Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Xenobiotica ; 52(6): 613-624, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36148579

ABSTRACT

Valsartan is an antihypertensive drug that was developed using common marmosets (Callithrix jacchus) in pivotal toxicity studies as a non-rodent species. The aim of the present study was to investigate the utility of marmosets in the candidate selection of this drug from a pharmacokinetic and metabolic viewpoint.Valsartan, as well as three other angiotensin II type-I receptor blockers, assumed as competitive candidates, were administered to common marmosets. Human pharmacokinetic parameters predicted by single-species allometric scaling and Wajima superposition suggested that valsartan may exhibit promising pharmacokinetic properties in humans.In vitro metabolic studies of valsartan using isolated rat, dog, marmoset, cynomolgus monkey, and human hepatocytes revealed that the marmoset was the most relevant animal species to humans presenting with the most abundant human metabolite, 4-hydroxyvalsartan. Oral administration of an elevated dose of valsartan to a common marmoset demonstrated that the level of 4-hydroxyvalsartan in the plasma was comparable to that in clinical practice and suggested that safety of the human metabolite might have been confirmed in the toxicity studies using common marmosets.These results suggest that common marmosets, the small, non-human primates, had been a suitable species for the development of valsartan.


Subject(s)
Antihypertensive Agents , Callithrix , Angiotensin II/metabolism , Animals , Antihypertensive Agents/metabolism , Callithrix/metabolism , Dogs , Humans , Macaca fascicularis/metabolism , Pharmaceutical Preparations/metabolism , Rats , Retrospective Studies , Valsartan/metabolism
2.
Mov Disord ; 37(10): 2033-2044, 2022 10.
Article in English | MEDLINE | ID: mdl-35989519

ABSTRACT

BACKGROUND: Lewy body diseases (LBDs), which are pathologically defined as the presence of intraneuronal α-synuclein (α-Syn) inclusions called Lewy bodies, encompass Parkinson's disease, Parkinson's disease with dementia, and dementia with Lewy bodies. Autopsy studies have shown that the olfactory bulb (OB) is one of the regions where Lewy pathology develops and initiates its spread in the brain. OBJECTIVE: This study aims to clarify how Lewy pathology spreads from the OB and affects brain functions using nonhuman primates. METHODS: We inoculated α-Syn preformed fibrils into the unilateral OBs of common marmosets (Callithrix jacchus) and performed pathological analyses, manganese-enhanced magnetic resonance imaging, and 18 F-fluoro-2-deoxy-d-glucose positron emission tomography up to 6 months postinoculation. RESULTS: Severe α-Syn pathology was observed within the olfactory pathway and limbic system, while mild α-Syn pathology was seen in a wide range of brain regions, including the substantia nigra pars compacta, locus coeruleus, and even dorsal motor nucleus of the vagus nerve. The brain imaging analyses showed reduction in volume of the OB and progressive glucose hypometabolism in widespread brain regions, including the occipital lobe, and extended beyond the pathologically affected regions. CONCLUSIONS: We generated a novel nonhuman primate LBD model with α-Syn propagation from the OB. This model suggests that α-Syn propagation from the OB is related to OB atrophy and cerebral glucose hypometabolism in LBDs. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Lewy Body Disease , Parkinson Disease , Animals , Callithrix/metabolism , Deoxyglucose/metabolism , Glucose/metabolism , Lewy Body Disease/pathology , Manganese/metabolism , Olfactory Bulb/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/metabolism
3.
Adv Pharmacol ; 95: 329-364, 2022.
Article in English | MEDLINE | ID: mdl-35953160

ABSTRACT

Cynomolgus macaques (Macaca fascicularis, an Old World monkey) are widely used in drug development because of their genetic and physiological similarities to humans, and this trend has continued with the use of common marmosets (Callithrix jacchus, a New World monkey). Information on the major drug-metabolizing cytochrome P450 (CYP, P450) enzymes of these primate species indicates that multiple forms of their P450 enzymes have generally similar substrate selectivities to those of human P450 enzymes; however, some differences in isoform, activity, and substrate specificity account for limited species differences in drug oxidative metabolism. This review provides information on the P450 enzymes of cynomolgus macaques and marmosets, including cDNA, tissue expression, substrate specificity, and genetic variants, along with age differences and induction. Typical examples of important P450s to be considered in drug metabolism studies include cynomolgus CYP2C19, which is expressed abundantly in liver and metabolizes numerous drugs. Moreover, genetic variants of cynomolgus CYP2C19 affect the individual pharmacokinetic data of drugs such as R-warfarin. These findings provide a foundation for understanding each P450 enzyme and the individual pharmacokinetic and toxicological results in cynomolgus macaques and marmosets as preclinical models. In addition, the effects of induction on some drug clearances mediated by P450 enzymes are also described. In summary, this review describes genetic and acquired individual differences in cynomolgus and marmoset P450 enzymes involved in drug oxidation that may be associated with pharmacological and/or toxicological effects.


Subject(s)
Callithrix , Cytochrome P-450 Enzyme System , Animals , Callithrix/metabolism , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Humans , Liver/metabolism , Macaca fascicularis/metabolism
4.
Viruses ; 14(7)2022 07 21.
Article in English | MEDLINE | ID: mdl-35891560

ABSTRACT

There is an enduring requirement to develop animal models of COVID-19 to assess the efficacy of vaccines and therapeutics that can be used to treat the disease in humans. In this study, six marmosets were exposed to a small particle aerosol (1-3 µm) of SARS-CoV-2 VIC01 that delivered the virus directly to the lower respiratory tract. Following the challenge, marmosets did not develop clinical signs, although a disruption to the normal diurnal temperature rhythm was observed in three out of six animals. Early weight loss and changes to respiratory pattern and activity were also observed, yet there was limited evidence of viral replication or lung pathology associated with infection. There was a robust innate immunological response to infection, which included an early increase in circulating neutrophils and monocytes and a reduction in the proportion of circulating T-cells. Expression of the ACE2 receptor in respiratory tissues was almost absent, but there was ubiquitous expression of TMPRSS2. The results of this study indicate that exposure of marmosets to high concentrations of aerosolised SARS-CoV-2 did not result in the development of clear, reproducible signs of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Callithrix/metabolism , Humans , Peptidyl-Dipeptidase A/metabolism
5.
Tissue Cell ; 77: 101848, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35714414

ABSTRACT

Common marmosets are non-human primate models used in biomedical research and genome editing technology. This study aimed to establish cell lines from common marmosets and evaluate their characteristics. We obtained normal fibroblasts derived from muscle tissues of two common marmosets and immortalized them with the introduction of a mutat form of cyclin-dependent kinase 4 (CDK4R24C), Cyclin D1, and telomere reverse transcriptase (TERT) using the piggyBac transposon. Compared to parental cells, the immortalized cell lines (named K4DT cells) showed telomerase activity and an accelerated cell proliferation rate. To our knowledge, this is the first study describing the successful establishment of immortalized common marmoset-derived fibroblasts using piggyBac transposition of CDK4R24C, Cyclin D1, and TERT. Our generated cell lines might be a beneficial tool for future studies on disease modeling and targeted gene therapies.


Subject(s)
Callithrix , Telomerase , Animals , Callithrix/metabolism , Cell Cycle/genetics , Cell Line , Cyclin D1/metabolism , Fibroblasts/metabolism , Telomerase/genetics , Telomerase/metabolism
6.
Drug Metab Dispos ; 50(11): 1429-1433, 2022 11.
Article in English | MEDLINE | ID: mdl-35768074

ABSTRACT

Arylamine N-acetyltransferases (NATs) are drug-metabolizing enzymes that are essential for the metabolism of endogenous substrates and xenobiotics. The molecular characteristics of NATs have been extensively investigated in humans but remain to be investigated in common marmosets and pigs, animal species that are often used in drug metabolism studies. In this study, marmoset NAT1 and pig NAT1 cDNAs were isolated from liver samples and were characterized by molecular analyses and drug-metabolism assays. These NAT genes were intronless and formed gene clusters with one other NAT gene in the genome, just as human NAT genes do. Marmoset NAT1 and pig NAT1 amino acid sequences showed high sequence identities (94% and 85%, respectively) to human NAT1. Phylogenetic analysis indicated that marmoset NAT1 and pig NAT1 were more closely clustered with human NATs than with rat or mouse NATs. Marmoset NAT1 and pig NAT1 mRNAs were expressed in all the tissue types analyzed, with the expression levels being highest in the small intestine. Metabolic assays using recombinant proteins found that marmoset NAT1 and pig NAT1 metabolized human NAT substrates p-aminobenzoic acid, 2-aminofluorene, sulfamethazine, and isoniazid. Marmoset NAT1 and pig NAT1 substantially acetylated p-aminobenzoic acid and 2-aminofluorene relevant human NAT1, but their activities were lower toward sulfamethazine and isoniazid than those of the relevant human NAT2. Therefore, marmoset and pig NATs are functional enzymes with molecular similarities to human NAT1, but their substrate specificities, while similar to human NAT1, differ somewhat from human NAT2. SIGNIFICANCE STATEMENT: Marmoset N-acetyltransferase NAT1 and pig NAT1 were identified and showed high sequence identities to human NAT1. These NAT mRNAs were expressed in various tissues. Marmoset and pig NAT1s acetylated typical human NAT substrates, although their substrate specificities differed somewhat from human NAT2. Marmoset NAT1 and pig NAT1 have similarities with human NAT1 in terms of molecular and enzymatic characteristics.


Subject(s)
Arylamine N-Acetyltransferase , Callithrix , 4-Aminobenzoic Acid/metabolism , Acetyltransferases/genetics , Animals , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Callithrix/metabolism , Fluorenes , Humans , Isoniazid/metabolism , Mice , Phylogeny , Rats , Recombinant Proteins/metabolism , Sulfamethazine , Swine
7.
Tissue Eng Regen Med ; 19(1): 93-103, 2022 02.
Article in English | MEDLINE | ID: mdl-34741748

ABSTRACT

BACKGROUND: In vitro follicular maturation (IVFM) of ovarian follicles is an emerging option for fertility preservation. Many paracrine factors and two-dimensional or three-dimensional (3D) environments have been used for optimization. However, since most studies were conducted using the murine model, the physiological differences between mice and humans limit the interpretation and adaptation of the results. Marmoset monkey is a non-human primate (NHPs) with more similar reproductive physiology to humans. In this study, we attempted to establish a 3D matrix (Matrtigel)-based IVFM condition for marmoset ovarian follicles in combination with anti-apoptotic factor, X-linked inhibitor of apoptosis protein (XIAP). METHODS: Marmoset follicles were isolated as individual follicles and cultured in a single drop with the addition of 0, 10, and 100 µg/mL of XIAP molecules. Matured oocytes and granulosa cells from mature follicles were collected and analyzed. The average number of isolated follicles was less than 100, and primordial and antral follicles were abundant in the ovaries. RESULTS: IVFM of marmoset follicles in 3D matrix conditions with XIAP increased the rates of survival and in vitro follicle development. Furthermore, oocytes from the 3D cultures were successfully fertilized and developed in vitro. The addition of XIAP increased the secretion of estradiol and aromatase. Furthermore, expression of granulosa-specific genes, such as bone morphogenetic protein 15, Oct4, and follicle-stimulating hormone receptor were upregulated in the in vitro-matured follicles than in normal, well-grown, and atretic follicles. Apoptosis-related B-cell lymphoma-2 was highly expressed in the atretic follicles than in the XIAP-treated follicles, and higher caspase-3 was localized in the XIAP-treated follicles. CONCLUSION: In this study, we attempted to establish a 3D-matrix-based marmoset IVFM condition and demonstrated the synergistic effects of XIAP. The use of a 3D matrix may be applied as an optimal culture condition for marmoset ovarian follicles.


Subject(s)
Callithrix , X-Linked Inhibitor of Apoptosis Protein , Animals , Callithrix/metabolism , Female , Granulosa Cells/metabolism , Mice , Oocytes , Ovarian Follicle , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology
8.
Pharmacol Biochem Behav ; 211: 173300, 2021 12.
Article in English | MEDLINE | ID: mdl-34798097

ABSTRACT

The spontaneous object recognition (SOR) task is one of the most widely used behavioral protocols to assess visual memory in animals. However, only recently was it shown that nonhuman primates also perform well on this task. Here we further characterized this new monkey recognition memory test by assessing the performance of adult marmosets after an acute systemic administration of two putative amnesic agents: the competitive muscarinic acetylcholine receptor antagonist scopolamine (SCP; 0.05 mg/kg) and the noncompetitive N-methyl-d-aspartate glutamate receptor antagonist MK-801 (0.015 mg/kg). We also determined whether the acetylcholinesterase inhibitor donepezil (DNP; 0.50 mg/kg), a clinically-used cognitive enhancer, reverses memory deficits caused by either drug. The subjects had an initial 10 min sample trial where two identical neutral objects could be explored. After a 6 h retention interval, recognition was based on an exploratory preference for a new rather than familiar object during a 10 min test trial. Both SCP and MK-801 impaired the marmosets' performance on the SOR task, as both objects were explored equivalently. Co-administration of 0.50 mg/kg of DNP reversed the SCP- but not the MK-801-induced memory deficit. These results indicate that cholinergic and glutamatergic pathways mediate object recognition memory in the monkey SOR task.


Subject(s)
Dizocilpine Maleate/pharmacology , Open Field Test/drug effects , Recognition, Psychology/drug effects , Scopolamine/pharmacology , Acetylcholinesterase/metabolism , Animals , Callithrix/metabolism , Donepezil/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Haplorhini/metabolism , Male , Memory/drug effects , Memory Disorders/drug therapy , Memory Disorders/metabolism , Muscarinic Antagonists/pharmacology , Nootropic Agents/pharmacology , Receptors, Muscarinic/metabolism
9.
PLoS One ; 16(8): e0238663, 2021.
Article in English | MEDLINE | ID: mdl-34370743

ABSTRACT

Studies of personality traits in common marmosets (Callithrix jacchus) indicate that there are five or six constructs-Sociability, Dominance, Neuroticism, Openness, and two related to Conscientiousness. The present study attempted to determine whether our earlier study of laboratory-housed individuals only yielded three-Dominance, Sociability, and Neuroticism-because of a low amount of between-subjects variance. To do so, we increased our sample size from 77 to 128. In addition, we ascertained the reliability and validity of ratings and whether polymorphisms related to the serotonin 1a receptor were associated with personality. We found Sociability, Dominance, and Negative Affect factors that resembled three domains found in previous studies, including ours. We also found an Openness and Impulsiveness factor, the latter of which bore some resemblance to Conscientiousness, and two higher-order factors, Pro-sociality and Boldness. In further analyses, we could not exclude the possibility that Pro-sociality and Boldness represented a higher-level of personality organization. Correlations between personality factors and well-being were consistent with the definitions of the factors. There were no significant associations between personality and genotype. These results suggest that common marmoset personality structure varies as a function of rearing or housing variables that have not yet been investigated systematically.


Subject(s)
Behavior, Animal/physiology , Callithrix/metabolism , Callithrix/physiology , Personality/physiology , Receptor, Serotonin, 5-HT1A/metabolism , Animals , Female , Male , Neuroticism/physiology , Personality Disorders/metabolism , Reproducibility of Results , Social Behavior
10.
J Am Assoc Lab Anim Sci ; 60(2): 188-194, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33375952

ABSTRACT

Buprenorphine is an essential component of analgesic protocols in common marmosets (Callithrix jacchus). The use of buprenorphine HCl (BUP) and sustained-release buprenorphine (BSR) formulations has become commonplace in this species, but the pharmacokinetics have not been evaluated. Healthy adult (age, 2.4 to 6.8 y; 6 female and 6 male) common marmosets were enrolled in this study to determine the pharmacokinetic parameters, plasma concentration-time curves, and any apparent adverse effects of these compounds. Equal numbers of each sex were randomly assigned to receive BUP (0.02 mg/kg IM) or BSR (0.2 mg/kg SC), resulting in peak plasma concentrations (mean ± 1 SD) of 15.2 ± 8.1 and 2.8 ± 1.2 ng/mL, terminal phase t1/2 of 2.2 ± 1.0 and 32.6 ± 9.6 h, and AUC0-last of 16.1 ± 3.7 and 98.6 ± 42.7 ng × h/mL. The plasma concentrations of buprenorphine exceeded the proposed minimal therapeutic threshold (0.1 ng/mL) at 5 and 15 min after BUP and BSR administration, showing that both compounds are rapid-acting, and remained above that threshold through the final time points of 8 and 72 h. Extrapolation of the terminal elimination phase of the mean concentration-time curves was used to develop the clinical dosing frequencies of 6 to 8 h for BUP and 3.0 to 3.5 d for BSR. Some adverse effects were observed after the administration of BUP to common marmosets in this study, thus mandating judicious use in clinical practice. BSR provided a safe, long-acting option for analgesia and therefore can be used to refine analgesic protocols in this species.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Buprenorphine/pharmacokinetics , Callithrix/metabolism , Analgesics, Opioid/administration & dosage , Animals , Area Under Curve , Buprenorphine/administration & dosage , Delayed-Action Preparations/administration & dosage , Female , Half-Life , Male
11.
FEBS J ; 288(1): 325-353, 2021 01.
Article in English | MEDLINE | ID: mdl-32323465

ABSTRACT

Cochlear development is a complex process with precise spatiotemporal patterns. A detailed understanding of this process is important for studies of congenital hearing loss and regenerative medicine. However, much of our understanding of cochlear development is based on rodent models. Animal models that bridge the gap between humans and rodents are needed. In this study, we investigated the development of hearing organs in a small New World monkey species, the common marmoset (Callithrix jacchus). We describe the general stages of cochlear development in comparison with those of humans and mice. Moreover, we examined more than 25 proteins involved in cochlear development and found that expression patterns were generally conserved between rodents and primates. However, several proteins involved in supporting cell processes and neuronal development exhibited interspecific expression differences. Human fetal samples for studies of primate-specific cochlear development are extremely rare, especially for late developmental stages. Our results support the use of the common marmoset as an effective alternative for analyses of primate cochlear development.


Subject(s)
Callithrix/genetics , Cochlea/metabolism , Gene Expression Regulation, Developmental , Models, Animal , Organogenesis/genetics , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Calbindin 1/genetics , Calbindin 1/metabolism , Callithrix/embryology , Callithrix/growth & development , Callithrix/metabolism , Cochlea/anatomy & histology , Cochlea/cytology , Cochlea/growth & development , Conserved Sequence , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Embryo, Mammalian , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Humans , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Mice , Myosin VIIa/genetics , Myosin VIIa/metabolism , Parvalbumins/genetics , Parvalbumins/metabolism , Peripherins/genetics , Peripherins/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Species Specificity , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Transcription Factor Brn-3C/genetics , Transcription Factor Brn-3C/metabolism , Tubulin/genetics , Tubulin/metabolism
12.
J Vet Pharmacol Ther ; 44(1): 18-27, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32880998

ABSTRACT

The objectives of this study were (a) to establish a population pharmacokinetic model and (b) to investigate the clinical and physiological effects of a single bolus dose of propofol in common marmosets. In Study 1, pharmacokinetic analysis was performed in six marmosets under sevoflurane anaesthesia. 8 mg/kg of propofol was administrated at a rate of 4 mg kg-1  min-1 . Blood samples were collected 2, 5, 15, 30, 60, 90, 120 or 180 min after starting propofol administration. Plasma concentration was measured, and population pharmacokinetic modelling was performed. A two-compartment model was selected as the final model. The population pharmacokinetic parameters were as follows: V1  = 1.14 L, V2  = 77.6 L, CL1  = 0.00182 L/min, CL2  = 0.0461 L/min. In Study 2, clinical and physiological parameters were assessed and recorded every 2 min after 12 mg/kg of propofol was administrated at a rate of 4 mg kg-1  min-1 . Immobilization was sustained for 5 min following propofol administration without apparent bradycardia. While combination of propofol and sevoflurane caused apnoea in Study 1, apnoea was not observed following single administration of propofol in Study 2. These data provide bases for further investigation on intravenous anaesthesia using propofol in common marmosets.


Subject(s)
Callithrix/physiology , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/pharmacokinetics , Propofol/pharmacology , Propofol/pharmacokinetics , Anesthesia, Intravenous/veterinary , Animals , Callithrix/metabolism , Half-Life , Hypnotics and Sedatives/administration & dosage , Male , Propofol/administration & dosage
13.
Brain Res ; 1751: 147198, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33166510

ABSTRACT

Novel environments induce a conflicting emotional approach-withdrawal state that triggers stress-related reactions. Social support through the presence of a highly familiar conspecific buffers the individual against such challenges. Although aversive events seem to be predominantly processed by the right hemisphere, this is still under debate and little is known about functional cerebral asymmetries in nonhuman primates during novelty stress, isolation and social buffering. Here we isolated adult marmoset monkeys in a new open-field arena or in their familiar home-cages to establish hemisphere activity and whether the pairmate's presence buffers the response. Monkeys socially isolated in either location had higher circulating cortisol levels than non-isolated marmosets, but different hemisphere activity patterns indicated by changes in baseline tympanic membrane temperatures (TMT). The bilateral increase in the monkeys that were isolated in the unfamiliar location may reflect an approach-withdrawal conflict. The left-sided increase in the home-cage isolation group was negatively related to cortisol release, this being potentially associated with a more proactive/approach-prone temperament. Interestingly, TMT and cortisol were unaltered when the pairmate was present. Thus, positive social interaction reduces the perceived intensity of the threat, alters hemisphere asymmetries and blocks the hormonal response to novelty stress, consistent with a buffering effect.


Subject(s)
Ear, Middle/metabolism , Hydrocortisone/metabolism , Stress, Psychological/metabolism , Animals , Behavior, Animal/physiology , Body Temperature , Callithrix/metabolism , Ear, Middle/physiology , Female , Functional Laterality/physiology , Hydrocortisone/physiology , Male , Social Behavior , Social Isolation/psychology , Stress, Psychological/physiopathology , Temperature
14.
Sci Rep ; 10(1): 21516, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33299078

ABSTRACT

GPR56, a member of the adhesion G protein-coupled receptor family, is abundantly expressed in cells of the developing cerebral cortex, including neural progenitor cells and developing neurons. The human GPR56 gene has multiple presumptive promoters that drive the expression of the GPR56 protein in distinct patterns. Similar to coding mutations of the human GPR56 gene that may cause GPR56 dysfunction, a 15-bp homozygous deletion in the cis-regulatory element upstream of the noncoding exon 1 of GPR56 (e1m) leads to the cerebral cortex malformation and epilepsy. To clarify the expression profile of the e1m promoter-driven GPR56 in primate brain, we generated a transgenic marmoset line in which EGFP is expressed under the control of the human minimal e1m promoter. In contrast to the endogenous GPR56 protein, which is highly enriched in the ventricular zone of the cerebral cortex, EGFP is mostly expressed in developing neurons in the transgenic fetal brain. Furthermore, EGFP is predominantly expressed in GABAergic neurons, whereas the total GPR56 protein is evenly expressed in both GABAergic and glutamatergic neurons, suggesting the GABAergic neuron-preferential activity of the minimal e1m promoter. These results indicate a possible pathogenic role for GABAergic neuron in the cerebral cortex of patients with GPR56 mutations.


Subject(s)
GABAergic Neurons/metabolism , Promoter Regions, Genetic/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Animals, Genetically Modified/genetics , Base Sequence/genetics , Brain/metabolism , Callithrix/genetics , Callithrix/metabolism , Cell Movement/genetics , Cerebral Cortex/metabolism , Gene Expression/genetics , Homozygote , Humans , Mutation/genetics , Neural Stem Cells/metabolism , Polymicrogyria/genetics , Polymicrogyria/metabolism , Polymicrogyria/pathology , Receptors, G-Protein-Coupled/metabolism , Sequence Deletion/genetics
15.
PLoS One ; 15(6): e0234634, 2020.
Article in English | MEDLINE | ID: mdl-32574169

ABSTRACT

Marmoset wasting syndrome (MWS) is clinically characterized by progressive weight loss. Although morbidity and mortality of MWS are relatively high in captive marmosets, its causes remain unknown. Lipid mediators are bioactive metabolites which are produced from polyunsaturated fatty acids, such as arachidonic acid (AA) and eicosapentaenoic acid. These lipid metabolites regulate a wide range of inflammatory responses and they are excreted into the urine. As urinary lipid profiles reflect systemic inflammatory conditions, we comprehensively measured the levels of 141 types of lipid metabolites in the urines obtained from healthy common marmoset (Callithrix jacchus) (N = 7) or marmosets with MWS (N = 7). We found that 41 types of metabolites were detected in all urine samples of both groups. Among them, AA-derived metabolites accounted for 63% (26/41 types) of all detected metabolites. Notably, the levels of AA-derived prostaglandin (PG) E2, PGF2α, thromboxane (TX) B2 and F2-isoprostanes significantly increased in the urine samples of marmosets with MWS. In this study, we found some urinary lipid metabolites which may be involved in the development of MWS. Although the cause of MWS remains unclear, our findings may provide some insight into understanding the mechanisms of development of MWS.


Subject(s)
Callithrix/metabolism , Callithrix/urine , Lipids/urine , Metabolome , Monkey Diseases/urine , Wasting Syndrome/urine , Wasting Syndrome/veterinary , Animals , Body Weight , Fatty Acids, Unsaturated/urine , Metabolic Networks and Pathways , Oxidation-Reduction , Wasting Syndrome/metabolism
16.
Am J Primatol ; 82(6): e23131, 2020 06.
Article in English | MEDLINE | ID: mdl-32270886

ABSTRACT

Vitamin D3 (cholecalciferol) is endogenously produced in the skin of primates when exposed to the appropriate wavelengths of ultraviolet light (UV-B). Common marmosets (Callithrix jacchus) maintained indoors require dietary provision of vitamin D3 due to lack of sunlight exposure. The minimum dietary vitamin D3 requirement and the maximum amount of vitamin D3 that can be metabolized by marmosets is unknown. Observations of metabolic bone disease and gastrointestinal malabsorption have led to wide variation in dietary vitamin D3 provision amongst research institutions, with resulting variation in circulating 25-hydroxyvitamin D3 (25(OH)D3 ), the accepted marker for vitamin D sufficiency/deficiency. Multiple studies have reported serum 25(OH)D3 in captive marmosets, but 25(OH)D3 is not the final product of vitamin D3 metabolism. In addition to serum 25(OH)D3, we measured the most physiologically active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), and the less well understood metabolite, 24,25-dihydroxyvitamin D3 (24,25(OH)2 D3 ) to characterize the marmoset's ability to metabolize dietary vitamin D3 . We present vitamin D3 metabolite and related serum chemistry value colony reference ranges in marmosets provided diets with 26,367 (Colony A, N = 113) or 8,888 (Colony B, N = 52) international units (IU) of dietary vitamin D3 per kilogram of dry matter. Colony A marmosets had higher serum 25(OH)D3 (426 ng/ml [SD 200] vs. 215 ng/ml [SD 113]) and 24,25(OH)2 D3 (53 ng/ml [SD 35] vs. 7 ng/ml [SD 5]). There was no difference in serum 1,25(OH)2 D3 between the colonies. Serum 1,25(OH)2 D3 increased and 25(OH)D3 decreased with age, but the effect was weak. Marmosets tightly regulate metabolism of dietary vitamin D3 into the active metabolite 1,25(OH)2 D3 ; excess 25(OH)D3 is metabolized into 24,25(OH)2 D3 . This ability explains the tolerance of high levels of dietary vitamin D3 by marmosets, however, our data suggest that these high dietary levels are not required.


Subject(s)
24,25-Dihydroxyvitamin D 3/blood , Calcifediol/blood , Calcitriol/blood , Callithrix/metabolism , Age Factors , Animals , Animals, Zoo/metabolism , Cholecalciferol/blood , Female , Male , Reference Values , Sex Factors
17.
Am J Primatol ; 82(3): e23101, 2020 03.
Article in English | MEDLINE | ID: mdl-32020652

ABSTRACT

Accumulating evidence suggests that dysregulation of placental DNA methylation (DNAm) is a mechanism linking maternal weight during pregnancy to metabolic programming outcomes. The common marmoset, Callithrix jaccus, is a platyrrhine primate species that has provided much insight into studies of the primate placenta, maternal condition, and metabolic programming, yet the relationships between maternal weight and placental DNAm are unknown. Here, we report genome-wide DNAm from term marmoset placentas using reduced representation bisulfite sequencing. We identified 74 genes whose DNAm pattern is associated with maternal weight during gestation. These genes are predominantly involved in energy metabolism and homeostasis, including the regulation of glycolytic and lipid metabolic processes pathways.


Subject(s)
Body Weight/physiology , Callithrix/metabolism , DNA Methylation , Placenta/metabolism , Animals , Animals, Newborn , Callithrix/genetics , Female , Litter Size , Male , Metabolic Networks and Pathways/genetics , Pregnancy , Pregnancy Outcome/veterinary
18.
Drug Metab Pharmacokinet ; 35(2): 244-247, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31980379

ABSTRACT

Common marmoset (Callithrix jacchus) is an attractive animal model primate species for potential use in drug metabolism and pharmacokinetic studies. In this study, marmoset cytochrome P450 (P450) 2S1, 4V2, 7A1, 7B1, 8B1, 24A1, 26A1, 26C1, 27A1, 39A1, and 51A1 cDNAs were isolated from marmoset tissues (brains, lungs, livers, kidneys, and jejunums). Deduced amino acid sequences (89-98% homologous) of the marmoset P450 gene suggested similarity of molecular characteristics of marmoset P450s to human counterparts, compared with those of pig, rabbit, and rodents. Phylogenetic analysis using amino acid sequences indicated 11 marmoset P450 forms clustered with those of human and other primate counterparts, suggesting marmoset P450s have an evolutionary close relationship to human and other primate counterparts. Tissue expression patterns of these P450 mRNAs except for P450 7B1 mRNA were generally similar to those of human P450s in the five tissue types analyzed. These results suggest similarity of molecular characteristics for P450 2S1, 4V2, 7A1, 7B1, 8B1, 24A1, 26A1, 26C1, 27A1, 39A1, and 51A1 between marmosets and humans, in addition to the orthologs of human P450 1, 2, 3, and 4 families previously identified and characterized in marmosets.


Subject(s)
Brain/metabolism , Callithrix/metabolism , Cytochrome P-450 Enzyme System/genetics , Intestine, Small/metabolism , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Animals , Cloning, Molecular , Cytochrome P-450 Enzyme System/metabolism , Female , Male
19.
Biochem Pharmacol ; 172: 113748, 2020 02.
Article in English | MEDLINE | ID: mdl-31830470

ABSTRACT

UDP-glucuronosyltransferases (UGTs) are essential drug-conjugation enzymes that metabolize a variety of endobiotic and xenobiotic substrates. The molecular characteristics of UGTs have been extensively investigated in humans, but remain to be investigated in common marmosets, a nonhuman primate species widely used in drug metabolism studies. In this study, 11 UGT cDNAs (UGT1A1, 1A3, 1A4, 1A6, 1A7, and 1A9; and UGT2B49, 2B50, 2B51, 2B52, and 2B53) were isolated and characterized in marmosets. Marmoset UGT1As had high sequence identities (89-93%) with human UGT1As, but the sequence identities of marmoset UGT2Bs were lower (82-86%). Marmoset UGTs were found to be phylogenetically close to human UGTs. Just as human UGT1As do, marmoset UGT1A genes shared exons 2-5 and contained a variable exon 1 unique to each gene; in contrast, marmoset UGT2B genes contained six unique exons. Moreover, marmoset and human UGT1A and UGT2B gene clusters were located in corresponding regions in their respective genomes. Among the five tissue types tested, marmoset UGT mRNAs were most abundantly expressed in liver, jejunum, and/or kidney, i.e., in tissues important for drug metabolism, just as human UGTs are. Among the 11 marmoset UGT mRNAs investigated, marmoset UGT1A9, 1A4, and 1A6 mRNAs were the most abundantly expressed in liver, small intestine, and kidney, respectively. Marmoset liver microsomes and recombinant UGT1A proteins catalyzed the glucuronidation of the same substrates that human UGT1As catalyze, including estradiol, trifluoperazine, 4-methylumbelliferone, serotonin, 4-nitrophenol, and propofol. Trifluoperazine was glucuronidated by marmoset liver microsomes, but not by any of the UGT1A isoforms examined under the present conditions. These results collectively suggest that functional marmoset UGTs have generally similar molecular characteristics to human UGTs.


Subject(s)
Callithrix/metabolism , Glucuronosyltransferase/classification , Glucuronosyltransferase/metabolism , Amino Acid Sequence , Animals , Brain/enzymology , Gene Expression Regulation, Enzymologic , Glucuronosyltransferase/chemistry , Humans , Intestine, Small/enzymology , Kidney/enzymology , Liver/enzymology , Lung/enzymology , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Species Specificity
20.
Vis Neurosci ; 36: E009, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31581958

ABSTRACT

In primate retina, the calcium-binding protein calbindin is expressed by a variety of neurons including cones, bipolar cells, and amacrine cells but it is not known which type(s) of cell express calbindin in the ganglion cell layer. The present study aimed to identify calbindin-positive cell type(s) in the amacrine and ganglion cell layer of human and marmoset retina using immunohistochemical markers for ganglion cells (RBPMS and melanopsin) and cholinergic amacrine (ChAT) cells. Intracellular injections following immunolabeling was used to reveal the morphology of calbindin-positive cells. In human retina, calbindin-labeled cells in the ganglion cell layer were identified as inner and outer stratifying melanopsin-expressing ganglion cells, and ON ChAT (starburst amacrine) cells. In marmoset, calbindin immunoreactivity in the ganglion cell layer was absent from ganglion cells but present in ON ChAT cells. In the inner nuclear layer of human retina, calbindin was found in melanopsin-expressing displaced ganglion cells and in at least two populations of amacrine cells including about a quarter of the OFF ChAT cells. In marmoset, a very low proportion of OFF ChAT cells was calbindin-positive. These results suggest that in both species there may be two types of OFF ChAT cells. Consistent with previous studies, the ratio of ON to OFF ChAT cells was about 70 to 30 in human and 30 to 70 in marmoset. Our results show that there are species-related differences between different primates with respect to the expression of calbindin.


Subject(s)
Amacrine Cells/metabolism , Calbindins/metabolism , Cholinergic Neurons/metabolism , Retinal Ganglion Cells/metabolism , Rod Opsins/metabolism , Adult , Animals , Callithrix/metabolism , Female , Humans , Immunohistochemistry , Injections, Intraocular , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...