Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.009
Filter
1.
Dev Comp Immunol ; 131: 104379, 2022 06.
Article in English | MEDLINE | ID: mdl-35231466

ABSTRACT

Integrins are transmembrane receptor heterodimers composed of α and ß subunits. They are known to mediate extracellular signals to promote cell adhesion and spreading, and are therefore essential for cellular immunity. However, proteins that bind to integrin cytoplasmic domains and mediate intracellular signaling to promote cell adhesion require identification. Calcium and integrin-binding protein 1 (CIB1) that binds to the integrin α-cytoplasmic domain has rarely been examined in insects. In this study, we found that 20-hydroxyecdysone promoted cell phagocytosis and spreading in Helicoverpa armigera. Transcriptomic analyses of hemocytes identified an integrin α gene (HaINTα-PS1) whose expression could be induced by either 20-hydroxyecdysone injection or bead challenge. Isothermal titration calorimetry assays showed that H. armigera CIB1-like (HaCIB1-like) weakly bound to the cytoplasmic domain of HaINTα-PS1 in the presence of calcium. HaINTα-PS1 or HaCIB1-like knockdown inhibited hemocytic encapsulation and phagocytosis, and plasmatocyte spreading. Moreover, HaCIB1-like overexpression in a H. armigera epidermal cell line overexpanded cells and impaired cell phagocytosis. Thus, insect CIB1-like potentially interacted with integrin α-cytoplasmic domain and facilitated cell adhesion. This study enriches our understanding of the molecular mechanism underlying integrin-mediated cellular immunity in insects.


Subject(s)
Calcium-Binding Proteins , Integrins , Moths , Animals , Calcium-Binding Proteins/immunology , Calcium-Binding Proteins/metabolism , Ecdysterone/metabolism , Immunity, Cellular , Integrins/immunology , Integrins/metabolism , Moths/immunology , Moths/metabolism
2.
Sci Rep ; 12(1): 2165, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140249

ABSTRACT

Aging and reduced exposure to environmental microbes can both potentiate neuroinflammatory responses. Prior studies indicate that immunization with the immunoregulatory and anti-inflammatory bacterium, Mycobacterium vaccae (M. vaccae), in aged rats limits neuroimmune activation and cognitive impairments. However, the mechanisms by which M. vaccae immunization ameliorates age-associated neuroinflammatory "priming" and whether microglia are a primary target remain unclear. Here, we investigated whether M. vaccae immunization protects against microglia morphological changes in response to aging. Adult (3 mos) and aged (24 mos) Fisher 344 × Brown Norway rats were immunized with either M. vaccae or vehicle once every week for 3 weeks. Aging led to elevated Iba1 immunoreactivity, microglial density, and deramification of microglia processes in the hippocampus and amygdala but not other brain regions. Additionally, aged rats exhibited larger microglial somas in the dorsal hippocampus, suggestive of a more activated phenotype. Notably, M. vaccae treatment ameliorated indicators of microglia activation in both the amygdala and hippocampus. While changes in morphology appeared to be region-specific, gene markers indicative of microglia activation were upregulated by age and lowered in response to M. vaccae in all brain regions evaluated. Taken together, these data suggest that peripheral immunization with M. vaccae quells markers of age-associated microglia activation.


Subject(s)
Aging , Amygdala/cytology , Hippocampus/cytology , Microglia/immunology , Microglia/ultrastructure , Mycobacteriaceae/immunology , Amygdala/immunology , Animals , Calcium-Binding Proteins/analysis , Calcium-Binding Proteins/immunology , Hippocampus/immunology , Immunization , Male , Microfilament Proteins/analysis , Microfilament Proteins/immunology , Rats
3.
PLoS Pathog ; 18(1): e1009718, 2022 01.
Article in English | MEDLINE | ID: mdl-35073381

ABSTRACT

Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that uses two distinct type III secretion systems (T3SSs), termed Salmonella pathogenicity island (SPI)-1 and SPI-2, to deliver virulence factors into the host cell. The SPI-1 T3SS enables Salmonella to invade host cells, while the SPI-2 T3SS facilitates Salmonella's intracellular survival. In mice, a family of cytosolic immune sensors, including NAIP1, NAIP2, and NAIP5/6, recognizes the SPI-1 T3SS needle, inner rod, and flagellin proteins, respectively. Ligand recognition triggers assembly of the NAIP/NLRC4 inflammasome, which mediates caspase-1 activation, IL-1 family cytokine secretion, and pyroptosis of infected cells. In contrast to mice, humans encode a single NAIP that broadly recognizes all three ligands. The role of NAIP/NLRC4 or other inflammasomes during Salmonella infection of human macrophages is unclear. We find that although the NAIP/NLRC4 inflammasome is essential for detecting T3SS ligands in human macrophages, it is partially required for responses to infection, as Salmonella also activated the NLRP3 and CASP4/5 inflammasomes. Importantly, we demonstrate that combinatorial NAIP/NLRC4 and NLRP3 inflammasome activation restricts Salmonella replication in human macrophages. In contrast to SPI-1, the SPI-2 T3SS inner rod is not sensed by human or murine NAIPs, which is thought to allow Salmonella to evade host recognition and replicate intracellularly. Intriguingly, we find that human NAIP detects the SPI-2 T3SS needle protein. Critically, in the absence of both flagellin and the SPI-1 T3SS, the NAIP/NLRC4 inflammasome still controlled intracellular Salmonella burden. These findings reveal that recognition of Salmonella SPI-1 and SPI-2 T3SSs and engagement of both the NAIP/NLRC4 and NLRP3 inflammasomes control Salmonella infection in human macrophages.


Subject(s)
Inflammasomes/immunology , Macrophages/immunology , Macrophages/microbiology , Salmonella Infections/immunology , Type III Secretion Systems/immunology , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/immunology , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Neuronal Apoptosis-Inhibitory Protein/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Virulence
4.
Clin Immunol ; 234: 108894, 2022 01.
Article in English | MEDLINE | ID: mdl-34843986

ABSTRACT

Cupressaceae pollen causes allergic reactions worldwide with long-lasting symptomatic periods. Currently, no cypress polcalcin is available for diagnostic purposes. With the aim to investigate the pattern of sensitization to a cypress polcalcin, a synthetic gene of Jun o 4, the Juniperus oxycedrus 4EF-hand polcalcin, was cloned and expressed in Escherichia coli. Its features were investigated in comparison with the grass 2EF-hand Phl p 7. Rhinitis was the symptom most frequently reported in a cohort of Italian patients sensitized to rJun o 4 and/or rPhl p 7. The detection of many pollen allergic patients sensitized to the cypress polcalcin, but negative to Phl p 7, indicates that Phl p 7 cannot be further considered a marker of sensitization towards all the polcalcins. A 4EF-hand cypress polcalcin claims the inclusion in allergy diagnostic tests. In addition, the sensitivity of polcalcins to gastrointestinal digestion is reported and discussed for the first time.


Subject(s)
Allergens/immunology , Antigens, Plant/immunology , Calcium-Binding Proteins/immunology , Juniperus/immunology , Rhinitis, Allergic, Seasonal/etiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cloning, Molecular , Female , Humans , Infant , Male , Middle Aged , Proteolysis , Rhinitis, Allergic, Seasonal/immunology , Young Adult
5.
Sci Immunol ; 6(66): eabi4493, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34860583

ABSTRACT

Detection of microbial products by multiprotein complexes known as inflammasomes is pivotal to host defense against pathogens. Nucleotide-binding domain leucine-rich repeat (NLR) CARD domain containing 4 (NLRC4) forms an inflammasome in response to bacterial products; this requires their detection by NLR family apoptosis inhibitory proteins (NAIPs), with which NLRC4 physically associates. However, the mechanisms underlying sterile NLRC4 inflammasome activation, which is implicated in chronic noninfectious diseases, remain unknown. Here, we report that endogenous short interspersed nuclear element (SINE) RNAs, which promote atrophic macular degeneration (AMD) and systemic lupus erythematosus (SLE), induce NLRC4 inflammasome activation independent of NAIPs. We identify DDX17, a DExD/H box RNA helicase, as the sensor of SINE RNAs that licenses assembly of an inflammasome comprising NLRC4, NLR pyrin domain­containing protein 3, and apoptosis-associated speck-like protein­containing CARD and induces caspase-1 activation and cytokine release. Inhibiting DDX17-mediated NLRC4 inflammasome activation decreased interleukin-18 release in peripheral blood mononuclear cells of patients with SLE and prevented retinal degeneration in an animal model of AMD. Our findings uncover a previously unrecognized noncanonical NLRC4 inflammasome activated by endogenous retrotransposons and provide potential therapeutic targets for SINE RNA­driven diseases.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Calcium-Binding Proteins/immunology , DEAD-box RNA Helicases/immunology , Inflammasomes/immunology , RNA/immunology , Retroelements/immunology , Animals , Apoptosis Regulatory Proteins/deficiency , Calcium-Binding Proteins/deficiency , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Knockout
6.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830103

ABSTRACT

Human saliva is a complex body fluid with more than 3000 different identified proteins. Besides rheological and lubricating properties, saliva supports wound healing and acts as an antimicrobial barrier. TFF peptides are secreted from the mucous acini of the major and minor salivary glands and are typical constituents of normal saliva; TFF3 being the predominant peptide compared with TFF1 and TFF2. Only TFF3 is easily detectable by Western blotting. It occurs in two forms, a disulfide-linked homodimer (Mr: 13k) and a high-molecular-mass heterodimer with IgG Fc binding protein (FCGBP). TFF peptides are secretory lectins known for their protective effects in mucous epithelia; the TFF3 dimer probably has wound-healing properties due to its weak motogenic effect. There are multiple indications that FCGBP and TFF3-FCGBP play a key role in the innate immune defense of mucous epithelia. In addition, homodimeric TFF3 interacts in vitro with the salivary agglutinin DMBT1gp340. Here, the protective roles of TFF peptides, FCGBP, and DMBT1gp340 in saliva are discussed. TFF peptides are also used to reduce radiotherapy- or chemotherapy-induced oral mucositis. Thus, TFF peptides, FCGBP, and DMBT1gp340 are promising candidates for better formulations of artificial saliva, particularly improving wound healing and antimicrobial effects even in the esophagus.


Subject(s)
Esophagus/immunology , Immunity, Innate , Mouth/immunology , Salivary Proteins and Peptides/immunology , Trefoil Factors/immunology , Calcium-Binding Proteins/immunology , Cell Adhesion Molecules/immunology , DNA-Binding Proteins/immunology , Humans , Tumor Suppressor Proteins/immunology
7.
Microbiol Spectr ; 9(2): e0091521, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34704826

ABSTRACT

Trypanosoma brucei belongs to a genus of protists that cause life-threatening and economically important diseases of human and animal populations in Sub-Saharan Africa. T. brucei cells are covered in surface glycoproteins, some of which are used to escape the host immune system. Exo-/endocytotic trafficking of these and other molecules occurs via a single copy organelle called the flagellar pocket (FP). The FP is maintained and enclosed around the flagellum by the flagellar pocket collar (FPC). To date, the most important cytoskeletal component of the FPC is an essential calcium-binding, polymer-forming protein called TbBILBO1. In searching for novel tools to study this protein, we raised nanobodies (Nb) against purified, full-length TbBILBO1. Nanobodies were selected according to their binding properties to TbBILBO1, tested as immunofluorescence tools, and expressed as intrabodies (INb). One of them, Nb48, proved to be the most robust nanobody and intrabody. We further demonstrate that inducible, cytoplasmic expression of INb48 was lethal to these parasites, producing abnormal phenotypes resembling those of TbBILBO1 RNA interference (RNAi) knockdown. Our results validate the feasibility of generating functional single-domain antibody-derived intrabodies to target trypanosome cytoskeleton proteins. IMPORTANCE Trypanosoma brucei belongs to a group of important zoonotic parasites. We investigated how these organisms develop their cytoskeleton (the internal skeleton that controls cell shape) and focused on an essential protein (BILBO1) first described in T. brucei. To develop our analysis, we used purified BILBO1 protein to immunize an alpaca to make nanobodies (Nb). Nanobodies are derived from the antigen-binding portion of a novel antibody type found only in the camel and shark families of animals. Anti-BILBO1 nanobodies were obtained, and their encoding genes were inducibly expressed within the cytoplasm of T. brucei as intrabodies (INb). Importantly, INb48 expression rapidly killed parasites producing phenotypes normally observed after RNA knockdown, providing clear proof of principle. The importance of this study is derived from this novel approach, which can be used to study neglected and emerging pathogens as well as new model organisms, especially those that do not have the RNAi system.


Subject(s)
Calcium-Binding Proteins/immunology , Cell Death/immunology , Cytoskeletal Proteins/immunology , Single-Domain Antibodies/immunology , Trypanosoma brucei brucei/immunology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/metabolism , Flagella/metabolism , RNA Interference , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/parasitology
8.
Food Funct ; 12(18): 8570-8582, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34338271

ABSTRACT

Sarcoplasmic-calcium-binding protein (SCP) has been investigated as a novel allergen in Crassostrea angulata. Nevertheless, knowledge of its effector-cell-based allergic relevance and epitopes is limited. In this study, the heat-resistant allergen SCP was able to induce significant upregulation of CD63 and CD203c (p < 0.05), which showed obvious allergenicity in a basophil activation test. Furthermore, immunoinformatic tools, a one-bead-one-compound peptide library, and phage display technology were combined to analyze the allergenic epitopes of SCP. Five linear epitopes named L-SCP-1 (AA22-33), L-SCP-2 (AA64-75), L-SCP-3 (AA80-90), L-SCP-4 (AA107-116), and L-SCP-5 (AA144-159) were verified using serological tests. Additionally, two conformational epitopes (C-SCP-1 and C-SCP-2) were determined, and C-SCP-1 was located at one of the calcium-binding sites (AA106-117). Moreover, SCP showed weaker typical α-helical features and higher hydrophobicity after Ca2+ depletion, which reduced its IgE-binding capacity. Overall, these epitope data could enhance our understanding of oyster allergens, which could be used to develop hypoallergenic shellfish products.


Subject(s)
Allergens/immunology , Calcium-Binding Proteins/immunology , Crassostrea/immunology , Epitopes/immunology , Immunoglobulin E/immunology , Shellfish Hypersensitivity/immunology , Shellfish Proteins/immunology , Adolescent , Adult , Animals , Basophils/immunology , Calcium/metabolism , Calcium-Binding Proteins/chemistry , Child , Child, Preschool , Female , Hot Temperature , Humans , Male , Middle Aged , Peptide Library , Protein Conformation , Protein Stability , Sequence Alignment , Young Adult
9.
Nat Commun ; 12(1): 5023, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408144

ABSTRACT

T cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-µbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αß T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-µbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Calcium-Binding Proteins/immunology , Hematopoietic Stem Cells/cytology , Lymphopoiesis , Primary Immunodeficiency Diseases/therapy , T-Lymphocytes/cytology , Adaptor Proteins, Signal Transducing/genetics , Animals , Antigens, CD34/genetics , Antigens, CD34/immunology , Calcium-Binding Proteins/genetics , Cell Lineage , Cell- and Tissue-Based Therapy , Cells, Cultured , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/physiopathology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
10.
Sci Rep ; 11(1): 17155, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433835

ABSTRACT

For the sensitive diagnosis of colorectal cancer lesions, advanced molecular imaging techniques using cancer-specific targets have emerged. However, issues regarding the clearance of unbound probes and immunogenicity remain unresolved. To overcome these limitations, we developed a small-sized scFv antibody fragment conjugated with FITC for the real-time detection of colorectal cancer by in vivo molecular endoscopy imaging. A small-sized scFv fragment can target colon cancer secreted protein-2 (CCSP-2), highly expressed in colorectal adenocarcinoma tissues; moreover, its full-length IgG probe has been used for molecular imaging previously. To assess the efficacy of anti-CCSP-2 scFv-FITC, surgical specimens were obtained from 21 patients with colorectal cancer for ex vivo molecular fluorescence analysis, histology, and immunohistochemistry. Orthotopic mice were administered with anti-CCSP-2 scFv-FITC topically and intravenously, and distinct tumor lesions were observed by real-time fluorescence colonoscopy. The fluorescence imaging of human colon cancer specimens allowed the differentiation of malignant tissues from non-malignant tissues (p < 0.05), and the CCSP-2 expression level was found to be correlated with the fluorescence intensity. Here, we demonstrated the feasibility and safety of anti-CCSP-2 scFv-FITC for molecular imaging as well as its potential in real-time fluorescence colonoscopy for the differential diagnosis of tumor lesions.


Subject(s)
Adenocarcinoma/diagnostic imaging , Colonoscopy/methods , Colorectal Neoplasms/diagnostic imaging , Optical Imaging/methods , Single-Chain Antibodies/immunology , Adenocarcinoma/pathology , Animals , Biomarkers, Tumor/immunology , Calcium-Binding Proteins/immunology , Colorectal Neoplasms/pathology , Female , Fluorescein-5-isothiocyanate , Fluorescent Antibody Technique/methods , HCT116 Cells , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged
11.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L533-L544, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34231388

ABSTRACT

Store-operated calcium entry (SOCE) is involved in the pathogenesis of airway inflammation and remodeling in asthma. Store-operated calcium entry-associated regulatory factor (SARAF) can downregulate SOCE. We sought to investigate the role of SARAF in the regulation of airway inflammation and remodeling in asthma mice models, as well as in the functional regulation of human airway smooth muscle cells (hASMCs). Balb/c mice were sensitized and challenged with ovalbumin to establish the asthma mice models. Mice were transfected with lentivirus, which expressed the SARAF gene + GFP (green fluorescence protein) or the negative control gene + GFP. Airway resistance was measured with the animal pulmonary function system. Airway inflammation and remodeling were evaluated via histological staining. In vitro cultured hASMCs were transfected with scrambled small interfering RNA (siRNA) or SARAF-specific siRNA, respectively. The proliferation, migration rate, hypertrophy, and SOCE activity of hASMCs were examined with Cell Counting Kit-8, wound healing test, bright field imaging, and Ca2+ fluorescence imaging, respectively. SARAF expression was measured by quantitative real-time PCR. Asthma mice models showed decreased SARAF mRNA expression in the lungs. SARAF overexpression attenuated airway inflammation, resistance, and also remodeling. Downregulation of SARAF expression with siRNA promoted the proliferation, migration, hypertrophy, and SOCE activity in hASMCs. SARAF plays a protective role against airway inflammation and remodeling in asthma mice models by blunting SOCE; SARAF may also be a functional regulating factor of hASMCs.


Subject(s)
Airway Remodeling/immunology , Asthma/immunology , Calcium-Binding Proteins/immunology , Gene Expression Regulation/immunology , Lung/immunology , Membrane Proteins/immunology , Myocytes, Smooth Muscle/immunology , Airway Remodeling/drug effects , Airway Remodeling/genetics , Airway Resistance/drug effects , Airway Resistance/genetics , Airway Resistance/immunology , Animals , Asthma/chemically induced , Asthma/genetics , Calcium-Binding Proteins/genetics , Female , Gene Expression Regulation/drug effects , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/immunology , Lung/pathology , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Transgenic , Myocytes, Smooth Muscle/pathology
12.
Mol Cancer Ther ; 20(10): 1988-1995, 2021 10.
Article in English | MEDLINE | ID: mdl-34315767

ABSTRACT

Dilpacimab (formerly ABT-165), a novel dual-variable domain immunoglobulin, targets both delta-like ligand 4 (DLL4) and VEGF pathways. Here, we present safety, pharmacokinetic (PK), pharmacodynamic (PD), and preliminary efficacy data from a phase I study (trial registration ID: NCT01946074) of dilpacimab in patients with advanced solid tumors. Eligible patients (≥18 years) received dilpacimab intravenously on days 1 and 15 in 28-day cycles at escalating dose levels (range, 1.25-7.5 mg/kg) until progressive disease or unacceptable toxicity. As of August 2018, 55 patients with solid tumors were enrolled in the dilpacimab monotherapy dose-escalation and dose-expansion cohorts. The most common treatment-related adverse events (TRAE) included hypertension (60.0%), headache (30.9%), and fatigue (21.8%). A TRAE of special interest was gastrointestinal perforation, occurring in 2 patients (3.6%; 1 with ovarian and 1 with prostate cancer) and resulting in 1 death. The PK of dilpacimab showed a half-life ranging from 4.9 to 9.5 days, and biomarker analysis demonstrated that the drug bound to both VEGF and DLL4 targets. The recommended phase II dose for dilpacimab monotherapy was established as 3.75 mg/kg, primarily on the basis of tolerability through multiple cycles. A partial response was achieved in 10.9% of patients (including 4 of 16 patients with ovarian cancer). The remaining patients had either stable disease (52.7%), progressive disease (23.6%), or were deemed unevaluable (12.7%). These results demonstrate that dilpacimab monotherapy has an acceptable safety profile, with clinical activity observed in patients with advanced solid tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Antibodies, Bispecific/pharmacology , Antineoplastic Agents/pharmacology , Calcium-Binding Proteins/immunology , Neoplasms/drug therapy , Vascular Endothelial Growth Factor A/immunology , Adaptor Proteins, Signal Transducing/blood , Adult , Aged , Antibodies, Bispecific/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Calcium-Binding Proteins/blood , Female , Follow-Up Studies , Humans , Male , Maximum Tolerated Dose , Middle Aged , Neoplasms/immunology , Neoplasms/pathology , Prognosis , Tissue Distribution , Vascular Endothelial Growth Factor A/blood
13.
Front Immunol ; 12: 702527, 2021.
Article in English | MEDLINE | ID: mdl-34276697

ABSTRACT

Inflammasomes comprise a family of cytosolic multi-protein complexes that modulate the activation of cysteine-aspartate-specific protease 1 (caspase-1) and promote the maturation and secretion of interleukin (IL)-1ß and IL-18, leading to an inflammatory response. Different types of inflammasomes are defined by their sensor protein which recognizes pathogenic ligands and then directs inflammasome assembly. Although the specific molecular mechanisms underlying the activation of most inflammasomes are still unclear, NLRC4 inflammasomes have emerged as multifaceted agents of the innate immune response, playing important roles in immune defense against a variety of pathogens. Other studies have also expanded the scope of NLRC4 inflammasomes to include a range of inherited human autoimmune diseases as well as proposed roles in cancer. In this review article, we provide an updated overview of NLRC4 inflammasomes, describing their composition, activation mechanisms and roles in both microbial infections and other disease conditions.


Subject(s)
Autoimmunity/immunology , Bacterial Infections/immunology , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/immunology , Inflammasomes/immunology , Neoplasms/immunology , Animals , Autoimmune Diseases/immunology , Humans , Immunity, Innate/immunology
14.
Indian J Med Microbiol ; 39(3): 334-338, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34099337

ABSTRACT

PURPOSE: Innate immunity receptors play key roles in recognition of bacterial associated molecular patterns. Inflammasomes and toll like receptors (TLRs) are the important innate immunity receptors. In this project transcription levels of TLR4, a TLR member, absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4), as inflammasomes, in the patients suffering from septicemia. METHODS: AIM2, NLRC4 and TLR4 mRNA levels were evaluated in the 40 patients suffering from septicemia and 40 healthy controls using Real-Time PCR technique. RESULTS: Data analysis revealed that, although NLRC4 expression decreased, TLR4 and AIM2 levels significantly increased in the patients suffering from septicemia. Gender and infection with various bacteria did not affect expression of AIM2, NLRC4 and TLR4. CONCLUSIONS: It appears that septicemia can be limited by immune responses in AIM2 and TLR4 dependent manner. The potential roles played by bacteria to down-regulation of NLRC4 need to be evaluated by further investigations.


Subject(s)
CARD Signaling Adaptor Proteins , Calcium-Binding Proteins , DNA-Binding Proteins , Sepsis , Toll-Like Receptor 4 , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/immunology , Case-Control Studies , DNA-Binding Proteins/immunology , Down-Regulation , Humans , Inflammasomes/immunology , Sepsis/immunology , Toll-Like Receptor 4/immunology , Up-Regulation
15.
Cardiovasc Res ; 117(13): 2639-2651, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34117866

ABSTRACT

AIMS: Interleukin-1ß (IL-1ß) is an important pathogenic factor in cardiovascular diseases including chronic heart failure (HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 ß are promising new therapeutic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to identify activation patterns of inflammasome subtypes as sources of IL-1ß. METHODS AND RESULTS: Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and permanent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in human Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF model in vivo. CONCLUSIONS: This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational study suggests the possibility of repositioning probenecid for HF indications.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Heart Failure/metabolism , Inflammasomes/metabolism , Myocytes, Cardiac/metabolism , Receptors, Cell Surface/metabolism , Adolescent , Adult , Aged , Animals , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Case-Control Studies , Connexins/antagonists & inhibitors , Connexins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Disease Models, Animal , Female , Heart Failure/drug therapy , Heart Failure/immunology , Heart Failure/physiopathology , Humans , Inflammasomes/immunology , Male , Middle Aged , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/immunology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Probenecid/pharmacology , Rats, Wistar , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Signal Transduction , Sus scrofa , THP-1 Cells , Ventricular Function, Left , Young Adult
16.
Fish Shellfish Immunol ; 115: 22-26, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34052388

ABSTRACT

Inflammation is a form of innate immune response of living organisms to harmful stimuli. In marine bivalves, inflammation is a common defense mechanism. Several studies have investigated the morphological features of inflammation in bivalves, such as hemocyte infiltration. However, the molecular and biochemical responses associated with inflammation in marine bivalves remain unexplored. Here, we investigated changes in nitric oxide (NO) levels, cyclooxygenase 2 (COX-2) activity, and allograft inflammatory factor-1 (AIF-1) gene expression levels in hemolymph samples collected from Manila clam (Ruditapes philippinarum) exposed to pro- and anti-inflammatory substances. These included the pro-inflammatory agent lipopolysaccharide (LPS), and the nonsteroidal anti-inflammatory drugs (NSAIDs) ibuprofen and diclofenac, all widely used in vertebrates. Our study showed that NO levels, COX-2 activity, and AIF-1 expression increased in response to the treatments with LPS and decreased in response to the treatments with NSAIDs in a concentration-dependent manner. These results suggest that the mechanism of inflammatory responses in bivalves is very similar to that of vertebrates, and we propose that inflammatory responses can be quantified using these techniques and used to determine the physiological status of marine bivalves exposed to biotic or abiotic stresses.


Subject(s)
Bivalvia/genetics , Bivalvia/immunology , Gene Expression/immunology , Immunity, Innate/genetics , Animals , Calcium-Binding Proteins/immunology , Cyclooxygenase 2/immunology , Diclofenac/administration & dosage , Ibuprofen/administration & dosage , Lipopolysaccharides/administration & dosage , Nitric Oxide/immunology , Water Pollutants, Chemical/administration & dosage
18.
N Biotechnol ; 64: 17-26, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-33992842

ABSTRACT

Notch signalling is a well-established oncogenic pathway, and its ligand Delta-like 1 (DLL1) is overexpressed in estrogen receptor-positive (ER+) breast cancers and associated with poor patient prognosis. Hence, DLL1 has become an interesting therapeutic target for breast cancer. Here, the development of specific functional blocking anti-DLL1 antibodies with potential activity against ER+ breast cancer cells is reported. Human DLL1 proteins, containing the essential regions for binding to the Notch receptor and Notch signalling activation, were produced and used to select specific scFv antibody fragments by phage display. Fifteen unique scFvs were identified and reformatted into full IgGs. Characterization of these antibodies by ELISA, surface plasmon resonance and flow cytometry enabled selection of three specific anti-DLL1 IgGs, sharing identical VH regions, with nM affinities. Cellular assays on ER+ breast cancer MCF-7 cells showed that one of the IgGs (IgG-69) was able to partially impair DLL1-mediated activation of the Notch pathway, as determined by Notch reporter and RT-qPCR assays, and to attenuate cell growth. Treatment of MCF-7 cells with IgG-69 reduced mammosphere formation, suggesting that it decreases the breast cancer stem cell subpopulation. These results support the use of this strategy to develop and identify potential anti-DLL1 antibodies candidates against breast cancer.


Subject(s)
Breast Neoplasms , Calcium-Binding Proteins/immunology , Cell Surface Display Techniques , Immunoglobulin G/biosynthesis , Membrane Proteins/immunology , Female , Humans , Ligands , MCF-7 Cells
19.
Parasit Vectors ; 14(1): 276, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34022913

ABSTRACT

BACKGROUND: The liver fluke Fasciola gigantica secretes excretory-secretory proteins during infection to mediate its interaction with the host. In this study, we investigated the immunomodulatory effects of a recombinant tegumental calcium-binding EF-hand protein 4 of F. gigantica (rFg-CaBP4) on goat monocytes. METHODS: The rFg-CaBP4 protein was induced and purified by affinity chromatography. The immunogenic reaction of rFg-CaBP4 against specific antibodies was detected through western blot analysis. The binding of rFg-CaBP4 on surface of goat monocytes was visualized by immunofluorescence assay. The localization of CaBP4 within adult fluke structure was detected by immunohistochemical analysis. The cytokine transcription levels in response to rFg-CaBP4 were examined using ABI 7500 real-time PCR system. The expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) in response to rFg-CaBP4 protein was analyzed using Flow cytometry. RESULTS: The isopropyl-ß-D-thiogalactopyranoside-induced rFg-CaBP4 protein reacted with rat sera containing anti-rFg-CaBP4 polyclonal antibodies in a western blot analysis. The adhesion of rFg-CaBP4 to monocytes was visualized by immunofluorescence and laser scanning confocal microscopy. Immunohistochemical analysis localized native CaBP4 to the oral sucker, pharynx, genital pore, acetabulum and tegument of adult F. gigantica. Co-incubation of rFg-CaBP4 with concanavalin A-stimulated monocytes increased the transcription levels of interleukin (IL)-2, IL-4, interferon gamma and transforming growth factor-ß. However, a reduction in the expression of IL-10 and no change in the expression of tumor necrosis factor-α were detected. Additionally, rFg-CaBP4-treated monocytes exhibited a marked increase in the expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) and a decrease in MHC-I expression, in a dose-dependent manner. CONCLUSIONS: These findings provide additional evidence that calcium-binding EF-hand proteins play roles in host-parasite interaction. Further characterization of the immunomodulatory role of rFg-CaBP4 should expand our understanding of the strategies used by F. gigantica to evade the host immune responses.


Subject(s)
Calcium-Binding Proteins/immunology , Fasciola/chemistry , Fasciola/immunology , Immunomodulation , Monocytes/immunology , Animals , Calcium-Binding Proteins/pharmacology , Cytokines/genetics , Cytokines/immunology , Fasciola/genetics , Fascioliasis/parasitology , Goats/immunology , Monocytes/drug effects , Recombinant Proteins/pharmacology
20.
Food Chem ; 359: 129878, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-33934031

ABSTRACT

The allergenic potency of the cricket Acheta domesticus, a promising edible insect, has never been assessed. This work aims to study the immunoreactivity of Acheta domesticus, and its cross-reactivity with the shrimp Litopenaeus vannamei, assessing the effect of cooking and gastrointestinal digestion on their allergenic properties. Different cricket proteins were detected by immunoblotting with shrimp-allergic patients' sera. Tropomyosin was identified as the most relevant IgE-binding protein, and its cross-reactivity with shrimp tropomyosin was demonstrated by ELISA. While shrimp tropomyosin showed scarce stability to gastric digestion, cricket tropomyosin withstood the whole digestion process. The sarcoplasmic calcium-binding protein, specifically detected in shrimp, showed exceptional stability to gastrointestinal digestion. IgE-binding proteins in a model of enriched baked products were partially protected from proteolysis. In conclusion, the ingestion of A. domesticus proteins poses serious concerns to the Crustacean-allergic population. The high stability of tropomyosin may represent a risk of primary sensitization and clinical cross-reactivity.


Subject(s)
Allergens/analysis , Food Hypersensitivity , Gryllidae/immunology , Immunoglobulin E/analysis , Penaeidae/chemistry , Shellfish/analysis , Animals , Calcium-Binding Proteins/immunology , Cross Reactions , Digestion , Enzyme-Linked Immunosorbent Assay , Food Handling , Gryllidae/chemistry , Humans , Immunoblotting , Tropomyosin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...