Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
BMC Plant Biol ; 24(1): 357, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698319

ABSTRACT

BACKGROUND: Among different adsorbents, natural and inorganic compounds such as diatomite are important and advantageous in terms of high efficiency and cost-effectiveness, and function in stabilizing heavy metals in the environment. Calendula officinalis, a plant known as a high accumulator of heavy metals, was cultivated in soil treated with varying concentrations of modified diatomite to demonstrate the efficiency of modified diatomite in stabilizating of heavy metals in soils, RESULTS: The modification of diatomite aimed to enhance Calendula officinalis adsorptive properties, particularly towards heavy metals such as lead (Pb), Zinc (Zn), Chromium (Cr), Nickle (Ni), and Copper (Cu), common contaminants in industrial soils. The experimental design included both control and treated soil samples, with assessments at regular intervals. Modified diatomite significantly decreased the bioaccumulation of heavy metals in contaminated soils except Zn, evidenced by decreased DTPA extractable heavy metals in soil and also heavy metal concentrations in plant tissues. Using 10% modified diatomite decreased 91% Pb and Cu, 78% Cr, and 79% Ni concentration of plants compared to the control treatment. The highest concentration of Zn in plant tissue was observed in 2.5% modified diatomite treatment. Remarkably, the application of modified diatomite also appeared to improve the nutrient profile of the soil, leading to enhanced uptake of key nutrients like phosphorus (P) 1.18%, and potassium (K) 79.6% in shoots and 82.3% in roots in Calendula officinalis. Consequently, treated plants exhibited improved growth characteristics, including shoots and roots height of 16.98% and 12.8% respectively, and shoots fresh and dry weight of 48.5% and 50.2% respectively., compared to those in untreated, contaminated soil. CONCLUSION: The findings suggest promising implications for using such amendments in ecological restoration and sustainable agriculture, particularly in areas impacted by industrial pollution.


Subject(s)
Calendula , Diatomaceous Earth , Metals, Heavy , Soil Pollutants , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Diatomaceous Earth/metabolism , Calendula/metabolism , Calendula/chemistry , Soil/chemistry , Biodegradation, Environmental , Environmental Restoration and Remediation/methods
2.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791364

ABSTRACT

The use of natural active substances and the development of new formulations are promising directions in the cosmetic and pharmacy industries. The primary purpose of this research was the production of microparticles based on whey protein isolate (WPI) and calcium alginate (ALG) containing Calendula officinalis flower extract and their incorporation into films composed of gelatin, WPI, and glycerol. Both swollen and dry microparticles were studied by optical microscopy and their sizes were measured. Water absorption by the microparticles, their loading capacity, and the release profile of flower extract were also characterized. The films were analyzed by mechanical tests (Young's modulus, tensile strength, elongation at break), swelling capacity, contact angle, and moisture content measurements. The presented data showed that the active ingredient was successfully enclosed in spherical microparticles and completely released after 75 min of incubation at 37 °C. The incorporation of the microparticles into polymer films caused a decrease in stiffness and tensile strength, simultaneously increasing the ductility of the samples. Moreover, the films containing microparticles displayed higher swelling ability and moisture content compared to those without them. Hence, the materials prepared in this study with Calendula officinalis flower extract encapsulated into polymeric microspheres can be a starting point for the development of new products intended for skin application; advantages include protection of the extract against external factors and a controlled release profile.


Subject(s)
Calendula , Delayed-Action Preparations , Flowers , Plant Extracts , Tensile Strength , Whey Proteins , Calendula/chemistry , Flowers/chemistry , Plant Extracts/chemistry , Whey Proteins/chemistry , Delayed-Action Preparations/chemistry , Alginates/chemistry , Gelatin/chemistry , Microspheres
3.
Int J Biol Macromol ; 267(Pt 2): 131552, 2024 May.
Article in English | MEDLINE | ID: mdl-38615855

ABSTRACT

This study aimed to investigate a novel method for the green synthesis of iron nanoparticles (FeNPs) using marigold extract (Calendula officinalis L), kraft pulping black liquor, and nanocellulose. Then, the efficacy of FeNPs as a direct nanofertilizer on the growth parameters of marigold was investigated. Characterization techniques including FESEM, EDX, VSM, and FTIR were used to confirm the successful synthesis of FeNPs. The characterization results confirmed the formation and presence of FeNPs in the 20-100 nm range. FeNPs synthesized with nanocellulose notably enhanced marigold growth parameters compared to other materials. However, all nanoparticle variants, including those from marigold extract and black liquor, improved germination, plant height, root length, and plant dry weight compared to the control. Moreover, treatments exhibited higher available iron and total plant iron levels than the control. Thus, employing 10 mg FeNPs (prepared with 5.0 % nanocellulose) appears optimal for enhancing marigold growth and yield.


Subject(s)
Cellulose , Green Chemistry Technology , Iron , Metal Nanoparticles , Plant Extracts , Iron/chemistry , Cellulose/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Calendula/chemistry , Calendula/growth & development , Germination/drug effects
4.
ACS Appl Mater Interfaces ; 15(51): 59269-59279, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38085997

ABSTRACT

The skin, the body's largest organ, acts as a protective barrier against pathogens and environmental damage. Skin burns can result from heat, chemicals, friction, or electricity. Nanoscience has recently been utilized to create ointments and creams for burns. Zinc oxide nanoparticles are crucial due to their antimicrobial and antioxidant properties. In this study, a cream containing nanoparticles was loaded with calendula extract, and its ability to promote tissue healing was investigated in Wistar rats with skin burns. The zinc oxide nanoparticles were chemically synthesized and loaded with calendula extract. The morphology and physicochemical properties of the nanoparticles were confirmed by SEM, ZETA size, XRD, and FTIR assays. The MTT technique was employed to assess the cream's impact on fibroblast growth. The antimicrobial activity of the nanoparticles was investigated against Pseudomonas using the MIC method. Real-time PCR was used to determine the expression of the Bax and Bcl-2 genes in aeruginosa. The results showed that zinc oxide nanoparticles at high concentrations increased the proliferation of the fibroblast cells. Histopathological studies showed granulation and epithelialization of the tissue without any hemorrhage or tissue infection during the first days of treatment with this cream. The animal models treated with the cream showed an increase in Bcl-2 gene expression and a decrease in Bax expression. We concluded that zinc oxide nanoparticles loaded with calendula extract have a practical effect in healing burn wounds due to their unique antibacterial properties of zinc oxide nanoparticles and their anti-inflammatory and wound-healing effects. The synergistic effect of these two substances significantly improved the healing process. This newly developed cream can be introduced as a successful and viable treatment option in burn wounds.


Subject(s)
Anti-Infective Agents , Burns , Calendula , Nanoparticles , Zinc Oxide , Rats , Animals , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Calendula/chemistry , bcl-2-Associated X Protein , Rats, Wistar , Wound Healing , Anti-Infective Agents/pharmacology , Burns/drug therapy
5.
Biosci Biotechnol Biochem ; 87(7): 683-687, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37024266

ABSTRACT

Calendula officinalis is a medicinal plant in the Asteraceae family, and it has a broad range of biological activities. In this study, we focused on the roots of C. officinalis, which have remarkable anti-inflammatory properties. By using a bioassay-guided fractionation approach, prenylated acetophenones 1 and 2-of which 1 was previously unknown-were isolated, and their structures were determined by spectroscopic analysis. Both compounds decreased lipopolysaccharide-stimulated NO production in J774.1 cells. This study could lead to the use of the Calendula roots as a natural source of inflammatory mediators.


Subject(s)
Asteraceae , Calendula , Plant Extracts/pharmacology , Plant Extracts/chemistry , Calendula/chemistry , Anti-Inflammatory Agents/pharmacology
6.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500716

ABSTRACT

Marigold (Calendula), an important asteraceous genus, has a history of many centuries of therapeutic use in traditional and officinal medicines all over the world. The scientific study of Calendula metabolites was initiated at the end of the 18th century and has been successfully performed for more than a century. The result is an investigation of five species (i.e., C. officinalis, C. arvensis, C. suffruticosa, C. stellata, and C. tripterocarpa) and the discovery of 656 metabolites (i.e., mono-, sesqui-, di-, and triterpenes, phenols, coumarins, hydroxycinnamates, flavonoids, fatty acids, carbohydrates, etc.), which are discussed in this review. The identified compounds were analyzed by various separation techniques as gas chromatography and liquid chromatography which are summarized here. Thus, the genus Calendula is still a high-demand plant-based medicine and a valuable bioactive agent, and research on it will continue for a long time.


Subject(s)
Calendula , Triterpenes , Calendula/chemistry , Flavonoids/metabolism , Phytochemicals/metabolism , Plant Extracts/chemistry , Triterpenes/chemistry
7.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558038

ABSTRACT

As part of a project aimed at promoting the use of Calendula arvensis (Vaill.) L. (field marigold, Asteraceae) phytocomplexes in cosmeceutical formulations, the chemical composition in apolar specialized metabolites is herein elucidated. Furthermore, the screening of the cytotoxicity of the apolar extracts was evaluated in order to underline their safety as functional ingredients for cosmetics. After dissection of Calendula organs (florets, fruits, leaves, bracts, stems, and roots), ultrasound-assisted maceration in n-hexane as an extracting solvent allowed us to obtain oil-like mixtures, whose chemical composition has been highlighted through a UHPLC-ESI-QqTOF-MS/MS approach. Twenty-nine metabolites were tentatively identified; different compounds, among which the well-known poly-unsaturated fatty acids, and oxylipins and phosphatides were detected for the first time in Calendula genus. The screening of the dose-response cytotoxicity of the apolar extracts of C. arvensis highlighted the concentration of 10 µg/mL as the most suitable for the formulation of cosmeceutical preparations. Sera enriched with leaf and fruit apolar extracts turned out to have the best activity, suggesting it can be used as a new source in skin care thanks to their higher content in fatty acids.


Subject(s)
Calendula , Cosmeceuticals , Cosmeceuticals/pharmacology , Cosmeceuticals/analysis , Calendula/chemistry , Tandem Mass Spectrometry , Plant Leaves/chemistry , Plant Extracts/chemistry
8.
Chem Biodivers ; 19(12): e202200367, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274055

ABSTRACT

The chemical profile of the hexane extracts of the subspecies carbonellii, greuteri, marginata, trialata, and vejerensis of Calendula suffruticosa growing in Spain, herein described for the first time, were studied to access their value as a chemo taxonomical tool and search for potentially useful compounds. The subsp. greuteri and carbonellii showed higher extract yields. Terpenoids were the most abundant chemical class in subsp. carbonellii, greuteri, trialata, and vejerensis, while alkanes were the most abundant in subsp. marginata. Differences in chemical constituents were identified among the subspecies of C. suffruticosa analysed, which the PCA can prove. The subsp. trialata and greuteri showed more significant phytochemical similarity, which might indicate genetic proximity between these two subspecies. C. suffruticosa subsp. marginata presented the fewest number of compounds and in the smallest quantities, and C. suffruticosa subsp. vejerensis presented the largest number, however, both showed no alcohols. Furthermore, some of the compounds found in significant amounts are known for their pharmacological and nutraceutical properties, denoting potential use.


Subject(s)
Calendula , Hexanes , Calendula/chemistry , Spain , Alkanes/analysis , Plant Extracts/chemistry
9.
Plant Physiol Biochem ; 183: 128-137, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35588560

ABSTRACT

Polyamines (PAs) are natural active compounds having more than two amino groups that play important roles in many physiological and developmental processes in plants. The purpose of this research was to see how foliar polyamine spray affected growth and photosynthetic indices, as well as secondary metabolites and antioxidant activity of the aqueous and methanolic extracts of pot marigold (Calendula officinalis L.). The experiment lasted for three months and was arranged in a randomized complete design with four replications. Three separate concentrations (0.5, 1 and 2.5 mM) of spermine (SPM), spermidine (SPD), and putrescine (PUT) were sprayed at four/five fully expanded leaf stage and some physiochemical attributes were evaluated. The treatments caused a significant increase in morphological and photosynthetic parameters and total oil. There were also significant variations in total phenolic and flavonoid content. Compared to other polyamines, 1 mM SPD foliar spraying showed the greatest effect. Furthermore, the highest antioxidant capacity (DPPH* scavenging assay, ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC) and ß-carotene bleaching activity) was observed in the 1 mM SPD treatment. The results showed that the calendula essential oils (EOs) were rich in sesquiterpenes hydrocarbons (55.92-95.94%), with c-Cadinene and d-Cadinene as the major sesquiterpenes in the EOs. Also, the flowers were rich sources of carotenoids (lutein, flavoxanthin and luteoxanthin) following polyamines application. Hence, it can be inferred that polyamines specially spermidine would find a wide range of application in pharmaceutical industries due to its impact on antioxidant properties of phenolic and flavonoid compounds.


Subject(s)
Calendula , Antioxidants/metabolism , Calendula/chemistry , Calendula/metabolism , Flavonoids , Phenols , Phytochemicals/pharmacology , Plant Oils , Polyamines/metabolism , Polyamines/pharmacology , Spermidine/metabolism , Spermidine/pharmacology
10.
Nat Prod Res ; 36(22): 5747-5752, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35007183

ABSTRACT

A new phytoconstituent; (6Z,9Z)-heptadeca-6,9-diene-5,11-dione (1) was isolated from Calendula officinalis methanol extract. The structure of 1 was determined based on the analysis of NMR spectra and HRESIMS. It was tested for antimicrobial and antiprotozoal activities. Compound 1 showed leishmanicidal activity against L. donovani amastigote with an IC50 of 16.4394 µM and IC90 of 28.9015 µM and a weak antitrypanosomal activity with an IC50 of 37.6136 µM. The cytotoxicity of 1 was evaluated using standard experimental procedures against THP1 cells and no cytotoxicity was observed indicating its selectivity and safety.Supplemental data for this article can be accessed here.


Subject(s)
Antiprotozoal Agents , Calendula , Calendula/chemistry , Antiprotozoal Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
11.
Molecules ; 26(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641478

ABSTRACT

The use of selenium nanoparticles (SeNPs) in the biomedical area has been increasing as an alternative to the growing bacterial resistance to antibiotics. In this research, SeNPs were synthesized by green synthesis using ascorbic acid (AsAc) as a reducing agent and methanolic extract of Calendula officinalis L. flowers as a stabilizer. Characterization of SeNPs was performed by UV-vis spectrophotometry, infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. SeNPs of 40-60 nm and spherical morphologies were obtained. The antibacterial activity of marigold extracts and fractions was evaluated by disk diffusion methodology. The evaluation of SeNPs at different incubation times was performed through the colony-forming unit (CFU) count, in both cases against Serratia marcescens, Enterobacter cloacae, and Alcaligenes faecalis bacteria. Partial antibacterial activity was observed with methanolic extracts of marigold leaves and flowers and total inhibition with SeNPs from 2 h for S. marcescens, 1 h for E. cloacae, and 30 min for A. faecalis. In addition, SeNPs were found to exhibit antioxidant activity. The results indicate that SeNPs present a potentiated effect of both antimicrobial and antioxidant activity compared to the individual use of marigold extracts or sodium selenite (Na2SeO3). Their application emerges as an alternative for the control of clinical pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Calendula/chemistry , Nanoparticles/administration & dosage , Plant Extracts/metabolism , Selenium/chemistry , Bacteria/growth & development , Bacteria/isolation & purification , Humans , Nanoparticles/chemistry
12.
Biomed Res Int ; 2021: 4593759, 2021.
Article in English | MEDLINE | ID: mdl-34552986

ABSTRACT

The present study deals with the evaluation of the age-defying potential of topical cream formulations bearing Geranium essential oil/Calendula essential oil-entrapped ethanolic lipid vesicles (ELVs). Two types of cream formulations were prepared, viz., conventional and ELVs spiked o/w creams. Essential oil- (EO-) loaded ELVs were characterized by vesicle size, polydispersity index, encapsulation efficiency, and scanning electron microscopy. The cream formulations were evaluated for homogeneity, spreadability, viscosity, pH, in vitro antioxidant capacity, sun protection factor, and in vitro collagenase and elastase inhibition capacity. Confocal laser scanning microscopy (CLSM) was performed to ascertain skin permeation of conventional and vesicular cream. The results of in vitro antioxidant studies showed that GEO-/CEO-loaded vesicular creams have notable antioxidant capacity when compared to nonvesicular creams. GEO- or CEO-loaded vesicular creams exhibited the highest SPF value 10.26 and 18.54, respectively. Both the EO-based vesicular creams showed in vitro collagenase and elastase enzyme inhibition capacity. CLSM images clearly depicted that vesicular cream deep into the skin layers. From the research findings, the age-defying potential and photoprotective effects of GEO and CEO were confirmed. It can be concluded that ELVs are able to preserve the efficiency of EOs and have the potential to combat skin aging.


Subject(s)
Calendula/chemistry , Drug Delivery Systems , Geranium/chemistry , Lipids/chemistry , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Skin Aging/drug effects , Skin Cream/pharmacology , Administration, Cutaneous , Animals , Antioxidants/pharmacology , Biphenyl Compounds/chemistry , Collagenases/metabolism , Drug Compounding , Enzyme Inhibitors/pharmacology , Ethanol/chemistry , Female , Free Radical Scavengers/pharmacology , Hydrogen-Ion Concentration , Male , Nitric Oxide/metabolism , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Particle Size , Picrates/chemistry , Rats , Skin Irritancy Tests , Sunscreening Agents/pharmacology , Viscosity
13.
Bol. latinoam. Caribe plantas med. aromát ; 20(5): 496-502, sept. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1368658

ABSTRACT

We aimed to investigate the effects of Calendula officinalis and Echinacea purpurea extracts in terms of growth parameters, antibacterial activity and phenolic profile in tomato infected by Clavibacter michiganensis subsp. michiganensis (CmmT7). A significant difference was observed in E. purpuraextract, indicating the highest effects on plant height (27.25 cm), fresh plant weight (28.45 cm), root length (24.42 cm), and root weight (6.74 g) (p<0.05). Moreover, Calendula officinalis and Echinacea purpurea extracts showed significant inhibitory activity against CmmT7 (p<0.05). Among phenolic compounds, the only chlorogenic acid amounts were varied in the tomato seedlings leaves with C. officinalis extract (K3) + CmmT7, E. purpurea extract (E3) + CmmT7 and CmmT7 (p<0.01). Moreover, chlorogenic acid amount was approximately 9 times higher than in CmmT7-treated leaves when compared to control. The results showed that application of the extracts of these plants had a significant influence on bacterial canker and growth parameters.


Nuestro objetivo fue investigar los efectos de los extractos de Calendula officinalis y Echinacea purpurea en términos de parámetros de crecimiento, actividad antibacteriana y perfil fenólico en tomate infectado por Clavibacter michiganensis subsp. michiganensis (CmmT7). Se observó una diferencia significativa en el extracto de E. purpura, que indica los mayores efectos sobre la altura de la planta (27,25 cm), el peso de la planta fresca(28,45 cm), la longitud de la raíz (24,42 cm) y el peso de la raíz (6,74 g) (p<0,05). Además, los extractos de Calendula officinalis y Echinacea purpurea mostraron una actividad inhibidora significativa contra CmmT7 (p<0,05). Entre los compuestos fenólicos, las únicas cantidades de ácido clorogénico se variaron en las hojas de las plántulas de tomate con extracto de C. officinalis (K3) CmmT7, extracto de E. purpurea(E3) CmmT7 y CmmT7 (p<0.01). Además, la cantidad de ácido clorogénico fue aproximadamente 9 veces mayor que en las hojas tratadas con CmmT7 en comparación con el control. Los resultados mostraron que la aplicación de los extractos de estas plantas tuvo una influencia significativa sobre el cancro bacteriano y los parámetros de crecimiento.


Subject(s)
Plant Extracts/pharmacology , Calendula/chemistry , Echinacea/chemistry , Clavibacter/drug effects , Anti-Bacterial Agents/pharmacology , Plant Diseases , Plants, Medicinal , Plant Extracts/chemistry , Microbial Sensitivity Tests , Solanum lycopersicum , Plant Leaves , Phenolic Compounds/analysis , Anti-Bacterial Agents/chemistry
14.
Physiol Res ; 70(4): 615-625, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34062080

ABSTRACT

Several plants have the potential to protect essential reproductive processes such as spermatogenesis or steroidogenesis, however, effective concentrations and main mechanisms of action are still unknown. This in vitro study was aimed to assess the effects of Apium graveolens L., Levisticum officinale, and Calendula officinalis L. extracts on the structural integrity, functional activity and gap junctional intercellular communication (GJIC) in mice Leydig cells. TM3 cells were grown in the presence of experimental extracts (37.5; 75; 150 and 300 µg/ml) for 24 h. For the present study, high-performance liquid chromatography analysis was used to quantify flavonoids or phenolic acids. Subsequently, Leydig cell viability was assessed by alamarBlue assay, while the cell membrane integrity was detected by 5-carboxyfluorescein diacetate-acetoxymethyl ester. The level of steroid hormones production was determined by enzyme-linked immunosorbent assay. Additionally, GJIC was assessed by scalpel loading/dye transfer assay. According to our results, Apium graveolens L. significantly increased the viability and cell membrane integrity at 75 µg/ml (109.0±4.3%) followed by a decline at 300 µg/ml (89.4±2.3%). In case of Levisticum officinale and Calendula officinalis L. was observed significant decrease at 150 µg/ml (88.8±11.66%; 87.4±6.0%) and 300 µg/ml (86.2±9.3%; 84.1±4.6%). Furthermore, Apium graveolens L. significantly increased the progesterone and testosterone production (75 and 150 µg/ml) however, Levisticum officinale and Calendula officinalis L. significantly reduced steroid hormones synthesis at 150 and 300 µg/ml. Finally, the disturbance of GJIC was significantly affected at 300 µg/ml of Levisticum officinale (82.5±7.7%) and Calendula officinalis L. (79.8±7.0%). The balanced concentration ratio may support the Leydig cell function, steroidogenesis as well as all essential parameters that may significantly improve reproductive functions.


Subject(s)
Apium , Calendula , Cell Communication/drug effects , Gap Junctions/drug effects , Gonadal Steroid Hormones/biosynthesis , Levisticum , Leydig Cells/drug effects , Plant Extracts/pharmacology , Animals , Apium/chemistry , Calendula/chemistry , Cell Line , Cell Membrane/drug effects , Cell Membrane/pathology , Cell Survival/drug effects , Gap Junctions/metabolism , Gap Junctions/pathology , Levisticum/chemistry , Leydig Cells/metabolism , Leydig Cells/pathology , Male , Mice, Inbred BALB C , Plant Extracts/isolation & purification
15.
Chem Biodivers ; 18(6): e2100120, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34008318

ABSTRACT

Calendula suffruticosa subsp. algarbiensis (Boiss.) Nyman is very common on the Portuguese coast, but it has only recently begun to be studied chemically and belongs to a genus of difficult taxonomic classification. To improve the knowledge on the chemical variability of this taxon and evaluate the possible use of this tool for taxonomical purposes, the aim of this work was to determine the extent of chemical variation between individuals collected in the same geographic region, and to compare with samples mixing fragments of several individuals each (populations) from different local environments. Overall, hexane extract analysis by GC/MS allowed to identify 42 compounds, eight fatty acids, 24 terpenoids, three alcohols, five alkanes, and two pollutants. Greater chemical differences were found between individuals, grown in the same region, than were found between population samples from different regions. Additionally, 25 phytochemicals were identified for this taxon for the first time and may be used for taxonomic classification, even to distinguish between subspecies of C. suffruticosa. Furthermore, plants collected near urban areas accumulated pollutants, indicating the importance of controlling local environmental conditions when C. suffruticosa cultivation is for human consumption.


Subject(s)
Calendula/chemistry , Hexanes/chemistry , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Humans , Phytochemicals/chemistry , Plant Extracts/chemistry
16.
Bioelectrochemistry ; 139: 107744, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33517204

ABSTRACT

Prostatic specific antigen (PSA) is known as a biomarker of prostate cancer. In males, prostate cancer is ranked second as leading cause of death out of more than 200 different cancer types1. As a result, early detection of cancer can cause a significant reduction in mortality. PSA concentration directly is related to prostate cancer, so normal serum concentrations in healthy means are 4 ng and above 10 ng as abnormal concentration. Therefore, PSA determination is important to cancer progression. In this study, a free label electrochemical immunosensor was prepared based on a new green platform for the quantitative detection of the PSA. The used platform was formed from quince seed mucilage containing green gold and silver nanoparticles and synthesized by the green method (using Calendula officinalis L. extract). The quince mucilage biopolymer was used as a sub layer to assemble nanoparticles and increase the electrochemical performance. This nanocomposite was used to increase the antibody loading and accelerate the electron transfer, which can increase the biosensor sensitivity. The antibodies of the PSA biomarker were successfully incubated on the green platform. Under the optimal conditions, the electrochemical impedance spectroscopy (EIS) was proportional to the PSA biomarker concentration from 0.1 pg mL-1 to 100 ng mL-1 with low limit of detection (0.078 pg mL-1). The proposed green immunosensor exhibited high stability and reproducibility, which can be used for the quantitative assay of the PSA biomarker in clinical analyses. The results of real sample analysis presented another tool for the PSA biomarker detection in physiologic models.


Subject(s)
Biosensing Techniques/methods , Dielectric Spectroscopy/methods , Kallikreins/blood , Prostate-Specific Antigen/blood , Prostatic Neoplasms/diagnosis , Biomarkers, Tumor/blood , Calendula/chemistry , Gold/chemistry , Green Chemistry Technology/methods , Humans , Male , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Plant Extracts/chemistry , Plant Mucilage/chemistry , Rosaceae/chemistry , Seeds/chemistry , Silver/chemistry
17.
Molecules ; 26(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374575

ABSTRACT

Topical anti-inflammatory and analgesic effect for the treatment of rheumatoid arthritis is of major interest because of their fewer side effects compared to oral therapy. The purpose of this study was to prepare different types of topical formulations (ointments and gels) containing synthetic and natural anti-inflammatory agents with different excipients (e.g.,: surfactants, gel-forming) for the treatment of rheumatoid arthritis. The combination of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), diclofenac sodium, a topical analgesic agent methyl salicylate, and a lyophilized extract of Calendula officinalis with antioxidant effect were used in our formulations. The aim was to select the appropriate excipients and dosage form for the formulation in order to enhance the diffusion of active substances and to certify the antioxidant, analgesic, and anti-inflammatory effects of these formulations. To characterize the physicochemical properties of the formulations, rheological studies, and texture profile analysis were carried out. Membrane diffusion and permeability studies were performed with Franz-diffusion method. The therapeutic properties of the formulations have been proven by an antioxidant assay and a randomized prospective study that was carried out on 115 patients with rheumatoid arthritis. The results showed that the treatment with the gel containing diclofenac sodium, methyl salicylate, and lyophilized Calendula officinalis as active ingredients, 2-propenoic acid homopolymer (Synthalen K) as gel-forming excipient, distilled water, triethanolamine, and glycerol had a beneficial analgesic and local anti-inflammatory effect.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Diclofenac/therapeutic use , Excipients/chemistry , Gels/chemistry , Plant Extracts/pharmacology , Administration, Topical , Calendula/chemistry , Female , Flowers/chemistry , Humans , Male , Middle Aged , Ointments , Prospective Studies
18.
Food Chem ; 331: 127358, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32593795

ABSTRACT

Saffron, stigmas of Crocus sativus, is one of the most precious spices used as food colorant and flavoring agent. Due to its scarce source and high cost, it is liable to fraudulent admixture with allied plants "safflower and calendula". In this study, gas chromatography-mass spectrometry (GC-MS) was employed to determine authenticity, adulterants detection, and to assess the roasting impact on its aroma. A total of 93 volatiles were identified belonging to different classes viz. aldehydes, alcohols, ketones, aliphatic hydrocarbons, aromatics, mono-and sesquiterpenes, oxides/ethers and pyrans/furans. Principle component analysis (PCA) identified safranal and 2-caren-10-al as discriminatory volatile markers of saffron from its allied flowers, later found enriched in estragole, ß-caryophyllene and eugenol. PCA model also revealed markers for freshly dried versus long-stored saffron, with ketoisophorone as freshness marker versus safranal as an ageing indicator. Safranal was further identified as a marker to distinguish saffron from safflower, whereas calendula aroma was predominated by monoterpene hydrocarbons.


Subject(s)
Crocus/chemistry , Food Contamination/analysis , Gas Chromatography-Mass Spectrometry/methods , Spices/analysis , Volatile Organic Compounds/analysis , Biomarkers/analysis , Calendula/chemistry , Carthamus tinctorius/chemistry , Cyclohexanones/analysis , Cyclohexenes , Flowers/chemistry , Food Analysis/methods , Food Storage , Food-Processing Industry , Iran , Odorants/analysis , Spain , Terpenes
19.
Nat Prod Res ; 34(20): 2938-2944, 2020 Oct.
Article in English | MEDLINE | ID: mdl-30966799

ABSTRACT

Machaerinic acid 3-O-ß-D-glucuronopyranoside (1), along with ten known compounds (2-11) were isolated from the methanol extract of Calendula officinalis L. aerial parts. Their structures were confirmed by 1D and 2D NMR analysis and HRESIMS. Compound 1 was evaluated for the anti-proliferative activity against 95D and HT29 cancer cell lines and showed no cytotoxicity at the concentration of 100 µM.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Calendula/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , HT29 Cells , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization
20.
Bull Environ Contam Toxicol ; 103(6): 854-859, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31595321

ABSTRACT

A hydroponic experiment was carried out to study the accumulation characteristics of copper (Cu) and lead (Pb) combined pollution in three ornamental plants. The results showed that these tested ornamental plants had higher tolerance to Cu-Pb combined pollution and could effectively accumulate the heavy metals. The Cu and Pb concentrations were higher in the roots of the ornamental plants than that in the shoots. For Panax notoginseng (P. notoginseng), Chlorophytum comosum (C. comosum) and Calendula officinalis (C. officinalis), the average Cu and Pb concentration in the three ornamental plants were 1402.1 mg/kg, 829.5 mg/kg, and 1473.4 mg/kg for Cu and 2710.4 mg/kg, 4250.3 mg/kg, and 4303.6 mg/kg for Pb, respectively. The three ornamental plants accumulation and tolerance to Cu-Pb were demonstrated through the hydroponic-culture method in this study. Therefore, the three ornamental plants should have great potential to be used in remediation of soils contaminated by Cu and Pb and beautifying the environment simultaneously.


Subject(s)
Copper/analysis , Lead/analysis , Plants/chemistry , Soil Pollutants/analysis , Bioaccumulation , Biodegradation, Environmental , Calendula/chemistry , Hydroponics , Models, Theoretical , Panax notoginseng/chemistry , Plant Roots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...