Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 867
Filter
1.
J Physiol Sci ; 74(1): 32, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849720

ABSTRACT

We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.


Subject(s)
Caloric Restriction , Energy Metabolism , Liver , Monocarboxylic Acid Transporters , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Muscle, Skeletal/metabolism , Male , Mice , Caloric Restriction/methods , Liver/metabolism , Physical Conditioning, Animal/physiology , Energy Metabolism/physiology , Monocarboxylic Acid Transporters/metabolism , Mice, Inbred ICR , Endurance Training/methods , Glucose Transporter Type 4/metabolism , Adaptation, Physiological/physiology , Citrate (si)-Synthase/metabolism , Muscle Proteins
2.
Asia Pac J Clin Nutr ; 33(2): 200-212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38794980

ABSTRACT

BACKGROUND AND OBJECTIVES: Very-low calorie diets (VLCD) achieve weight loss and remission of Type 2 diabetes (T2DM), but efficacy and acceptability in non-European populations is less clear. This feasibility study examines the impact of 10% weight loss through VLCD on metabolic and body composition outcomes in a multi-ethnic cohort of Aotearoa New Zealand (AoNZ) men with prediabetes/early T2DM, and VLCD tolerability/cultural acceptability. METHODS AND STUDY DESIGN: Participants followed a VLCD intervention (mean energy 3033kJ/day) until achievement of 10% weight loss. An oral glucose tolerance test (OGTT), hyperinsulinaemic isoglycaemic clamp with stable isotopes, hood calorimetry and dual-energy Xray absorptiometry (DXA) were undertaken before and after intervention. Qualitative data on VLCD tolerability/cultural acceptability were collected. RESULTS: Fifteen participants were enrolled; nine achieved 10% weight loss. In this group, mean HbA1c reduced by 4.8mmol/mol (2.4-7.1) and reverted to normoglycaemia in n=5/9; mean body weight reduced by 12.0 kg (11.0-13.1) and whole-body glucose disposal improved by 1.5 mg kgFFM-1 min-1 (0.7-2.2). Blood pressure and fasting triglycerides improved significantly. No changes in hepatic glu-cose metabolism were found. In all participants who attended completion testing, HbA1c reduced by 3.4mmol/mol (SD 3.5) and total weight by 9.0kg (SD 5.7). The intervention was highly tolerable/culturally acceptable however challenges with fulfilment of cultural obligations were described. CONCLUSIONS: Results support VLCD use in AoNZ however further work to investigate ethnic differences in physiological response to VLCDs and to optimise protocols for multi-ethnic populations are required.


Subject(s)
Caloric Restriction , Diabetes Mellitus, Type 2 , Feasibility Studies , Prediabetic State , Humans , Diabetes Mellitus, Type 2/diet therapy , Male , Prediabetic State/diet therapy , Prediabetic State/therapy , New Zealand , Middle Aged , Caloric Restriction/methods , Cohort Studies , Adult , Aged , Body Composition , Weight Loss , Blood Glucose
3.
Nutrients ; 16(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38794715

ABSTRACT

Obesity in the United States and Western countries represents a major health challenge associated with an increased risk of metabolic diseases, including cardiovascular disease, hypertension, diabetes, and certain cancers. Our past work revealed a more pronounced obesity-cancer link in certain ethnic groups, motivating us to develop a tailored dietary intervention called the Healthy Diet and Lifestyle 2 (HDLS2). The study protocol is described herein for this randomized six-month trial examining the effects of intermittent energy restriction (5:2 Diet) plus the Mediterranean dietary pattern (IER + MED) on visceral adipose tissue (VAT), liver fat, and metabolic biomarkers, compared to a standard MED with daily energy restriction (DER + MED), in a diverse participant group. Using MRI and DXA scans for body composition analysis, as well as metabolic profiling, this research aims to contribute to nutritional guidelines and strategies for visceral obesity reduction. The potential benefits of IER + MED, particularly regarding VAT reduction and metabolic health improvement, could be pivotal in mitigating the obesity epidemic and its metabolic sequelae. The ongoing study will provide essential insights into the efficacy of these energy restriction approaches across varied racial/ethnic backgrounds, addressing an urgent need in nutrition and metabolic health research. Registered Trial, National Institutes of Health, ClinicalTrials.gov (NCT05132686).


Subject(s)
Caloric Restriction , Diet, Mediterranean , Intra-Abdominal Fat , Humans , Intra-Abdominal Fat/metabolism , Caloric Restriction/methods , Male , Female , Adult , Diet, Healthy/methods , Middle Aged , Life Style , Body Composition , Obesity, Abdominal/diet therapy , Young Adult , Biomarkers/blood
4.
Sci Rep ; 14(1): 11901, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789518

ABSTRACT

Rodent models and human clinical studies have shown gut microbiota-derived short-chain fatty acids (SCFAs) play roles in obesity and insulin resistance. These roles have been minimally explored in cats, where in the USA an estimated 60% of cats are overweight or obese. Overweight/obese research cats (n = 7) were transitioned from a maintenance diet to a reduced calorie diet fed ad libitum for 7 days, then calories were restricted to achieve 1-2% weight loss per week for an additional 77 days. Cats then received their original maintenance diet again for 14 days. Significant intentional weight loss was noted after calorie restriction (adjusted p < 0.0001). 16S rRNA gene amplicon sequencing and targeted SCFA metabolomics were performed on fecal samples. Fecal microbial community structure significantly differed between the four study phases (PERMANOVA p = 0.011). Fecal propionic acid was significantly higher during caloric restriction-induced weight loss (adjusted p < 0.05). Repeated measures correlation revealed the relative abundances of Prevotella 9 copri (correlation coefficient = 0.532, 95% CI (0.275, 0.717), p = 0.0002) significantly correlated with propionic acid composition. Like humans, obese cats experienced an altered microbial community structure and function, favoring propionic acid production, during caloric restriction-induced weight loss.


Subject(s)
Caloric Restriction , Feces , Gastrointestinal Microbiome , Obesity , Propionates , Weight Loss , Animals , Cats , Caloric Restriction/methods , Propionates/metabolism , Feces/microbiology , Obesity/microbiology , Obesity/metabolism , RNA, Ribosomal, 16S/genetics , Male , Female , Fatty Acids, Volatile/metabolism
5.
Nutrients ; 16(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794646

ABSTRACT

Obesity and metabolic syndrome are linked to steatotic liver disease (SLD), the most common form of chronic liver disease. Lifestyle modifications and dieting are strategies that can prevent metabolic dysfunction-associated steatotic liver disease (MASLD). The very low-calorie ketogenic diet (VLCKD) is a helpful treatment for MASLD and has been recommended for people affected by obesity; we evaluated the effect of gender on steatosis and fibrosis in a cohort of 112 overweight or obese patients undergoing an eight-week treatment with a VLCKD. Differences between the genders in terms of anthropometric measures, body composition, and metabolic indicators were examined before, during, and after the nutritional intervention. At baseline, there were significant differences between men and women in terms of anthropometric parameters, blood pressure, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), fasting insulin, hepatic markers, and lipid profile. Men had considerably higher levels of liver steatosis (measured by CAP) and liver stiffness (measured by E) under basal conditions than women. After the VLCKD, there were reductions in both genders of controlled attenuation parameter (CAP), body weight, body mass index (BMI), waist circumference, systolic and diastolic blood pressure, insulin resistance, fat mass (FM), free fat mass (FFM), and fasting blood glucose, insulin, glycated hemoglobin (HbA1c), triglycerides, total cholesterol, low-density lipoprotein (LDL) cholesterol, alanine transaminase (ALT), gamma-glutamyl transferase (γGT), and uric acid levels. Only in men, liver stiffness, aspartate aminotransferase (AST), creatinine, and C-reactive protein (CRP) levels significantly decreased. Moreover, men had significantly greater levels of liver steatosis: the male gender featured an increase of 23.96 points of the Fibroscan CAP. Men exhibited higher levels of steatosis and fibrosis than women, and these differences persist despite VLCKD. These gender-specific variations in steatosis and fibrosis levels could be caused by hormonal and metabolic factors, suggesting that different therapeutic strategies might be required depending on the gender.


Subject(s)
Diet, Ketogenic , Liver Cirrhosis , Obesity , Overweight , Humans , Male , Female , Diet, Ketogenic/methods , Middle Aged , Obesity/diet therapy , Obesity/complications , Liver Cirrhosis/diet therapy , Liver Cirrhosis/complications , Adult , Overweight/diet therapy , Overweight/complications , Sex Factors , Caloric Restriction/methods , Fatty Liver/diet therapy , Body Mass Index , Insulin Resistance , Body Composition , Metabolic Syndrome/diet therapy , Liver/metabolism
6.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791274

ABSTRACT

Numerous animal models have demonstrated that caloric restriction (CR) is an excellent tool to delay aging and increase the quality of life, likely because it counteracts age-induced oxidative stress and inflammation. The aging process can affect the prostate in three ways: the onset of benign prostatic hyperplasia, prostatitis, and prostate cancer. In this study, we used 14 aged male Sprague Dawley rats, which were allocated into two groups, at the age of 18 months old. One group was fed ad libitum (a normal diet (ND)), and the other group followed a caloric restriction diet with a 60% decrease in intake. The rats were sacrificed at the age of 24 months. By immunohistochemical (IHC) and Western blot (WB) analyses, we studied the variations between the two groups in immune inflammation and fibrosis-related markers in aged prostate tissues. Morphological examinations showed lower levels of prostatic hyperplasia and fibrosis in the CR rats vs. the ND rats. The IHC results revealed that the prostates of the CR rats exhibited a lower immune proinflammatory infiltrate level and a reduced expression of the NLRP3 inflammasome pathway, together with significantly reduced expressions of mesenchymal markers and the profibrotic factor TGFß1. Finally, by WB analysis, we observed a reduced expression of ERα, which is notoriously implicated in prostate stromal proliferation, and increased expressions of SOD1 and Hsp70, both exerting protective effects against oxidative stress. Overall, these data suggest that CR brings potential benefits to prostatic tissues as it reduces the physiological immune-inflammatory processes and the tissue remodeling caused by aging.


Subject(s)
Aging , Caloric Restriction , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein , Prostate , Rats, Sprague-Dawley , Animals , Male , Caloric Restriction/methods , Rats , Prostate/metabolism , Prostate/pathology , Aging/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation/metabolism , Inflammation/pathology , Transforming Growth Factor beta1/metabolism , Inflammasomes/metabolism , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Oxidative Stress , Fibrosis , Superoxide Dismutase-1/metabolism
7.
Nat Commun ; 15(1): 4155, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806467

ABSTRACT

The gut microbiome (GM) modulates body weight/composition and gastrointestinal functioning; therefore, approaches targeting resident gut microbes have attracted considerable interest. Intermittent fasting (IF) and protein pacing (P) regimens are effective in facilitating weight loss (WL) and enhancing body composition. However, the interrelationships between IF- and P-induced WL and the GM are unknown. The current randomized controlled study describes distinct fecal microbial and plasma metabolomic signatures between combined IF-P (n = 21) versus a heart-healthy, calorie-restricted (CR, n = 20) diet matched for overall energy intake in free-living human participants (women = 27; men = 14) with overweight/obesity for 8 weeks. Gut symptomatology improves and abundance of Christensenellaceae microbes and circulating cytokines and amino acid metabolites favoring fat oxidation increase with IF-P (p < 0.05), whereas metabolites associated with a longevity-related metabolic pathway increase with CR (p < 0.05). Differences indicate GM and metabolomic factors play a role in WL maintenance and body composition. This novel work provides insight into the GM and metabolomic profile of participants following an IF-P or CR diet and highlights important differences in microbial assembly associated with WL and body composition responsiveness. These data may inform future GM-focused precision nutrition recommendations using larger sample sizes of longer duration. Trial registration, March 6, 2020 (ClinicalTrials.gov as NCT04327141), based on a previous randomized intervention trial.


Subject(s)
Body Composition , Caloric Restriction , Fasting , Gastrointestinal Microbiome , Metabolomics , Humans , Gastrointestinal Microbiome/physiology , Caloric Restriction/methods , Male , Female , Fasting/blood , Adult , Middle Aged , Metabolomics/methods , Feces/microbiology , Feces/chemistry , Metabolome , Weight Loss/physiology , Obesity/metabolism , Obesity/therapy , Obesity/diet therapy , Obesity/microbiology , Dietary Proteins/metabolism , Dietary Proteins/administration & dosage , Intermittent Fasting
8.
J Cachexia Sarcopenia Muscle ; 15(3): 868-882, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689513

ABSTRACT

BACKGROUND: Sarcopenia is characterized by loss of skeletal muscle mass and function, and is a major risk factor for disability and independence in the elderly. Effective medication is not available. Dietary restriction (DR) has been found to attenuate aging and aging-related diseases, including sarcopenia, but the mechanism of both DR and sarcopenia are incompletely understood. METHODS: In this study, mice body weight, fore and all limb grip strength, and motor learning and coordination performance were first analysed to evaluate the DR effects on muscle functioning. Liquid chromatography-mass spectrometry (LC-MS) was utilized for the metabolomics study of the DR effects on sarcopenia in progeroid DNA repair-deficient Ercc1∆/- and Xpg-/- mice, to identify potential biomarkers for attenuation of sarcopenia. RESULTS: Muscle mass was significantly (P < 0.05) decreased (13-20%) by DR; however, the muscle quality was improved with retained fore limbs and all limbs grip strength in Ercc1∆/- and Xpg-/- mice. The LC-MS results revealed that metabolites and pathways related to oxidative-stress, that is, GSSG/GSH (P < 0.01); inflammation, that is, 9-HODE, 11-HETE (P < 0.05), PGE2, PGD2, and TXB2 (P < 0.01); and muscle growth (PGF2α) (P < 0.01) and regeneration stimulation (PGE2) (P < 0.05) are significantly downregulated by DR. On the other hand, anti-inflammatory indicator and several related metabolites, that is, ß-hydroxybutyrate (P < 0.01), 14,15-DiHETE (P < 0.0001), 8,9-EET, 12,13-DiHODE, and PGF1 (P < 0.05); consumption of sources of energy (i.e., muscle and liver glycogen); and energy production pathways, that is, glycolysis (glucose, glucose-6-P, fructose-6-P) (P < 0.01), tricarboxylic acid cycle (succinyl-CoA, malate) (P < 0.001), and gluconeogenesis-related metabolite, alanine (P < 0.01), are significantly upregulated by DR. The notably (P < 0.01) down-modulated muscle growth (PGF2α) and regeneration (PGE2) stimulation metabolite and the increased consumption of glycogen in muscle and liver may be related to the significantly (P < 0.01) lower body weight and muscle mass by DR. The downregulated oxidative stress, pro-inflammatory mediators, and upregulated anti-inflammatory metabolites resulted in a lower energy expenditure, which contributed to enhanced muscle quality together with upregulated energy production pathways by DR. The improved muscle quality may explain why grip strength is maintained and motor coordination and learning performance are improved by DR in Ercc1∆/- and Xpg-/- mice. CONCLUSIONS: This study provides fundamental supporting information on biomarkers and pathways related to the attenuation of sarcopenia, which might facilitate its diagnosis, prevention, and clinical therapy.


Subject(s)
Metabolomics , Sarcopenia , Animals , Mice , Sarcopenia/metabolism , Metabolomics/methods , Aging, Premature/metabolism , Metabolome , Mice, Knockout , Disease Models, Animal , DNA Repair , Male , Caloric Restriction/methods , Muscle, Skeletal/metabolism , DNA-Binding Proteins , Endonucleases
9.
J Physiol Pharmacol ; 75(2): 159-171, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736263

ABSTRACT

Obesity treatment is often burdensome for patients. We used the combination of moderate caloric restriction (CR) with hypoglycemic metformin to assess their multidirectional effect in obese patients. One group was treated only with moderate CR (n=21) the second was treated with moderate CR and 800 mg metformin twice daily (n=23). Serum was drawn before and after treatment. The following parameters were monitored: anthropometric, cardiovascular, inflammatory, metabolic, and markers characteristic for thyroid, liver, pancreas, and kidney functions. Both tested groups did not significantly differ in most tested parameters after the treatment. Two groups reduced anthropometric parameters (body mass, body mass index (BMI), waist circumference) and fat mass but also muscle and fat-free mass, improving systolic blood pressure, insulin and leptin concentration, insulin sensitivity, leptin to adiponectin ratio, and inflammatory markers. Unfortunately, there was little impact on improving dyslipidemia and the thyroid and liver parameters. Free triiodothyronine (fT3) and gamma glutamyl transferase (GGT) activity were decreased in both groups, but triglycerides were reduced only in patients treated with moderate CR. Metformin with CR treatment decreases uric acid and aspartate aminotransferase (AspAT) activity. Metformin treatment with moderate CR in obese patients mainly improved insulin sensitivity, resulting in a reduction of patients with glucose intolerance, improved anthropometric, cardiovascular, and inflammatory mediators, and only slightly enhanced liver and thyroid function. No changes in kidney and pancreas function were observed during the treatment. In conclusion, eight weeks of CR alone and CR with metformin in obese adults improved anthropometric and metabolic markers, reduced muscle mass, fT3, GGT, proinflammatory, and CV parameters, and displayed no changes in kidney and pancreas function. The group treated with metformin after the treatment was still more obese and had higher C-reactive protein (CRP) and homeostasis model assessment-an index of insulin resistance (HOMA-IR), but despite this, considerably reduced the number of patients with glucose intolerance.


Subject(s)
Caloric Restriction , Hypoglycemic Agents , Metformin , Obesity , Humans , Metformin/therapeutic use , Obesity/drug therapy , Obesity/blood , Obesity/metabolism , Caloric Restriction/methods , Male , Female , Adult , Middle Aged , Hypoglycemic Agents/therapeutic use , Insulin Resistance
10.
Nutrients ; 16(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674919

ABSTRACT

This study investigates the effect of daily consumption of wheat biscuits enriched with plant proteins in postprandial metabolic responses of women with overweight/obesity who follow an energy-restricted diet. Thirty apparently healthy women participated in a 12-week randomized controlled trial and were assigned either to a control (CB) or an intervention (PB) group. Participants consumed daily either a conventional (CB) or an isocaloric wheat biscuit enriched with plant proteins (PB) containing high amounts of amino acids with appetite-regulating properties, i.e., BCAAs and L-arg. At baseline and the end of the intervention, a mixed meal tolerance test was performed. The responses of glucose, insulin, ghrelin, GLP-1, and glicentin were evaluated over 180 min. After 12 weeks, both groups experienced significant decreases in body weight, fat mass, and waist circumference. In the PB group, a trend towards higher weight loss was observed, accompanied by lower carbohydrate, fat, and energy intakes (p < 0.05 compared to baseline and CB group), while decreases in fasting insulin and the HOMA-IR index were also observed (p < 0.05 compared to baseline). In both groups, similar postprandial glucose, ghrelin, and GLP-1 responses were detected, while iAUC for insulin was lower (p < 0.05). Interestingly, the iAUC of glicentin was greater in the PB group (p < 0.05 compared to baseline). Subjective appetite ratings were beneficially affected in both groups (p < 0.05). Consumption of wheat biscuits enriched in plant proteins contributed to greater weight loss, lower energy intake, and insulin resistance and had a positive impact on postprandial glicentin response, a peptide that can potentially predict long-term weight loss and decreased food intake.


Subject(s)
Blood Glucose , Obesity , Overweight , Postprandial Period , Triticum , Humans , Female , Adult , Obesity/diet therapy , Obesity/metabolism , Overweight/diet therapy , Overweight/metabolism , Blood Glucose/metabolism , Middle Aged , Insulin/blood , Plant Proteins/administration & dosage , Ghrelin/blood , Caloric Restriction/methods , Weight Loss , Energy Intake , Glucagon-Like Peptide 1/blood
11.
Obesity (Silver Spring) ; 32(6): 1163-1168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644683

ABSTRACT

OBJECTIVE: The objective of this study was to investigate why different weight-loss interventions result in varying durations of weight loss prior to approaching plateaus. METHODS: A validated mathematical model of energy metabolism and body composition dynamics was used to simulate mean weight- and fat-loss trajectories in response to diet restriction, semaglutide 2.4 mg, tirzepatide 10 mg, and Roux-en-Y gastric bypass (RYGB) surgery interventions. Each intervention was simulated by adjusting two model parameters affecting energy intake to fit the mean weight-loss data. One parameter represented the persistent shift of the system from baseline equilibrium, and the other parameter represented the strength of the feedback control circuit relating weight loss to increased appetite. RESULTS: RYGB surgery resulted in a persistent intervention magnitude more than threefold greater than diet restriction and about double that of tirzepatide and semaglutide. All interventions except diet restriction substantially weakened the appetite feedback control circuit, resulting in an extended period of weight loss prior to the plateau. CONCLUSIONS: These preliminary mathematical modeling results suggest that both glucagon-like peptide 1 (GLP-1) receptor agonism and RYGB surgery interventions act to weaken the appetite feedback control circuit that regulates body weight and induce greater persistent effects to shift the body weight equilibrium compared with diet restriction.


Subject(s)
Gastric Bypass , Glucagon-Like Peptide-1 Receptor , Weight Loss , Weight Loss/physiology , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptides , Receptors, Glucagon/agonists , Energy Metabolism/drug effects , Energy Metabolism/physiology , Body Composition , Obesity/surgery , Energy Intake , Models, Biological , Diet, Reducing/methods , Caloric Restriction/methods , Bariatric Surgery , Appetite/drug effects , Appetite/physiology
12.
Diabetes Care ; 47(6): 1074-1083, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38638032

ABSTRACT

OBJECTIVE: We aimed to examine the effects of a 5:2 diet (2 days per week of energy restriction by formula diet) or an exercise (2 days per week of high-intensity interval training and resistance training) intervention compared with routine lifestyle education (control) on glycemic control and cardiometabolic health among adults with overweight/obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS: This two-center, open-label, three-arm, parallel-group, randomized controlled trial recruited 326 participants with overweight/obesity and type 2 diabetes and randomized them into 12 weeks of diet intervention (n = 109), exercise intervention (n = 108), or lifestyle education (control) (n = 109). The primary outcome was the change of glycemic control measured as glycated hemoglobin (HbA1c) between the diet or exercise intervention groups and the control group after the 12-week intervention. RESULTS: The diet intervention significantly reduced HbA1c level (%) after the 12-week intervention (-0.72, 95% CI -0.95 to -0.48) compared with the control group (-0.37, 95% CI -0.60 to -0.15) (diet vs. control -0.34, 95% CI -0.58 to -0.11, P = 0.007). The reduction in HbA1c level in the exercise intervention group (-0.46, 95% CI -0.70 to -0.23) did not significantly differ from the control group (exercise vs. control -0.09, 95% CI -0.32 to 0.15, P = 0.47). The exercise intervention group was superior in maintaining lean body mass. Both diet and exercise interventions induced improvements in adiposity and hepatic steatosis. CONCLUSIONS: These findings suggest that the medically supervised 5:2 energy-restricted diet could provide an alternative strategy for improving glycemic control and that the exercise regimen could improve body composition, although it inadequately improved glycemic control.


Subject(s)
Diabetes Mellitus, Type 2 , Glycemic Control , High-Intensity Interval Training , Obesity , Overweight , Resistance Training , Humans , Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/blood , Male , Female , Middle Aged , Glycemic Control/methods , Resistance Training/methods , Overweight/therapy , Overweight/diet therapy , High-Intensity Interval Training/methods , Obesity/therapy , Obesity/diet therapy , Adult , Glycated Hemoglobin/metabolism , Caloric Restriction/methods , Blood Glucose/metabolism
13.
Obesity (Silver Spring) ; 32(6): 1169-1178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664956

ABSTRACT

OBJECTIVE: The objective of this study was to compare the magnitude of adaptive thermogenesis (AT), at the level of resting energy expenditure (REE), after a very low-energy diet alone or combined with Roux-en-Y gastric bypass or sleeve gastrectomy, as well as to investigate the association between AT and changes in appetite. METHODS: A total of 44 participants with severe obesity underwent 10 weeks of a very low-energy diet alone or combined with Roux-en-Y gastric bypass or sleeve gastrectomy. Body weight and composition, REE, subjective appetite feelings, and plasma concentrations of gastrointestinal hormones were measured at baseline and week 11. AT, at the level of REE, was defined as a significantly lower measured versus predicted (using a regression model with baseline data) REE. RESULTS: Participants lost 18.4 ± 3.9 kg of body weight and experienced AT, at the level of REE (-121 ± 188 kcal/day; p < 0.001), with no differences among groups. The larger the AT, at the level of REE, the greater the reduction in fasting ghrelin concentrations and the smaller the reduction in feelings of hunger and desire to eat in the postprandial state. CONCLUSIONS: Weight-loss modality does not seem to modulate the magnitude of AT, at the level of REE. The greater the AT, at the level of REE, the greater the drive to eat following weight loss.


Subject(s)
Energy Metabolism , Gastrectomy , Gastric Bypass , Ghrelin , Obesity, Morbid , Thermogenesis , Weight Loss , Humans , Female , Male , Thermogenesis/physiology , Adult , Weight Loss/physiology , Obesity, Morbid/surgery , Obesity, Morbid/diet therapy , Obesity, Morbid/blood , Obesity, Morbid/psychology , Energy Metabolism/physiology , Middle Aged , Ghrelin/blood , Gastrectomy/methods , Appetite/physiology , Diet, Reducing , Adaptation, Physiological , Bariatric Surgery , Basal Metabolism/physiology , Caloric Restriction/methods , Postprandial Period/physiology , Body Composition
14.
Mech Ageing Dev ; 219: 111929, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561164

ABSTRACT

The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.


Subject(s)
Aging , Biomedical Research , Caloric Restriction , Humans , Aging/metabolism , Biomedical Research/trends , Biomedical Research/history , Biomedical Research/methods , Caloric Restriction/methods , Animals , Exercise/physiology , Stem Cell Transplantation/methods , Senotherapeutics/pharmacology
15.
Diabetologia ; 67(7): 1399-1412, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38656372

ABSTRACT

AIMS/HYPOTHESIS: Obesity surgery (OS) and diet-induced weight loss rapidly improve insulin resistance. We aim to investigate the impact of either Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery compared with a diet low in energy (low-calorie diet; LCD) on body composition, glucose control and insulin sensitivity, assessed both at the global and tissue-specific level in individuals with obesity but not diabetes. METHODS: In this parallel group randomised controlled trial, patients on a waiting list for OS were randomised (no blinding, sealed envelopes) to either undergo surgery directly or undergo an LCD before surgery. At baseline and 4 weeks after surgery (n=15, 11 RYGB and 4 SG) or 4 weeks after the start of LCD (n=9), investigations were carried out, including an OGTT and hyperinsulinaemic-euglycaemic clamps during which concomitant simultaneous whole-body [18F]fluorodeoxyglucose-positron emission tomography (PET)/MRI was performed. The primary outcome was HOMA-IR change. RESULTS: One month after bariatric surgery and initiation of LCD, both treatments induced similar reductions in body weight (mean ± SD: -7.7±1.4 kg and -7.4±2.2 kg, respectively), adipose tissue volume (7%) and liver fat content (2% units). HOMA-IR, a main endpoint, was significantly reduced following OS (-26.3% [95% CI -49.5, -3.0], p=0.009) and non-significantly following LCD (-20.9% [95% CI -58.2, 16.5). For both groups, there were similar reductions in triglycerides and LDL-cholesterol. Fasting plasma glucose and insulin were also significantly reduced only following OS. There was an increase in glucose AUC in response to an OGTT in the OS group (by 20%) but not in the LCD group. During hyperinsulinaemia, only the OS group showed a significantly increased PET-derived glucose uptake rate in skeletal muscle but a reduced uptake in the heart and abdominal adipose tissue. Both liver and brain glucose uptake rates were unchanged after surgery or LCD. Whole-body glucose disposal and endogenous glucose production were not significantly affected. CONCLUSIONS/INTERPRETATION: The short-term metabolic effects seen 4 weeks after OS are not explained by loss of body fat alone. Thus OS, but not LCD, led to reductions in fasting plasma glucose and insulin resistance as well as to distinct changes in insulin-stimulated glucose fluxes to different tissues. Such effects may contribute to the prevention or reversal of type 2 diabetes following OS. Moreover, the full effects on whole-body insulin resistance and plasma glucose require a longer time than 4 weeks. TRIAL REGISTRATION: ClinicalTrials.gov NCT02988011 FUNDING: This work was supported by AstraZeneca R&D, the Swedish Diabetes Foundation, the European Union's Horizon Europe Research project PAS GRAS, the European Commission via the Marie Sklodowska Curie Innovative Training Network TREATMENT, EXODIAB, the Family Ernfors Foundation, the P.O. Zetterling Foundation, Novo Nordisk Foundation, the Agnes and Mac Rudberg Foundation and the Uppsala University Hospital ALF grants.


Subject(s)
Body Composition , Caloric Restriction , Fluorodeoxyglucose F18 , Insulin Resistance , Magnetic Resonance Imaging , Obesity , Positron-Emission Tomography , Humans , Male , Female , Body Composition/physiology , Adult , Middle Aged , Positron-Emission Tomography/methods , Insulin Resistance/physiology , Caloric Restriction/methods , Obesity/surgery , Obesity/metabolism , Glucose/metabolism , Bariatric Surgery , Weight Loss/physiology , Gastric Bypass , Blood Glucose/metabolism , Gastrectomy/methods
16.
Curr Obes Rep ; 13(2): 256-274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489002

ABSTRACT

PURPOSE OF REVIEW: Highlight the importance of exploring nutritional interventions that could be applied as alternative or supplementary therapeutic strategies to enhance men's fertility. RECENT FINDINGS: Lifestyle choices have prompted extensive discussions regarding its implications and applications as a complementary therapy. The growing concern over the decline in sperm quality underscores the urgency of investigating these alternative interventions. Calorie restriction (CR) has emerged as a promising strategy to improve male fertility. The efficacy of CR depends on factors like age, ethnicity and genetics. Clinical studies, such as CALERIE, have shown an improvement in serum testosterone level and sexual drive in men with or without obesity. Additionally, CR has been shown to positively impact sperm count and motility; however, its effects on sperm morphology and DNA fragmentation remain less clear, and the literature has shown discrepancies, mainly due to the nature of technically dependent assessment tools. The review advocates a personalized approach to CR, considering individual health profiles to maximize its benefits. It underscores the need for routine, accessible diagnostic techniques in male reproductive health. It suggests that future research should focus on personalized dietary interventions to improve male fertility and overall well-being in individuals with or without obesity and unravel CR's immediate and lasting effects on semen parameters in men without obesity.


Subject(s)
Caloric Restriction , Fertility , Infertility, Male , Obesity , Humans , Male , Caloric Restriction/methods , Spermatozoa , Testosterone/blood , Sperm Count , Sperm Motility , Semen Analysis
17.
Ann Nutr Metab ; 80(3): 153-160, 2024.
Article in English | MEDLINE | ID: mdl-38498987

ABSTRACT

INTRODUCTION: The ghrelin system, which generates the appetite hormone, is harmed by obesity, a problem of worldwide public health. An efficient way to cure obesity is through bariatric surgery. This randomized controlled study's objective was to assess preoperative diet-related DNA methylation of Ghrelin (GHRL) levels in patients undergoing bariatric surgery. METHODS: The 50 patients who volunteered to participate in the trial were randomly divided into two groups. The study group followed the very low-calorie diet for 2 weeks. The control group did not follow any diet. The physiological parameters, weight, and DNA methylation levels of the patients were assessed. RESULTS: The percentage of excess weight loss (EWL) in the control and study groups was determined as 47.1% and 51.5%, respectively. The study group's GHRL percentage of methylated reference was 76.8%, whereas the control group's was 67.3%. It was concluded that the EWL and GHRL gene DNA methylation of the diet-treated study group were significantly higher than the control group (p < 0.05). CONCLUSION: According to the findings, the pre-op diet had a favorable effect on the patient's behavior modification. It has also been shown to increase postoperative weight loss and DNA methylation of the Ghrelin gene. The ghrelin gene has been muted by methylation, making hunger regulation more manageable.


Subject(s)
Bariatric Surgery , DNA Methylation , Ghrelin , Weight Loss , Humans , Ghrelin/blood , Female , Male , Adult , Middle Aged , Caloric Restriction/methods , Obesity, Morbid/surgery , Obesity, Morbid/diet therapy
18.
Aging Cell ; 23(6): e14149, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38504468

ABSTRACT

Caloric restriction (CR) modifies lifespan and aging biology in animal models. The Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE™) 2 trial tested translation of these findings to humans. CALERIE™ randomized healthy, nonobese men and premenopausal women (age 21-50y; BMI 22.0-27.9 kg/m2), to 25% CR or ad-libitum (AL) control (2:1) for 2 years. Prior analyses of CALERIE™ participants' blood chemistries, immunology, and epigenetic data suggest the 2-year CR intervention slowed biological aging. Here, we extend these analyses to test effects of CR on telomere length (TL) attrition. TL was quantified in blood samples collected at baseline, 12-, and 24-months by quantitative PCR (absolute TL; aTL) and a published DNA-methylation algorithm (DNAmTL). Intent-to-treat analysis found no significant differences in TL attrition across the first year, although there were trends toward increased attrition in the CR group for both aTL and DNAmTL measurements. When accounting for adherence heterogeneity with an Effect-of-Treatment-on-the-Treated analysis, greater CR dose was associated with increased DNAmTL attrition during the baseline to 12-month weight-loss period. By contrast, both CR group status and increased CR were associated with reduced aTL attrition over the month 12 to month 24 weight maintenance period. No differences were observed when considering TL change across the study duration from baseline to 24-months, leaving it unclear whether CR-related effects reflect long-term detriments to telomere fidelity, a hormesis-like adaptation to decreased energy availability, or measurement error and insufficient statistical power. Unraveling these trends will be a focus of future CALERIE™ analyses and trials.


Subject(s)
Caloric Restriction , Telomere , Humans , Caloric Restriction/methods , Adult , Male , Female , Middle Aged , Telomere/metabolism , Young Adult , Telomere Homeostasis , Aging/genetics , DNA Methylation
19.
Clin Obes ; 14(3): e12648, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38400699

ABSTRACT

Reducing ultra-processed foods (UPF) improves diet quality and may curb energy consumption. This study aimed to compare an intervention based on the reduction of UPF, according to the Dietary Guideline for the Brazilian Population (DGBP), with and without advice on energy intake. A parallel and randomised controlled trial was carried out with children with obesity from 7 to 12 years old. Both control (CG) and intervention groups (IG) participated monthly in 6 standardised educational activities based on the 10 steps of the DGBP. An individualised food plan was also provided to the IG. The rate of change for body mass index (BMI), waist circumference, body weight, and UPF consumption were investigated based on mixed-effect models. At the end of the study, the BMI declined in the IG (Δ = -0.27 kg/m2) compared to the CG (Δ = + 0.53 kg/m2) (p = .0002). Both groups showed a decline in grams of UPF until the fourth month and a gradual increase in the following months. Combining the qualitative approach of the DGBP with counselling on energy restriction through the diet plan proved to be effective in reducing childhood obesity. Clinical Trial Registration: This trial is registered at the Brazilian Registry of Clinical Trials (REBEC), under the RBR-3st5sn registry, available at http://www.ensaiosclinicos.gov.br/rg/RBR-3st5sn/. The datasets generated by the current study are not publicly available but are available from the corresponding author on reasonable request.


Subject(s)
Pediatric Obesity , Humans , Pediatric Obesity/diet therapy , Pediatric Obesity/therapy , Child , Male , Brazil , Female , Body Mass Index , Energy Intake , Caloric Restriction/methods , Fast Foods , Nutrition Policy , Diet, Reducing/methods , Food, Processed
20.
Neuropharmacology ; 247: 109859, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340956

ABSTRACT

Caloric restriction (CR) is proposed as a strategy to prevent age-related alterations like impaired glucose metabolism and intensification of oxidative stress. In this study, we examined effects of aging and CR on the activities of glycolytic enzymes and parameters of oxidative stress in the cerebral cortex, liver, and kidney of middle-aged (9 months old) and old (18 months old) C57BL6/N mice. Control middle-aged and old mice were fed ad libitum (AL groups), whereas age-matched CR groups were subjected to CR (70% of individual ad libitum food intake) for 6 and 12 months, respectively. There were no significant differences in the activities of key glycolytic and antioxidant enzymes and oxidative stress indices between the cortices of middle-aged and old AL mice. The livers and kidneys of old AL mice showed higher activity of glucose-6-phosphate dehydrogenase, an enzyme that produces NADPH in the pentose phosphate pathway, compared to those of middle-aged mice. CR regimen modulated some biochemical parameters in middle-aged but not in old mice. In particular, CR decreased oxidative stress intensity in the liver and kidney but had no effects on those parameters in the cerebral cortex. In the liver, CR led to lower activities of glycolytic enzymes, whereas its effect was the opposite in the kidney. The results suggest that during physiological aging there is no significant intensification of oxidative stress and glycolysis decline in mouse tissues during the transition from middle to old age. The CR regimen has tissue-specific effects and improves the metabolic state of middle-aged mice. This article is part of the Special Issue on "Ukrainian Neuroscience".


Subject(s)
Caloric Restriction , Oxidative Stress , Mice , Animals , Caloric Restriction/methods , Oxidative Stress/physiology , Aging/metabolism , Liver/metabolism , Kidney , Glycolysis , Cerebral Cortex
SELECTION OF CITATIONS
SEARCH DETAIL
...