Antidepressive Agents , Disease Models, Animal , Gene Knock-In Techniques , Male , Mice, Inbred C57BL
9.
Neuropharmacology ; 187: 108478, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33600843

ABSTRACT

BACKGROUND AND PURPOSE: Consumption of Synthetic Cannabinoid Receptor agonists (SCRAs) is associated with severe adverse reactions including seizures, arrhythmias and death, but the molecular mechanisms surrounding SCRA toxicity are not yet established. These disease-like symptoms are also synonymous with altered T-type calcium channel activity which controls rhythmicity in the heart and brain. This study examined whether SCRAs alter T-type activity and whether this represents a possible mechanism of toxicity. EXPERIMENTAL APPROACH: Fluorescence-based and electrophysiology assays were used to screen 16 structurally related synthetic cannabinoids for their ability to inhibit human T-type calcium channels expressed in HEK293 cells. The most potent compounds were then further examined using patch clamp electrophysiology. KEY RESULTS: MDMB-CHMICA and AMB-CHMINACA potently blocked Cav3.2 with IC50 values of 1.5 and 0.74 µM respectively. Current inhibition increased from 47 to 80% and 45-87% respectively when the channel was in slow-inactivated state. Both SCRAs had little effect on steady state inactivation, however MDMB-CHMICA significantly shifted the half activation potential by -7mV. Neither drug produced frequency dependent block, in contrast to the phytocannabinoid Δ9-THC. CONCLUSIONS AND IMPLICATIONS: SCRAs are potent agonists of CB1 receptors and can be extremely toxic, but observed toxicity also resembles symptoms associated with altered Cav3.2 activity. Many SCRAs tested were potent modulators of Cav3.2, raising the possibility that SC toxicity may be due in part to Cav3.2 modulation. This potent T-type channel modulation suggests the possibility of SCRAs as a new drug class with potential to treat diseases associated with altered T-type channel activity. This article is part of the special issue on 'Cannabinoids'.


Subject(s)
Calcium Channels, T-Type/drug effects , Cannabinoid Receptor Agonists/pharmacology , Indoles/pharmacology , Calcium/metabolism , Calcium Channels, T-Type/metabolism , HEK293 Cells , Humans , In Vitro Techniques , Indazoles , Patch-Clamp Techniques
10.
Eur J Pharmacol ; 892: 173782, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33279521

ABSTRACT

Herpes simplex virus type 2 (HSV-2) is a highly contagious sexually transmitted virus. The increasing emergence of drug-resistant viral strains has highlighted the crucial need for the development of new anti-HSV-2 drugs with different mechanisms. Ion channels that govern a wide range of cellular functions represent attractive targets for viral manipulation. Here, we tried to identify novel compounds to suppress HSV-2 infection in vitro by screening a small library with ion channels modulators. We found that several T-type calcium channel blockers including benidipine, lercanidipine, lomerizine and mibefradil inhibited HSV-2 infection, while L-type calcium channel blockers nifedipine and nitrendipine showed no significant effect on HSV-2 infection. Furthermore, we found that benidipine exerted the antiviral effect by suppressing the expression of viral genes in the late stage of viral infection. In conclusion, our study suggested that T-type calcium channel blockers, which are clinically wide used, could effectively inhibit HSV-2 infection. These findings could shed light on the mechanism and pharmacological study for HSV-2 infection in the future.


Subject(s)
Antiviral Agents/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/drug effects , Calcium Signaling/drug effects , Herpes Genitalis/drug therapy , Herpesvirus 2, Human/drug effects , Virus Replication/drug effects , Animals , Calcium Channels, T-Type/metabolism , Chlorocebus aethiops , Dihydropyridines/pharmacology , Gene Expression Regulation, Viral/drug effects , HeLa Cells , Herpes Genitalis/metabolism , Herpes Genitalis/virology , Herpesvirus 2, Human/genetics , Herpesvirus 2, Human/growth & development , Host-Pathogen Interactions , Humans , Piperazines/pharmacology , Vero Cells
11.
Yakugaku Zasshi ; 140(10): 1207-1212, 2020.
Article in Japanese | MEDLINE | ID: mdl-32999199

ABSTRACT

T-type calcium channels are low-threshold voltage-gated calcium channel and characterized by unique electrophysiological properties such as fast inactivation and slow deactivation kinetics. All subtypes of T-type calcium channel (Cav3.1, 3.2 and 3.3) are widely expressed in the central nerve system, and they have an important role in homeostasis of sleep, pain response, and development of epilepsy. Recently, several reports suggest that T-type calcium channels may mediate neuronal plasticity in the mouse brain. We succeeded to develop T-type calcium channel enhancer ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a]pyridine]-2-ene-3-carboxylate (SAK3) which enhances Cav3.1 and 3.3 currents in each-channel expressed neuro2A cells. SAK3 can promote acetylcholine (ACh) release in the mouse hippocampus via enhancing T-type calcium channel. In this review, we have introduced the role of T-type calcium channel, especially Cav3.1 channel in the mouse hippocampus based on our previous data using SAK3 and Cav3.1 knockout mice.


Subject(s)
Calcium Channels, T-Type/drug effects , Calcium Channels, T-Type/physiology , Imidazoles/pharmacology , Neurons/physiology , Spiro Compounds/pharmacology , Acetylcholine/metabolism , Animals , Brain/physiology , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Cells, Cultured , Central Nervous System/metabolism , Electrophysiological Phenomena , Epilepsy/etiology , Gene Expression/drug effects , Hippocampus/metabolism , Homeostasis , Mice , Neuronal Plasticity , Pain/etiology , Rats , Sleep/physiology
12.
Life Sci ; 260: 118291, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32810510

ABSTRACT

AIMS: Despite the advanced cancer treatments, there is increased resistance to chemotherapy and subsequent mortality. In lack of reliable data in monolayer cultures and animal models, researchers are shifting to 3D cancer spheroids, which represents the in vivo robust tumour morphology. Calcium is essential in cell signalling and proliferation. It is found that T-type calcium channels (TTCCs) are overexpressed in various cancer cells, supporting their increased proliferation. Many of the TTCCs blockers available could target other channels besides TTCCs, which can cause adverse effects. Therefore, we hypothesise that TTA-A2, a highly selective blocker towards TTCCs, can inhibit the growth of cancer spheroids, and provide an anti-cancer and an adjuvant role in cancer therapy. METHODS: We studied TTA-A2 and paclitaxel (PTX-control drug) in lung adenocarcinoma cell line- A549, cancer cells and human embryonic kidney cell line- HEK 293, control cell, in their monolayer and spheroids forms for viability, proliferation, morphology change, migration, and invasion-after 48-96 h of treatment. KEY FINDINGS: Though the results varied between the monolayer and spheroids studies, we found both anti-cancer as well as adjuvant effect of TTA-A2 in both the studies. TTA-A2 was able to inhibit the growth, viability, and metastasis of the cancer cells and spheroids. Differences in the results of two modes might explain that why drugs tested successfully in monolayer culture fail in clinical trials. SIGNIFICANCE: This study establishes the role of TTA-A2, a potent TTCC blocker as an anti-cancer and adjuvant drug in reducing the viability and metastasis of the cancer cells.


Subject(s)
Adenocarcinoma of Lung/pathology , Antineoplastic Agents , Benzeneacetamides/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/drug effects , Lung Neoplasms/pathology , Pyridines/pharmacology , A549 Cells , Adenocarcinoma of Lung/drug therapy , Benzeneacetamides/therapeutic use , Calcium Channels, T-Type/physiology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , HEK293 Cells , Humans , Lung Neoplasms/drug therapy , Neoplasm Invasiveness/prevention & control , Pyridines/therapeutic use
13.
Cardiovasc Toxicol ; 20(6): 627-640, 2020 12.
Article in English | MEDLINE | ID: mdl-32671560

ABSTRACT

Recent evidence indicates that Ca2+ dysregulation is involved in the pathogenesis of isoproterenol (ISP)-induced biochemical toxicity and associated oxidative stress. In this study, we investigated the chemopreventive benefit of M3, a 1,4-dihydropyridine calcium channel blocker, against ISP-induced toxicity in male Wistar rats. Adult rats were divided into eight groups of six rats/group. Groups 1-5 received normal saline (control, 10 mL/kg/day, p.o.), ISP (85 mg/kg/day, s.c.), M3 lower dose (M3LD, 5 mg/kg, p.o.), M3 upper dose (M3UD, 20 mg/kg/day, p.o.), and Nifedipine (NFD, 20 mg/kg/day, p.o.), respectively. Others (groups 6-8) were pretreated with either M3LD, M3UD or NFD one hour before ISP administration. All rats were sacrificed 24 h after the last administration and changes in biochemical, hematological, and antioxidant parameters were assessed. Histologic examination of the heart, liver and kidney was also conducted. ISP elevated (p < 0.05) Ca2+, alanine aminotransferase, lactate dehydrogenase, triglycerides, and low-density lipoprotein levels when compared with control. Similarly, ISP increased levels of markers of renal function (p < 0.01), C-reactive protein (148.1%) and myocardial malondialdehyde (MDA, 88.7%) and tumor necrosis factor-alpha (109.2%). Platelet level was reduced (p < 0.05) in the ISP-intoxicated control rats. M3 exhibited antioxidant property, reduced levels of triglycerides, MDA and improved biochemical and hematological alterations associated with ISP toxicity. M3, however, was not effective in restoring histological changes that characterized ISP toxicity at the doses used. M3 offers chemopreventive benefits against ISP toxicity possibly through L-/T-type calcium channels blockade and modulatory actions on biochemical and antioxidant homeostasis.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Calcium Channels, T-Type/drug effects , Dihydropyridines/pharmacology , Heart Diseases/prevention & control , Isoproterenol/toxicity , Myocytes, Cardiac/drug effects , Animals , Biomarkers/blood , Calcium Channels, L-Type/metabolism , Calcium Channels, T-Type/metabolism , Calcium Signaling/drug effects , Cardiotoxicity , Heart Diseases/chemically induced , Heart Diseases/metabolism , Heart Diseases/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Rats, Wistar
14.
Neurobiol Dis ; 143: 105006, 2020 09.
Article in English | MEDLINE | ID: mdl-32622085

ABSTRACT

T-type calcium channels, in the central nervous system, are involved in the pathogenesis of many neurodegenerative diseases, including TAF1 intellectual disability syndrome (TAF1 ID syndrome). Here, we evaluated the efficacy of a novel T-type Ca2+ channel enhancer, SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate) in an animal model of TAF1 ID syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21 animals were given SAK3 (0.25 mg/kg, p.o.) or vehicle up to post-natal day 35 (i.e. 14 days). Rats were subjected to behavioral, morphological, electrophysiological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued the behavior abnormalities in beam walking test and open field test caused by TAF1 gene editing. We observed an increase in calbindin-positive Purkinje cells and GFAP-positive astrocytes as well as a decrease in IBA1-positive microglia cells in SAK3-treated animals. In addition, SAK3 protected the Purkinje and granule cells from apoptosis induced by TAF-1 gene editing. SAK3 also restored the excitatory post synaptic current (sEPSCs) in TAF1 edited Purkinje cells. Finally, SAK3 normalized the BDNF/AKT signaling axis in TAF1 edited animals. Altogether, these observations suggest that SAK3 could be a novel therapeutic agent for TAF1 ID syndrome.


Subject(s)
Cerebellum/drug effects , Histone Acetyltransferases/genetics , Imidazoles/pharmacology , Intellectual Disability/physiopathology , Neurons/drug effects , Spiro Compounds/pharmacology , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Animals , Calcium Channels, T-Type/drug effects , Calcium Channels, T-Type/metabolism , Disease Models, Animal , Intellectual Disability/genetics , Rats , Rats, Sprague-Dawley , Syndrome
15.
J Neurophysiol ; 124(1): 274-283, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32519575

ABSTRACT

Phosphorylation of the 5' cap-binding protein eIF4E by MAPK-interacting kinases (MNK1/2) is important for nociceptor sensitization and the development of chronic pain. IL-6-induced dorsal root ganglion (DRG) nociceptor excitability is attenuated in mice lacking eIF4E phosphorylation, in MNK1/2-/- mice, and by the nonselective MNK1/2 inhibitor cercosporamide. Here, we sought to better understand the neurophysiological mechanisms underlying how IL-6 causes nociceptor excitability via MNK-eIF4E signaling using the highly selective MNK inhibitor eFT508. DRG neurons were cultured from male and female ICR mice, 4-7 wk old. DRG cultures were treated with vehicle, IL-6, eFT508 (pretreat) followed by IL-6, or eFT508 alone. Whole cell patch-clamp recordings were done on small-diameter neurons (20-30 pF) to measure membrane excitability in response to ramp depolarization. IL-6 treatment (1 h) resulted in increased action potential firing compared with vehicle at all ramp intensities, an effect that was blocked by pretreatment with eFT508. Basic membrane properties, including resting membrane potential, input resistance, and rheobase, were similar across groups. Latency to the first action potential in the ramp protocol was lower in the IL-6 group and rescued by eFT508 pretreatment. We also found that the amplitudes of T-type voltage-gated calcium channels (VGCCs) were increased in the DRG following IL-6 treatment, but not in the eFT508 cotreatment group. Our findings are consistent with a model wherein MNK-eIF4E signaling controls the translation of signaling factors that regulate T-type VGCCs in response to IL-6 treatment. Inhibition of MNK with eFT508 disrupts these events, thereby preventing nociceptor hyperexcitability.NEW & NOTEWORTHY In this study, we show that the MNK inhibitor and anti-tumor agent eFT508 (tomivosertib) is effective in attenuating IL-6 induced sensitization of dorsal root ganglion (DRG) nociceptors. Pretreatment with eFT508 in DRG cultures from mice helps mitigate the development of hyperexcitability in response to IL-6. Furthermore, our data reveal that the upregulation of T-type voltage-gated calcium channels following IL-6 application can be blocked by eFT508, implicating the MNK-eIF4E signaling pathway in membrane trafficking of ion channels.


Subject(s)
Calcium Channels, T-Type/drug effects , Ganglia, Spinal/drug effects , Interleukin-6/pharmacology , Nociceptors/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Animals , Female , Male , Mice , Mice, Inbred ICR , Up-Regulation/drug effects
16.
BMC Nephrol ; 21(1): 187, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32429914

ABSTRACT

BACKGROUND: T-type calcium channels (TTCC) are involved in mesangial cell proliferation. In acute thy-1 nephritis in the rat TTCC inhibition reduces glomerular damage and cell proliferation. This work is extended here by a study of the non-selective TTCC inhibitor TH1177 in a chronic model of proliferative glomerulonephritis (GN) including late treatment starting after the initial inflammation has resolved. The objective was to determine the effects of TH1177 in a model of chronic mesangioproliferative renal disease. METHODS: Chronic GN was induced in WKY rats by unilateral nephrectomy (day - 7) followed by day 0 injection of Ox7 thy-1 mAb. Treatment with TH1177 (10-20 mg/Kg daily IP) was started on day 2 (early treatment) or on day 14 (late treatment) and compared to vehicle-treated controls until sacrifice at day 42. Glomerular disease was assessed with a damage score, fibrosis assay, cellular counts and renal function measured by serum creatinine. RESULTS: Treatment with TH11777 was associated with reduced serum creatinine, less glomerular damage, reduced fibrosis and reduced glomerular cellularity. The results for early and late TH1177 treatments were essentially the same and differed significantly from vehicle. CONCLUSIONS: The ion-channel modulator TH1177 is capable of improving glomerular outcome in chronic rat GN even when treatment starts 14 days after initiation of the disease. These data are discussed in the context of the possible targets of TH1177 including TTCC, TRP family, Stim/Orai group and other cation channels. The work supports the use of genetic models to examine the roles of individual cation channels in progressive glomerulonephritis to further define the targets of TH1177.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/drug effects , Creatinine/blood , Glomerulonephritis, Membranoproliferative/pathology , Kidney Glomerulus/drug effects , Pyrrolidines/pharmacology , Animals , Disease Models, Animal , Fibrosis , Glomerulonephritis, Membranoproliferative/blood , Isoantibodies , Kidney Glomerulus/pathology , Nephrectomy , Rats , Rats, Inbred WKY
17.
Pharmacology ; 105(9-10): 561-567, 2020.
Article in English | MEDLINE | ID: mdl-32101873

ABSTRACT

INTRODUCTION: Absence epilepsy is associated with diffuse spike-and-wave discharges (SWD) on the electroencephalogram (EEG). Recent studies have demonstrated that the primary somatosensory cortex is also implicated in the generation of the SWDs. OBJECTIVE: This study investigated the effects of systemic and local administrations of U-92032 into the brain of Genetic Absence Epilepsy Rats from Strasbourg (GAERS). METHODS: GAERS animals underwent stereotaxic surgery for the placement of EEG recording electrodes and guide cannulas for U-92032 administration into the lateral ventricle (intracerebroventricular [i.c.v.]), upper lips area (S1Ulp) or barrel field area (S1B) of primary somatosensory cortex. Following 7 days of recovery, electrical activity was recorded continuously for 1 h before and 6 h after intraperitoneal (0.25; 1; 5 mg/kg i.p.) or local U-92032 or dimethyl sulfoxide (DMSO) injections. RESULTS: No changes were detected in the cumulative duration, mean duration, and number of SWDs following i.p. U-92032 injections. Local i.c.v. injections of U-92032 caused a significant decrease in the cumulative duration (i.c.v., 50 and 100 nmol/L), mean duration (i.c.v., 50, 100, and 250 nmol/L), and the number (i.c.v., 250 nmol/L) of SWDs compared to DMSO groups. Intra-cortical (S1Ulp and S1B) U-92032 injections caused a significant decrease in all 3 parameters compared to DMSO groups, as well. CONCLUSION: Intra-cortical injection of U-92032 caused almost complete removal of SWDs in GAERS and i.c.v. administration resulted in a significant reduction. However, systemic i.p. administration did not cause a significant change with the applied -doses.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/drug effects , Calcium Channels, T-Type/metabolism , Epilepsy, Absence/drug therapy , Piperazines/pharmacology , Tropolone/analogs & derivatives , Animals , Calcium Channel Blockers/administration & dosage , Disease Models, Animal , Electrodes, Implanted , Electroencephalography , Epilepsy, Absence/genetics , Epilepsy, Absence/physiopathology , Female , Infusions, Intraventricular , Injections, Intraperitoneal , Male , Piperazines/administration & dosage , Rats , Rats, Wistar , Somatosensory Cortex/drug effects , Somatosensory Cortex/physiopathology , Tropolone/administration & dosage , Tropolone/pharmacology
18.
Life Sci ; 239: 116878, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31669736

ABSTRACT

AIMS: We previously demonstrated that iron-overload in non-thalassemic rats induced neurotoxicity and cognitive decline. However, the effect of iron-overload on the brain of thalassemic condition has never been investigated. An iron chelator (deferiprone) provides neuroprotective effects against metal toxicity. Furthermore, a T-type calcium channels blocker (efonidipine) effectively attenuates cardiac dysfunction in thalassemic mice with iron-overload. However, the effects of both drugs on brain of iron-overload thalassemia has not been determined. We hypothesize that iron-overload induces neurotoxicity in Thalassemic and wild-type mice, and not only deferiprone, but also efonidipine, provides neuroprotection against iron-overload condition. MAIN METHODS: Mice from both wild-type (WT) and ß-thalassemic type (HT) groups were assigned to be fed with a standard-diet or high-iron diet containing 0.2% ferrocene/kg of diet (HFe) for 4 months consecutively. After three months of HFe, 75-mg/kg/d deferiprone or 4-mg/kg/d efonidipine were administered to the HFe-fed WT and HT mice for 1 month. KEY FINDINGS: HFe consumption caused an equal impact on circulating iron-overload, oxidative stress, and inflammation in WT and HT mice. Brain iron-overload and iron-mediated neurotoxicity, such as oxidative stress, inflammation, glial activation, mitochondrial dysfunction, and Alzheimer's like pathologies, were observed to an equal degree in HFe fed WT and HT mice. These pathological conditions were mitigated by both deferiprone and efonidipine. SIGNIFICANCE: These findings indicate that iron-overload itself caused neurotoxicity, and T-type calcium channels may play a role in this condition.


Subject(s)
Deferiprone/pharmacology , Dihydropyridines/pharmacology , Iron/toxicity , Nitrophenols/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/drug effects , Deferiprone/metabolism , Dihydropyridines/metabolism , Disease Models, Animal , Iron/metabolism , Iron Chelating Agents/pharmacology , Iron Overload/pathology , Mice , Mice, Inbred C57BL , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , Nitrophenols/metabolism , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/pharmacology , Thalassemia/pathology
19.
Sci Signal ; 12(600)2019 09 24.
Article in English | MEDLINE | ID: mdl-31551295

ABSTRACT

Although brain-derived neurotrophic factor (BDNF) is implicated in the nociceptive signaling of peripheral sensory neurons, the underlying mechanisms remain largely unknown. Here, we elucidated the effects of BDNF on the neuronal excitability of trigeminal ganglion (TG) neurons and the pain sensitivity of rats mediated by T-type Ca2+ channels. BDNF reversibly and dose-dependently enhanced T-type channel currents through the activation of tropomyosin receptor kinase B (TrkB). Antagonism of phosphatidylinositol 3-kinase (PI3K) but not of its downstream target, the kinase AKT, abolished the BDNF-induced T-type channel response. BDNF application activated p38 mitogen-activated protein kinase (MAPK), and this effect was prevented by inhibition of PI3K but not of protein kinase A (PKA). Antagonism of either PI3K or p38 MAPK prevented the BDNF-induced stimulation of PKA activity, whereas PKA inhibition blocked the BDNF-mediated increase in T-type currents. BDNF increased the rate of action potential firing in TG neurons and enhanced the pain sensitivity of rats to mechanical stimuli. Moreover, inhibition of TrkB signaling abolished the increased mechanical sensitivity in a rat model of chronic inflammatory pain, and this effect was attenuated by either T-type channel blockade or knockdown of the channel Cav3.2. Together, our findings indicate that BDNF enhances T-type currents through the stimulation of TrkB coupled to PI3K-p38-PKA signaling, thereby inducing neuronal hyperexcitability of TG neurons and pain hypersensitivity in rats.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Calcium Channels, T-Type/drug effects , Pain/physiopathology , Sensory Receptor Cells/drug effects , Action Potentials/drug effects , Animals , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Male , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Receptor, trkB/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Signal Transduction/drug effects , Trigeminal Ganglion/cytology , Trigeminal Ganglion/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Exp Neurol ; 317: 226-243, 2019 07.
Article in English | MEDLINE | ID: mdl-30872136

ABSTRACT

The T-type calcium channels Cav3.2, one of the low voltage-activated (LVA) calcium channels, have been found to play important roles in the neuronal excitability. Recently, we and others have demonstrated that accumulation of Cav3.2 channels in the dorsal root ganglion (DRG) neurons and sensory nerves contributes to neuropathic pain after peripheral nerve injury. In the present study, we aimed to further investigate the regulation of Cav3.2 channels by interleukin-6 (IL-6) in DRG neurons in neuropathic pain rats after spinal nerve ligation (SNL). The results showed that Cav3.2 channel protein expression in L5 DRG neurons was upregulated and blockade of this channel decreased the hyperexcitability of DRG neurons and mechanical allodynia in SNL neuropathic pain rats. Furthermore, inhibition of IL-6 trans-signaling reduced the upregulation of Cav3.2 T-type channel induced by FIL-6 (a fusion protein of IL-6 and sIL-6R) in primary cultured DRG neurons in vitro. In vivo, inhibition of IL-6 trans-signaling reversed the upregulation of Cav3.2, reduced the hyperexcitability of L5 DRG neurons and alleviated mechanical allodynia in SNL rats. Our results suggest that IL-6 upregulates Cav3.2 T-type channels expression and function through the IL-6/sIL-6R trans-signaling pathway in DRG neurons, thus contributes to the development of neuropathic pain in SNL rats.


Subject(s)
Calcium Channels, T-Type/metabolism , Ganglia, Spinal/metabolism , Interleukin-6/biosynthesis , Neuralgia/metabolism , Neurons/metabolism , Spinal Nerves/injuries , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/drug effects , Cells, Cultured , Hyperalgesia/metabolism , Hyperalgesia/pathology , Interleukin-6/antagonists & inhibitors , Ligation , Male , Neuralgia/physiopathology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...