Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.845
Filter
1.
Food Res Int ; 188: 114474, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823865

ABSTRACT

Limited proteolysis, CaCl2 and carboxymethyl cellulose (CMC) have individually demonstrated ability to increase the gel strength of laboratory-extracted plant proteins. However, the syneresis effects of their combination on the gelling capacity of commercial plant protein remains unclear. This was investigated by measuring the rheological property, microstructure and protein-protein interactions of gels formed from Alcalase hydrolyzed or intact pea proteins in the presence of 0.1 % CMC and 0-25 mM CaCl2. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular weight of pea protein in the mixture were < 15 kDa after hydrolysis. The hydrolysates showed higher intrinsic fluorescence intensity and lower surface hydrophobicity than the intact proteins. Rheology showed that the storage modulus (G') of hydrolyzed pea protein (PPH)-based gels sightly decreased compared to those of native proteins. 5-15 mM CaCl2 increased the G' for both PP and PPH-based gels and decreased the strain in the creep-recovery test. Scanning electron microscopy (SEM) showed the presence of smaller protein aggregates in the PPH-based gels compared to PP gels and the gel network became denser, and more compact and heterogenous in the presence of 15 and 25 mM CaCl2. The gel dissociation assay revealed that hydrophobic interactions and hydrogen bonds were the dominant forces to maintain the gel structure. In vitro digestion showed that the soluble protein content in PPH-based gels was 10 âˆ¼ 30 % higher compared to those of the PP counterpart. CaCl2 addition reduced protein digestibility with a concentration dependent behavior. The results obtained show contrasting effects of limited proteolysis and CaCl2 on the gelling capacity and digestibility of commercial pea proteins. These findings offer practical guidelines for developing pea protein-based food products with a balanced texture and protein nutrition through formulation and enzymatic pre-treatment.


Subject(s)
Calcium Chloride , Carboxymethylcellulose Sodium , Gels , Pea Proteins , Proteolysis , Rheology , Calcium Chloride/chemistry , Pea Proteins/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Hydrophobic and Hydrophilic Interactions , Digestion , Pisum sativum/chemistry , Microscopy, Electron, Scanning , Hydrolysis , Electrophoresis, Polyacrylamide Gel
2.
Sci Rep ; 14(1): 11845, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782941

ABSTRACT

Tardigrades are renowned for their ability to survive a wide array of environmental stressors. In particular, tardigrades can curl in on themselves while losing a significant proportion of their internal water content to form a structure referred to as a tun. In surviving varying conditions, tardigrades undergo distinct morphological transformations that could indicate different mechanisms of stress sensing and tolerance specific to the stress condition. Methods to effectively distinguish between morphological transformations, including between tuns induced by different stress conditions, are lacking. Herein, an approach for discriminating between tardigrade morphological states is developed and utilized to compare sucrose- and CaCl2-induced tuns, using the model species Hypsibius exemplaris. A novel approach of shadow imaging with confocal laser scanning microscopy enabled production of three-dimensional renderings of Hys. exemplaris in various physiological states resulting in volume measurements. Combining these measurements with qualitative morphological analysis using scanning electron microscopy revealed that sucrose- and CaCl2-induced tuns have distinct morphologies, including differences in the amount of water expelled during tun formation. Further, varying the concentration of the applied stressor did not affect the amount of water lost, pointing towards water expulsion by Hys. exemplaris being a controlled process that is adapted to the specific stressors.


Subject(s)
Calcium Chloride , Sucrose , Animals , Calcium Chloride/pharmacology , Microscopy, Confocal/methods , Stress, Physiological , Invertebrates , Microscopy, Electron, Scanning
3.
Sci Rep ; 14(1): 11408, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762671

ABSTRACT

In the enhanced oil recovery (EOR) process, interfacial tension (IFT) has become a crucial factor because of its impact on the recovery of residual oil. The use of surfactants and biosurfactants can reduce IFT and enhance oil recovery by decreasing it. Asphaltene in crude oil has the structural ability to act as a surface-active material. In microbial-enhanced oil recovery (MEOR), biosurfactant production, even in small amounts, is a significant mechanism that reduces IFT. This study aimed to investigate fluid/fluid interaction by combining low biosurfactant values and low-salinity water using NaCl, MgCl2, and CaCl2 salts at concentrations of 0, 1000, and 5000 ppm, along with Geobacillus stearothermophilus. By evaluating the IFT, this study investigated different percentages of 0, 1, and 5 wt.% of varying asphaltene with aqueous bulk containing low-salinity water and its combination with bacteria. The results indicated G. Stearothermophilus led to the formation of biosurfactants, resulting in a reduction in IFT for both acidic and basic asphaltene. Moreover, the interaction between asphaltene and G. Stearothermophilus with higher asphaltene percentages showed a decrease in IFT under both acidic and basic conditions. Additionally, the study found that the interaction between acidic asphaltene and G. stearothermophilus, in the presence of CaCl2, NaCl, and MgCl2 salts, resulted in a higher formation of biosurfactants and intrinsic surfactants at the interface of the two phases, in contrast to the interaction involving basic asphaltene. These findings emphasize the dependence of the interactions between asphaltene and G. Stearothermophilus, salt, and bacteria on the specific type and concentration of asphaltene.


Subject(s)
Salinity , Surface Tension , Surface-Active Agents , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Water/chemistry , Geobacillus stearothermophilus , Sodium Chloride/chemistry , Petroleum , Calcium Chloride/chemistry
4.
Plant Physiol Biochem ; 212: 108732, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761546

ABSTRACT

Carotenoid oxidative cleavage is a significant factor contributing to the color changes of shredded carrots and treatment with calcium chloride (CaCl2, 1% w/v) has been observed to alleviate the whitening symptom and color loss. However, the specific mechanism by which CaCl2 treatment suppresses carotenoid degradation remains unclear. In this study, the effect of CaCl2 and EGTA (calcium ion chelating agent) treatment on carotenoid biosynthesis and degradation in shredded carrots and the mechanism involved was investigated. CaCl2 treatment promoted the expression and activity of carotenoid biosynthetic enzyme (phytoene synthase, PSY), but inhibited the increases of the degradative enzyme activity of carotenoid cleavage dioxygenase (CCD) and down-regulated the corresponding transcripts, thus delayed the degradation of total carotenoid and maintaining higher levels of major carotenoid compounds including ß-carotene, α-carotene, lycopene, and lutein in shredded carrots during storage. However, EGTA treatment promoted the gene expression and enzyme activity of CCD and increased the degradation of carotenoid compounds in shredded carrots during storage. Furthermore, the CaCl2 treatment induced DcCAMTA4, identified as a calcium decoder in shredded carrots, which, in turn, suppressed the expressions of DcCCD1 and DcCCD4 by interacting with their promoters. The transient overexpression of DcCAMTA4 in tobacco leaves led to reduced expression of NtCCD1 and NtCCD4, maintaining a higher content of carotenoids. Thus, CaCl2 alleviated the oxidative cleavage of carotenoids in shredded carrots through the DcCAMTA4-mediated carotenoid degradation pathway.


Subject(s)
Calcium Chloride , Carotenoids , Daucus carota , Plant Proteins , Carotenoids/metabolism , Calcium Chloride/pharmacology , Daucus carota/metabolism , Daucus carota/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Oxidation-Reduction/drug effects
5.
Int J Biol Macromol ; 270(Pt 2): 132517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777008

ABSTRACT

The rapid activation of phosphatidylinositol-specific phospholipase C (PI-PLC) occurs early after the stimulation of biotic and abiotic stress in plants, which directly associated with the calcium channel-induced calcium ion (Ca2+) influx. Exogenous calcium chloride (CaCl2) mediates the calcium signaling transduction to promote the γ-aminobutyric acid accumulation and nutritional quality in shredded carrots whereas the generation mechanism remains uncertain. Therefore, the involvement of PI-PLC-associated phospholipid metabolism was investigated in present study. Our result revealed that CaCl2 treatment promoted the expression and activity of PI-PLC and increased the inositol 1,4,5-trisphosphate and hexakisphosphate content in shredded carrots. The transcripts of multi-glutamate receptor-like channels (DcGLRs), the glutamate and γ-aminobutyric acid (GABA) content, and Ca2+ influx were induced by CaCl2 treatment in shredded carrots during storage. However, PI-PLC inhibitor (U73122) treatment inhibited the activation of PI-PLC, the increase of many DcGLRs family genes expression levels, and Ca2+ influx. Moreover, the identification of DcPI-PLC4/6 and DcGLRs proteins, along with the analysis of characteristic domains such as PLCXc, PLCYc, C2 domain, transmembranous regions, and ligand binding domain, suggests their involvement in phospholipid catalysis and calcium transport in carrots. Furthermore, DcPI-PLC4/6 overexpression in tobacco leaves induced the Ca2+ influx by activating the expressions of NtGLRs and the accumulation of glutamate and GABA. These findings collectively indicate that CaCl2 treatment-induced PI-PLC activation influences DcGLRs expression levels to mediate cytosolic Ca2+ influx, thus, highlighting the "PI-PLC-GLRs-Ca2+" pathway in calcium signaling generation and GABA biosynthesis in shredded carrots.


Subject(s)
Calcium Chloride , Calcium , Daucus carota , Phospholipids , Calcium/metabolism , Daucus carota/metabolism , Daucus carota/drug effects , Calcium Chloride/pharmacology , Phospholipids/metabolism , Phosphoinositide Phospholipase C/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics
6.
PeerJ ; 12: e17378, 2024.
Article in English | MEDLINE | ID: mdl-38726378

ABSTRACT

Many citrus species and cultivars are grown successfully in tropical and subtropical countries, as well as in arid and semi-arid regions with low levels of organic matter and low cation exchange, resulting in lower nutrient uptake by the plant. The essential nutrients needed for citrus flowering and fruit set are limited in winter due to a reduction in transpiration rate, negatively effecting vegetative growth, flowering, yield, and fruit quality. The present investigation was carried out to assess the nutritional status, fruit yield parameters, and fruit quality of Valencia orange trees after foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations in the 2020/2021 and 2021/2022 seasons. The treatments were arranged in a split-plot design (three levels spraying seaweed extract × four levels spraying calcium chloride and boric acid and their combinations × four replicates × one tree/replicate). The results indicated that all of the characteristics measured, including leaf chlorophyll, leaf mineral contents, fruit yield parameters, fruit physical properties, and fruit chemical properties, were significantly affected by the foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations. Although all treatments increased the productivity and the physical and chemical properties of Valencia orange fruits compared to the control, a treatment of 10 g/L SW combined with 0.5 g/L boric acid and 1 g/L calcium chloride produced superior results. This ratio of SW, boric acid, and calcium chloride is therefore recommended to enhance productivity and improve the physico-chemical properties of Valencia orange for greater fruit yield.


Subject(s)
Boric Acids , Calcium Chloride , Citrus sinensis , Fruit , Seaweed , Boric Acids/pharmacology , Citrus sinensis/chemistry , Fruit/chemistry , Fruit/drug effects , Seaweed/chemistry , Seaweed/metabolism , Calcium Chloride/pharmacology , Plant Leaves/drug effects , Plant Leaves/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chlorophyll/metabolism
7.
Acta Derm Venereol ; 104: adv19678, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712969

ABSTRACT

In electrochemotherapy, permeabilization of the cell membrane by electric pulses increases the anti-tumour effect of chemotherapeutics. In calcium electroporation, chemotherapy is replaced by calcium chloride with obvious benefits. This study explores the effect and underlying mechanisms of calcium electroporation on basal cell carcinomas using either high- or low-frequency electroporation. Low-risk primary basal cell carcinomas were treated in local anaesthesia with intratumoral calcium chloride followed by electroporation with high (167 kHz) or low (5 kHz) frequencies. Non-complete responders were retreated after 3 months. The primary endpoint was tumour response 3 months after last calcium electroporation. Plasma membrane calcium ATPase was examined in various cell lines as plasma membrane calcium ATPase levels have been associated with calcium electroporation efficacy. Twenty-two out of 25 included patients complete the study and 7 of these (32%) achieved complete response at 3 months with no difference in efficacy between high- and low-frequency pulses. High-frequency calcium electroporation was significantly less painful (p=0.03). Plasma membrane calcium ATPase was increased 16-32-fold in basal cell carcinoma cell lines compared with 4 other cancer cell lines. Calcium electroporation for low-risk basal cell carcinomas does not fulfil the requirements of a new dermatological basal cell carcinoma treatment but may be useful as adjuvant treatment to surgery in more advanced basal cell carcinomas. The elevated PMCA levels in basal cell carcinomas may contribute to low efficacy.


Subject(s)
Carcinoma, Basal Cell , Electrochemotherapy , Skin Neoplasms , Humans , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/therapy , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Male , Female , Middle Aged , Aged , Treatment Outcome , Electrochemotherapy/methods , Cell Line, Tumor , Calcium Chloride/administration & dosage , Aged, 80 and over , Plasma Membrane Calcium-Transporting ATPases/metabolism , Time Factors , Electroporation
8.
Mol Genet Genomics ; 299(1): 43, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598031

ABSTRACT

Phosphatidylserine (PS) is important for maintaining growth, cytoskeleton, and various functions in yeast; however, its role in stress responses is poorly understood. In Schizosaccharomyces pombe, the PS synthase deletion (pps1∆) mutant shows defects in growth, morphology, cytokinesis, actin cytoskeleton, and cell wall integrity, and these phenotypes are rescued by ethanolamine supplementation. Here, we evaluated the role of Pps1 in the salt stress response in S. pombe. We found that pps1∆ cells are sensitive to salt stresses such as KCl and CaCl2 even in the presence of ethanolamine. Loss of the functional cAMP-dependent protein kinase (git3∆ or pka1∆) or phospholipase B Plb1 (plb1∆) enhanced the salt stress-sensitive phenotype in pps1∆ cells. Green fluorescent protein (GFP)-Pps1 was localized at the plasma membrane and endoplasmic reticulum regardless of the stress conditions. In pka1∆ cells, GFP-Pps1 was accumulated around the nucleus under the KCl stress. Pka1 was localized in the nucleus and the cytoplasm under normal conditions and transferred from the nucleus to the cytoplasm under salt-stress conditions. Pka1 translocated from the nucleus to the cytoplasm during CaCl2 stress in the wild-type cells, while it remained localized in the nucleus in pps1∆ cells. Expression and phosphorylation of Pka1-GFP were not changed in pps1∆ cells. Our results demonstrate that Pps1 plays an important role in the salt stress response in S. pombe.


Subject(s)
Schizosaccharomyces , Schizosaccharomyces/genetics , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/genetics , Calcium Chloride , Salt Stress/genetics , Ethanolamine , Ethanolamines , Green Fluorescent Proteins
9.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612913

ABSTRACT

Salt is frequently introduced in ecosystems, where it acts as a pollutant. This study examined how changes in salinity affect the survival and development of zebrafish from the two-cell to the blastocyst stage and from the blastocyst to the larval stage. Control zebrafish embryos were cultured in E3 medium containing 5 mM Sodium Chloride (NaCl), 0.17 mM Potassium Chloride (KCL), 0.33 mM Calcium Chloride (CaCl2), and 0.33 mM Magnesium Sulfade (MgSO4). Experiments were conducted using increasing concentrations of each individual salt at 5×, 10×, 50×, and 100× the concentration found in E3 medium. KCL, CaCl2, and MgSO4 did not result in lethal abnormalities and did not affect early embryo growth at any of the concentrations tested. Concentrations of 50× and 100× NaCl caused embryonic death in both stages of development. Concentrations of 5× and 10× NaCl resulted in uninflated swim bladders in 12% and 65% of larvae, compared to 4.2% of controls, and caused 1654 and 2628 genes to be differentially expressed in blastocysts, respectively. The ATM signaling pathway was affected, and the Sonic Hedgehog pathway genes Shh and Ptc1 implicated in swim bladder development were downregulated. Our findings suggest that increased NaCl concentrations may alter gene expression and cause developmental abnormalities in animals found in affected ecosystems.


Subject(s)
Hedgehog Proteins , Perciformes , Animals , Hedgehog Proteins/genetics , Sodium Chloride/pharmacology , Water , Zebrafish/genetics , Calcium Chloride , Ecosystem , Sodium Chloride, Dietary , Larva/genetics , Gene Expression
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 523-532, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597444

ABSTRACT

OBJECTIVE: To investigate the effect of asiaticoside on blood pressure and relaxation of thoracic aorta in rats and explore the underlying mechanism. METHODS: SD rats treated with 50 and 100 mg/kg asiaticoside by daily gavage for 2 weeks were monitored for systolic blood pressure changes, and histological changes of the thoracic aorta were evaluated using HE staining. In isolated rat endothelium-intact and endothelium-denuded thoracic aorta rings, the effects of asiaticoside on relaxation of the aortic rings were tested at baseline and following norepinephrine (NE)- and KCl-induced constriction. The vascular relaxation effect of asiaticoside was further observed in NE-stimulated endothelium-intact rat aortic rings pretreated with L-nitroarginine methyl ester, indomethacin, zinc protoporphyrin Ⅸ, tetraethyl ammonium chloride, glibenclamide, barium chloride, Iberiotoxin, 4-aminopyridine, or TASK-1-IN-1. The aortic rings were treated with KCl and NE followed by increasing concentrations of CaCl2 to investigate the effect of asiaticoside on vasoconstriction induced by external calcium influx and internal calcium release. RESULTS: Asiaticoside at 50 and 100 mg/kg significantly lowered systolic blood pressure in rats without affecting the thoracic aorta histomorphology. While not obviously affecting resting aortic rings with intact endothelium, asiaticoside at 100 mg/kg induced significant relaxation of the rings constricted by KCl and NE, but its effects differed between endothelium-intact and endothelium-denuded rings. In endothelium-intact aortic rings pretreated with indomethacin, ZnPP Ⅸ, barium chloride, glyburide, TASK-1-IN-1 and 4-aminopyridine, asiaticoside did not produce significant effect on NE-induced vasoconstriction, and tetraethylammonium, Iberiotoxin and L-nitroarginine methyl ester all inhibited the relaxation effect of asiaticoside. In KCland NE-treated rings, asiaticoside obviously inhibited CaCl2-induced vascular contraction. CONCLUSION: Asiaticoside induces thoracic aorta relaxation by mediating high-conductance calcium-activated potassium channel opening, promoting nitric oxide release from endothelial cells and regulating Ca2+ influx and outflow, thereby reducing systolic blood pressure in rats.


Subject(s)
Aorta, Thoracic , Barium Compounds , Chlorides , Triterpenes , Vasodilation , Rats , Animals , Blood Pressure , Endothelial Cells , Calcium , Calcium Chloride/pharmacology , Nitroarginine/pharmacology , Rats, Sprague-Dawley , 4-Aminopyridine/pharmacology , Indomethacin/pharmacology , Esters/pharmacology , Endothelium, Vascular , Dose-Response Relationship, Drug
11.
Eur J Cardiothorac Surg ; 65(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38627243

ABSTRACT

OBJECTIVES: In this study, we evaluated if modified Del Nido cardioplegia delivers comparable cardiac protection in comparison to Custodiol® in patients undergoing isolated minimally invasive mitral valve repair. METHODS: From January 2018 to October 2021, all patients undergoing non-emergent isolated minimally invasive mitral valve repair were included in this study. The cardioplegia was chosen at the surgeons' discretion. The primary end points of this study were peak postoperative cardiac enzyme levels. Secondary end points were in-hospital mortality, hospital stay, occurrence of cardiac arrhythmias, pacemaker implantations, postoperative lactate and sodium levels and postoperative incidence of renal failure requiring dialysis. RESULTS: A total of 355 patients were included in this study. The mean age of patients was 57. After propensity score matching, a total of 156 pairs were identified. There was no difference in cross-clamp time between both groups. Postoperative creatine kinase levels were higher in patients receiving Custodiol on the 1st and 2nd postoperative days. Creatine kinase isoenzyme MB levels were higher in patients receiving Custodiol on the 2nd postoperative day (0.5 ± 0.2 vs 0.4 ± 0.1 µmol/l s; P < 0.001). Postoperative Troponin T concentrations were similar between both groups. Maximum lactate concentrations were higher in patients receiving Custodiol on the day of surgery (2.4 ± 1.9 vs 2.0 ± 1.1 mmol/l; P = 0.04). The overall hospital stay was longer in patients receiving Del Nido cardioplegia (10.6 ± 3.2 vs 8 ± 4.1 days; P < 0.01). CONCLUSIONS: Modified Del Nido cardioplegia based on Ionosteril® solution offers equivalent protection compared to Custodiol for isolated minimally invasive mitral valve repair.


Subject(s)
Cardioplegic Solutions , Electrolytes , Heart Arrest, Induced , Lidocaine , Minimally Invasive Surgical Procedures , Mitral Valve , Potassium Chloride , Procaine , Sodium Bicarbonate , Solutions , Humans , Female , Male , Middle Aged , Heart Arrest, Induced/methods , Cardioplegic Solutions/therapeutic use , Mitral Valve/surgery , Potassium Chloride/therapeutic use , Minimally Invasive Surgical Procedures/methods , Mannitol/therapeutic use , Glucose/administration & dosage , Aged , Histidine , Retrospective Studies , Postoperative Complications/prevention & control , Calcium Chloride/administration & dosage , Mitral Valve Insufficiency/surgery , Magnesium Sulfate/therapeutic use
12.
Sci Rep ; 14(1): 7767, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565938

ABSTRACT

XynR is a thermostable alkaline GH10 xylanase, for which we have previously examined the effects of saturation mutagenesis at position 315 on enzyme alkaliphily, and found that at pH 10, the activities of variants could be ordered as follows: T315Q > T315S = T315N > T315H = wild-type XynR (WT) > 15 other variants. In this study, we sought to elucidate the mechanisms underlying the variable activity of these different variants. Crystallographic analysis revealed that the Ca2+ ion near position 315 in WT was absent in the T315Q variant. We accordingly hypothesized that the enhancement of alkaliphily in T315Q, and probably also in the T315H, T315N, and T315S variants, could be ascribed to an activity-stability trade-off associated with a reduction in stability due to the lack of this Ca2+ ion. Consistent with expectations, the alkaline resistance of T315H, T315N, T315Q, and T315S, evaluated through the pH-dependence of stability at 0 mM CaCl2 under alkaline conditions, was found to be lower than that of WT: the residual activity at pH 11 of WT was 78% while those of T315H, T315N, T315Q, and T315S were 0, 9, 0, and 43%, respectively. In addition, the thermostabilities of these four variants, as assessed using the denaturing temperatures (Tm) at 0 mM CaCl2 based on ellipticity at 222 nm in circular dichroism measurements, were lower than that of WT by 2-8 °C. Furthermore, the Tm values of WT and variants at 5 mM CaCl2 were higher than those at 0 mM CaCl2 by 6-11 °C. Collectively, our findings in this study indicate that mutation of the T residue at position 315 of XynR to H, N, Q, and S causes an increase in the alkaliphily of this enzyme, thereby reducing its stability.


Subject(s)
Endo-1,4-beta Xylanases , Calcium Chloride , Endo-1,4-beta Xylanases/chemistry , Enzyme Stability , Mutagenesis , Mutation , Temperature , Hydrogen-Ion Concentration
13.
J Cardiothorac Surg ; 19(1): 266, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664851

ABSTRACT

BACKGROUND: St. Thomas cardioplegia is commonly administered to adults, yet repeated dosing at brief intervals is required. Del Nido's cardioplegic solution provides a prolonged duration of safe myocardial arrest, yet it was primarily intended for pediatric cardiac surgery. Recently, there has been an increasing interest in using Del Nido's in adults; this might be due to its ease of administration and extended re-dosing intervals. This study contrasted Del Nido's to modified St. Thomas cardioplegia in adults. METHODS: This study was conducted on 200 patients. Troponin-T was the primary outcome within the first 24 and 48 h post-surgery. Cardiopulmonary bypass time, cross-clamp time, intraoperative use of inotropic support, defibrillator and/or intra-aortic balloon were the secondary outcomes of the study. RESULTS: There was a significant reduction in post-operative Troponin-T levels in the first 24 and 48 h within Del Nido's group compared to the modified St. Thomas group. The cross-clamp and cardiopulmonary bypass times were also found to be lower within Del Nido's group. CONCLUSION: This study has demonstrated a significant reduction in early postoperative Troponin-T levels as well as operative times favoring Del Nido's in adults.


Subject(s)
Cardiac Surgical Procedures , Cardioplegic Solutions , Electrolytes , Heart Arrest, Induced , Lidocaine , Magnesium Sulfate , Mannitol , Sodium Bicarbonate , Solutions , Troponin T , Humans , Heart Arrest, Induced/methods , Retrospective Studies , Male , Female , Middle Aged , Cardiac Surgical Procedures/methods , Troponin T/blood , Adult , Cardiopulmonary Bypass/methods , Aged , Potassium Chloride , Treatment Outcome , Bicarbonates , Calcium Chloride , Sodium Chloride , Magnesium
14.
J Phys Chem B ; 128(17): 4111-4122, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38651832

ABSTRACT

The observation of multiple conformations of a functional loop (termed M20) in the Escherichia coli dihydrofolate reductase (ecDHFR) enzyme triggered the proposition that large-scale motions of protein structural elements contribute to enzyme catalysis. The transition of the M20 loop from a closed conformation to an occluded conformation was thought to aid the rate-limiting release of the products. However, the influence of charged species in the solution environment on the observed M20 loop conformations, independent of charged ligands bound to the enzyme, had not been considered. Molecular dynamics simulations of ecDHFR in model CaCl2 solutions of varying molar ionic strengths IM reveal a substantial free energy barrier between occluded and closed M20 loop states at IM exceeding the E. coli threshold (∼0.24 M). This barrier may facilitate crystallization of ecDHFR in the occluded state, consistent with ecDHFR structures obtained at IM exceeding 0.3 M. At lower IM (≤0.15 M), the M20 loop can explore the occluded state, but prefers an open/partially closed conformation, again consistent with ecDHFR structures. Our findings caution against using ecDHFR structures obtained at nonphysiological ionic strengths in interpreting catalytic events or in structure-based drug design.


Subject(s)
Escherichia coli , Molecular Dynamics Simulation , Protein Conformation , Tetrahydrofolate Dehydrogenase , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Escherichia coli/enzymology , Osmolar Concentration , Solutions , Calcium Chloride/chemistry , Calcium Chloride/metabolism
15.
Food Chem ; 446: 138763, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428077

ABSTRACT

Calcium deficiency is prone to fractures, osteoporosis and other symptoms. In this study, sheep bone protein hydrolysates (SBPHs) were obtained by protease hydrolysis. A low-calcium-diet-induced calcium-deficiency rat model was established to investigate the effects of SBPHs on calcium absorption and intestinal flora composition. The results showed that an SBPHs + CaCl2 treatment significantly increased the bone calcium content, bone mineral density, trabecular bone volume, and trabecular thickness, and reduced trabecular separation, and changed the level of bone turnover markers (P < 0.05). Supplementation of SBPHs + CaCl2 can remarkably enhance the bone mechanical strength, and the microstructure of bone was improved, and the trabecular network was more continuous, complete, and thicker. Additionally, SBPHs + CaCl2 dietary increased the abundance of Firmicutes and reduced the abundance of Proteobacteria and Verrucomicrobiota, and promoted the production of short chain fatty acids. This study indicated that SBPHs promoted calcium absorption and could be applied to alleviate osteoporosis.


Subject(s)
Calcium , Osteoporosis , Rats , Animals , Sheep , Calcium/metabolism , Protein Hydrolysates/pharmacology , Calcium Chloride/pharmacology , Calcium, Dietary , Bone Density , Osteoporosis/metabolism , Diet
16.
Waste Manag ; 178: 331-338, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38430747

ABSTRACT

The combination of microbial electrolytic cells and anaerobic digestion (MEC-AD) became an efficient method to improve CO2 capture for waste sludge treatment. By adding CaCl2 and wollastonite, the CO2 sequestration effect with mineral carbonation under 0 V and 0.8 V was studied. The results showed that applied voltage could increase dissolved chemical oxygen demand (SCOD) degradation efficiency and biogas yield effectively. In addition, wollastonite and CaCl2 exhibited different CO2 sequestration performances due to different Ca2+ release characteristics. Wollastonite appeared to have a better CO2 sequestration effect and provided a wide margin of pH change, but CaCl2 released Ca2+ directly and decreased the pH of the MEC-AD system. The results showed methane yield reached 137.31 and 163.50 mL/g SCOD degraded and CO2 content of biogas is only 12.40 % and 2.22 % under 0.8 V with CaCl2 and wollastonite addition, respectively. Finally, the contribution of chemical CO2 sequestration by mineral carbonation and biological CO2 sequestration by hydrogenotrophic methanogenesis was clarified with CaCl2 addition. The chemical and biological CO2 sequestration percentages were 46.79 % and 53.21 % under 0.8 V, respectively. With the increased applied voltage, the contribution of chemical CO2 sequestration rose accordingly. The findings in this study are of great significance for further comprehending the mechanism of calcium addition on CO2 sequestration in the MEC-AD system and providing guidance for the later engineering application.


Subject(s)
Calcium Compounds , Carbon Dioxide , Sewage , Silicates , Carbon Dioxide/chemistry , Anaerobiosis , Biofuels , Calcium Chloride , Minerals , Carbonates , Methane , Bioreactors
17.
BMC Oral Health ; 24(1): 335, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486235

ABSTRACT

BACKGROUND: Several efforts have been made to improve mechanical and biological properties of calcium silicate-based cements through changes in chemical composition of the materials. This study aimed to investigate the physical (including setting time and compressive strength) and chemical (including calcium ion release, pH level) properties as well as changes in cytotoxicity of mineral trioxide aggregate (MTA) after the addition of 3 substances including CaCl2, Na2HPO4, and propylene glycol (PG). METHODS: The systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Electronic searches were performed on PubMed, Embase, and Scopus databases, spanning from 1993 to October 2023 in addition to manual searches. Relevant laboratory studies were included. The quality of the included studies was assessed using modified ARRIVE criteria. Meta-analyses were performed by RevMan statistical software. RESULTS: From the total of 267 studies, 24 articles were included in this review. The results of the meta-analysis indicated that addition of PG increased final setting time and Ca2+ ion release. Addition of Na2HPO4 did not change pH and cytotoxicity but reduced the final setting time. Incorporation of 5% CaCl2 reduced the setting time but did not alter the cytotoxicity of the cement. However, addition of 10% CaCl2 reduced cell viability, setting time, and compressive strength. CONCLUSION: Inclusion of 2.5% wt. Na2HPO4 and 5% CaCl2 in MTA can be advisable for enhancing the physical, chemical, and cytotoxic characteristics of the admixture. Conversely, caution is advised against incorporating elevated concentrations of PG due to its retarding effect. TRIAL REGISTRATION: PROSPERO registration number: CRD42021253707.


Subject(s)
Aluminum Compounds , Calcium Compounds , Oxides , Silicates , Aluminum Compounds/toxicity , Aluminum Compounds/chemistry , Calcium Chloride/pharmacology , Dental Cements/toxicity , Dental Cements/chemistry , Drug Combinations , Oxides/toxicity , Oxides/chemistry , Propylene Glycol/chemistry
18.
J Hazard Mater ; 469: 133966, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38452681

ABSTRACT

Functionalized biochars are crucial for simultaneous soil remediation and safe agricultural production. However, a comprehensive understanding of the remediation mechanism and crop safety is imperative. In this work, the all-in-one biochars loaded with a Bacillus aryabhattai (B10) were developed via physisorption (BBC) and sodium alginate embedding (EBC) for simultaneous toxic As and Cd stabilization in soil. The bacteria-loaded biochar composites significantly decreased exchangeable As and Cd fractions in co-contaminated soil, with enhanced residual fractions. Heavy metal bioavailability analysis showed a maximum CaCl2-As concentration decline of 63.51% and a CaCl2-Cd decline of 50.96%. At a 3% dosage of composite, rhizosphere soil showed improved organic matter, cation exchange capacity, and enzyme activity. The aboveground portion of water spinach grown in pots was edible, with final As and Cd contents (0.347 and 0.075 mg·kg⁻¹, respectively) meeting food safety standards. Microbial analysis revealed the composite's influence on the rhizosphere microbial community, favoring beneficial bacteria and reducing plant pathogenic fungi. Additionally, it increased functional microorganisms with heavy metal-resistant genes, limiting metal migration in plants and favoring its growth. Our research highlights an effective strategy for simultaneous As and Cd immobilization in soil and inhibition of heavy metal accumulation in vegetables.


Subject(s)
Arsenic , Bacillus , Ipomoea , Metals, Heavy , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Arsenic/analysis , Calcium Chloride , Metals, Heavy/analysis , Charcoal/pharmacology , Soil , Bacteria , Soil Pollutants/analysis
19.
J Sci Food Agric ; 104(9): 5284-5295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38308594

ABSTRACT

BACKGROUND: The increasing attention toward frozen soy-based foods has sparked interest. Variations exist in the quality and structure of soymilk gels induced by different salt ions, leading to diverse changes post-freezing. This study compared and analyzed the effects of calcium chloride (CC), magnesium chloride (MC) and calcium sulfate (CS) on the quality characteristics and protein structure changes of soymilk gels (CC-S, MC-S and CS-S) before and after freezing, and clarified the mechanisms of freezing on soymilk gel. RESULTS: The formation rate of soymilk gel is influenced by the type of salt ions. In comparison to CS and MC, soymilk gel induced by CC exhibited the fastest formation rate, highest gel hardness, lowest moisture content, and smaller gel pores. However, freezing treatment deteriorated the quality of soymilk gel induced by different salt ions, leading to a decline in textural properties (hardness and chewiness). Among these, the textual state of CC-induced soymilk gel remained optimal, exhibiting the least apparent damage and minimal cooking loss. Freezing treatments prompt a transition of soymilk gel secondary structure from ß-turns to ß-sheets, disrupting the protein's tertiary structure. Furthermore, freezing treatments also fostered the crosslinking between soymilk gel protein, increasing the content of disulfide bonds. CONCLUSION: The quality of frozen soymilk gel is influenced by the rate of gel formation induced by salt ions. After freezing, soymilk gel with faster gelation rates exhibited a greater tendency for the transformation of protein-water interactions into protein-protein interactions. They showed a higher degree of disulfide bond formation, resulting in a more tightly knit and firm frozen gel network structure with denser and more uniformly distributed pores. © 2024 Society of Chemical Industry.


Subject(s)
Freezing , Gels , Soy Milk , Soy Milk/chemistry , Gels/chemistry , Soybean Proteins/chemistry , Food Handling/methods , Magnesium Chloride/chemistry , Calcium Chloride/chemistry , Ions/chemistry
20.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38378945

ABSTRACT

Monascus pigments (MPs) are a kind of natural ingredient fermented by Monascus spp., which contains three types of pigments: red, orange, and yellow ones. Monascus yellow pigments have a restricted yield and cannot meet industrial application. The method and mechanism of CaCl2 improving yellow pigments production by liquid fermentation of Monascus purpureus M8 were studied in order to overcome the low yield of yellow pigments produced by liquid fermentation. Changes in physiological and biochemical indicators explained the effects of CaCl2 on the production of Monascus yellow pigments from solid fermentation. The intracellular yellow pigments, orange pigments, and red pigments increased by 156.08%, 43.76%, and 42.73%, respectively, with 60 g/l CaCl2 addition to culture medium. The amount of red and orange pigments reduced, while the proportion of yellow pigments increased and the relative peak area of intracellular yellow pigments accounted for a dominant 98.2%, according to thin layer chromatography and high performance liquid chromatography analyses. Furthermore, the influence of CaCl2 extended to the modulation of pigments synthesis-related gene expression in M8 strain. This modulation led to a pronounced upregulation in the expression of the yellow pigments synthesis-related gene, mppE, signifying a pivotal role played by CaCl2 in orchestrating the intricate machinery behind yellow pigments biosynthesis.


Subject(s)
Monascus , Fermentation , Monascus/metabolism , Calcium Chloride/metabolism , Pigments, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...