Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.380
Filter
1.
J Cell Mol Med ; 28(11): e18412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842132

ABSTRACT

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.


Subject(s)
Cyclin-Dependent Kinase 5 , Parkinson Disease , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Animals , Calpain/metabolism , Calpain/antagonists & inhibitors , Signal Transduction/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
2.
J Transl Med ; 22(1): 538, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844946

ABSTRACT

Apalutamide, a novel endocrine therapy agent, has been shown to significantly improve the prognosis of patients with metastatic hormone-sensitive prostate cancer (mHSPC). However, resistance to apalutamide has also been reported, and the underlying mechanism for this response has yet to be clearly elucidated. First, this study established apalutamide-resistant prostate cancer (PCa) cells, and confirmed that apalutamide activated the release of calcium ions (Ca2+) and endoplasmic reticulum stress (ERS) to enhance autophagy. Second, RNA sequencing, western blotting, and immunohistochemistry revealed significantly decreased Calpain 2 (CAPN2) expression in the apalutamide-resistant PCa cells and tissues. Furthermore, immunofluorescence and transmission electron microscopy (TEM) showed that CAPN2 promoted apalutamide resistance by activating protective autophagy. CAPN2 promoted autophagy by reducing Forkhead Box O1 (FOXO1) degradation while increasing nuclear translocation via nucleoplasmic protein isolation and immunofluorescence. In addition, FOXO1 promoted protective autophagy through the transcriptional regulation of autophagy-related gene 5 (ATG5). Furthermore, a dual-fluorescence assay confirmed that transcription factor 3 (ATF3) stimulation promoted CAPN2-mediated autophagy activation via transcriptional regulation. In summary, CAPN2 activated protective autophagy by inhibiting FOXO1 degradation and promoting its nuclear translocation via transcriptional ATG5 regulation. ATF3 activation and transcriptional CAPN2 regulation jointly promoted this bioeffect. Thus, our findings have not only revealed the mechanism underlying apalutamide resistance, but also provided a promising new target for the treatment of metastatic PCa.


Subject(s)
Autophagy , Calpain , Drug Resistance, Neoplasm , Neoplasm Metastasis , Prostatic Neoplasms , Thiohydantoins , Humans , Male , Autophagy/drug effects , Cell Line, Tumor , Calpain/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Thiohydantoins/pharmacology , Thiohydantoins/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Forkhead Box Protein O1/metabolism , Calcium/metabolism , Endoplasmic Reticulum Stress/drug effects , Animals
3.
Food Res Int ; 183: 114208, 2024 May.
Article in English | MEDLINE | ID: mdl-38760138

ABSTRACT

To explore the underlying mechanisms by which superchilling (SC, -3 °C within 5 h of slaughter) improves beef tenderness, an untargeted metabolomics strategy was employed. M. Longissimus lumborum (LL) muscles from twelve beef carcasses were assigned to either SC or very fast chilling (VFC, 0 °C within 5 h of slaughter) treatments, with conventional chilling (CC, 0 âˆ¼ 4 °C until 24 h post-mortem) serving as the control (6 per group). Biochemical properties and metabolites were investigated during the early post-mortem period. The results showed that the degradation of µ-calpain and caspase 3 occurred earlier in SC treated sample, which might be attributed to the accelerated accumulation of free Ca2+. The metabolomic profiles of samples from the SC and CC treatments were clearly distinguished based on partial least squares-discriminant analysis (PLS-DA) at each time point. It is noteworthy that more IMP and 4-hydroxyproline were found in the comparison between SC and CC treatments. According to the results of metabolic pathways analysis and the correlation analysis between traits related to tenderness and metabolites with significant differences (SC vs. CC), it can be suggested that the tenderization effect of the SC treatment may be related to the alteration of arginine and proline metabolism, and purine metabolism in the early post-mortem phase.


Subject(s)
Metabolomics , Muscle, Skeletal , Red Meat , Animals , Metabolomics/methods , Cattle , Red Meat/analysis , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Cold Temperature , Food Handling/methods , Chromatography, Liquid , Caspase 3/metabolism , Discriminant Analysis , Postmortem Changes , Calpain/metabolism , Least-Squares Analysis , Proline/metabolism , Mass Spectrometry/methods , Inosine/metabolism , Inosine/analysis , Liquid Chromatography-Mass Spectrometry
4.
J Agric Food Chem ; 72(21): 12229-12239, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743679

ABSTRACT

The objective was to understand the impacts of secondary lipid oxidation products on calpain-2 activity and autolysis and, subsequently, to determine the quantity and localization of modification sites. 2-Hexenal and 4-hydroxynonenal incubation significantly decreased calpain-2 activity and slowed the progression of autolysis, while malondialdehyde had minimal impact on calpain-2 activity and autolysis. Specific modification sites were determined with LC-MS/MS, including distinct malondialdehyde modification sites on the calpain-2 catalytic and regulatory subunits. 2-Hexenal modification sites were observed on the calpain-2 catalytic subunit. Intact protein mass analysis with MALDI-MS revealed that a significant number of modifications on the calpain-2 catalytic and regulatory subunits are likely to exist. These observations confirm that specific lipid oxidation products modify calpain-2 and may affect the calpain-2 functionality. The results of these novel experiments have implications for healthy tissue metabolism, skeletal muscle growth, and post-mortem meat tenderness development.


Subject(s)
Calpain , Oxidation-Reduction , Calpain/metabolism , Calpain/chemistry , Animals , Aldehydes/metabolism , Aldehydes/chemistry , Tandem Mass Spectrometry , Malondialdehyde/metabolism , Malondialdehyde/chemistry , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Meat/analysis , Swine
5.
Transl Vis Sci Technol ; 13(5): 14, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38767905

ABSTRACT

Purpose: Extracellular vesicles (EVs) are messenger pigeons of the cells that communicate about cellular microenvironment. In this study, we evaluated the expression of C8α and calpain-2 in EVs from vitreous of patients with bacterial endophthalmitis to assess its utility as a diagnostic marker. Methods: EVs were isolated from vitreous of patients with bacterial endophthalmitis (culture positive and culture negative) and noninfectious control by exosome isolation reagent and characterized, and the levels of C8α and calpain-2 was assessed by enzyme-linked immunosorbent assay in isolated EVs and direct vitreous. The receiver operating characteristic curve was generated to assess the diagnostic performance. Results: Scanning electron microscopy (SEM) and dynamic light scattering (DLS) confirmed the presence of EVs having a diameter (nm) of 275.2 ± 93, 92 ± 22, and 77.28 ± 12 in culture-positive (CP), culture-negative (CN), and control respectively. The expression level (ng/mL) of C8α in the EVs obtained from CP was 144 ± 22 and CN was 31.2 ± 9.8, which was significantly higher (P < 0.01) than control 3.7 ± 2.4. Interestingly, C8α is not expressed directly in the vitreous of CN and controls. Calpain-2 was significantly downregulated (P ≤ 0.0001) in CP (0.94 ± 0.16) and CN (0.70 ± 0.14) than control. The sensitivity and specificity of 1 for C8α and calpain-2 in the EVs implied that its diagnostic accuracy was significant. Conclusions: This study showed that the EV proteins C8α and calpain-2 could be suitable diagnostic markers for endophthalmitis. However, the presence of C8α in the EVs of CN samples but not in direct vitreous promises EVs as the future of diagnostics. Translational Relevance: Expression levels of EV-calpain-2 and EV-C8α could diagnose CN bacterial endophthalmitis.


Subject(s)
Biomarkers , Calpain , Endophthalmitis , Extracellular Vesicles , Vitreous Body , Calpain/metabolism , Humans , Vitreous Body/metabolism , Vitreous Body/microbiology , Endophthalmitis/diagnosis , Endophthalmitis/microbiology , Endophthalmitis/metabolism , Endophthalmitis/pathology , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Male , Female , Middle Aged , Enzyme-Linked Immunosorbent Assay , Aged , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/metabolism , Eye Infections, Bacterial/pathology , ROC Curve , Microscopy, Electron, Scanning , Adult
6.
J Proteomics ; 301: 105182, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697284

ABSTRACT

Calpain is a non-lysozyme, calcium-dependent intracellular cysteine protease that has been shown to play a role in tumor proliferation, survival, migration, invasion, and apoptosis. Dysregulation of calpain expression is closely related to tumorigenesis. However, the role of calpain-8 (CAPN8), as a member of the calpain family, in pancreatic cancer (PC) is remains unclear. In elucidating the mechanism of CAPN8 in PC, a comprehensive bioinformatics analysis and in vitro experiments were conducted. The TCGA database was used to explore the expression level of CAPN8, and the results in PC tissues and cell lines were verified. Then, the correlation between CAPN8 and clinicopathological features was analyzed. Additionaly, promoter methylation, immune infiltration, and GO/KEGG enrichment analyses were performed. Lastly, the molecular mechanism of CAPN8 in PC was investigated by using cell counting kit (CCK) 8, transwell, wound healing, Western blot assays, and so on. Results indicate that CAPN8 was highly expressed in PC and correlated with poor prognosis and advanced TNM stage. In addition, a low level of immune infiltration was closely associated with the high expression level of CAPN8. Based on these findings, we hypothesized that CAPN8 is a potential biomarker that regulates progression of PC via EMT and the AKT/ERK pathway. SIGNIFICANCE: Through comprehensive biological information and in vitro experiments, CAPN8 has been confirmed to play an important role in regulating pancreatic cancer (PC) proliferation, migration and invasion. CAPN8 is found to be closely related to the diagnosis, survival and prognosis of PC. Above all, CAPN8 may be a potential biomarker for the diagnosis and prognosis of PC.


Subject(s)
Biomarkers, Tumor , Calpain , Epithelial-Mesenchymal Transition , MAP Kinase Signaling System , Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Calpain/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Proto-Oncogene Proteins c-akt/metabolism , Male , Cell Line, Tumor , Female , Disease Progression , Gene Expression Regulation, Neoplastic , Middle Aged , Cell Proliferation , Prognosis , Cell Movement
7.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38614382

ABSTRACT

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Subject(s)
Cell Cycle Proteins , Cell Death , Polo-Like Kinase 1 , Proteasome Endopeptidase Complex , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Humans , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Animals , Proteasome Endopeptidase Complex/metabolism , Cell Death/drug effects , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Mice, Nude , Pteridines/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Calpain/antagonists & inhibitors , Calpain/metabolism , Enzyme Activation/drug effects , Xenograft Model Antitumor Assays , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology
8.
Anal Chem ; 96(17): 6812-6818, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38634576

ABSTRACT

Among the primary threats to human health worldwide, nonsmall cell lung cancer (NSCLC) remains a significant factor and is a leading cause of cancer-related deaths. Due to subtle early symptoms, NSCLC patients are diagnosed at advanced stages, resulting in low survival rates. Herein, novel Au-Se bond nanoprobes (NPs) designed for the specific detection of Calpain-2 (CAPN2) and Human Neutrophil Elastase (HNE), pivotal biomarkers in NSCLC, were developed. The NPs demonstrated exceptional specificity and sensitivity toward CAPN2 and HNE, enabling dual-color fluorescence imaging to distinguish between NSCLC cells and normal lung cells effectively. The NPs' performance was consistent across a wide pH range (6.2 to 8.0), and it exhibited remarkable resistance to biological thiol interference, indicating its robustness in complex physiological environments. These findings suggest the nanoprobe is a promising tool for early NSCLC diagnosis, offering a novel approach for enhancing the accuracy of cancer detection.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Fluorescent Dyes , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Fluorescent Dyes/chemistry , Optical Imaging , Gold/chemistry , Calpain/metabolism , Calpain/analysis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Cell Line, Tumor
9.
Cancer Lett ; 590: 216845, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38589004

ABSTRACT

Pancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity. We have previously reported a PDAC-specific mesoporous silica nanoparticle (MSN) containing a protease linker responsive to ADAM9, a PDAC-enriched extracellularly deposited protease. Upon loading with paclitaxel these ADAM9-MSNs reduced side effects both in vitro and in vivo, however, disappointing antitumor efficacy was observed in vivo. Here, we propose that an efficient uptake of MSNs by tumor cells might underlie the lack of antitumor efficacy of MSNs functionalized with linker responsive to extracellular proteases. Harnessing this premise to improve antitumor efficacy, we performed an in silico analysis to identify PDAC-enriched intracellular proteases. We report the identification of BACE2, CAPN2 and DPP3 as PDAC enriched intracellular proteases, and report the synthesis of BACE2-, CAPN2- and DPP3-responsive MSNs. Extensive preclinical assessments revealed that paclitaxel-loaded CAPN2- and DPP3-MSNs exhibit high PDAC specificity in vitro as opposed to free paclitaxel. The administration of paclitaxel-loaded CAPN2- and DPP3-MSNs in vivo confirmed the reduction of leukopenia and induced no organ damage. Promisingly, in two mouse models CAPN2-MSNs reduced tumor growth at least as efficiently as free paclitaxel. Taken together, our results pose CAPN2-MSNs as a promising nanocarrier for the targeted delivery of chemotherapeutics in PDAC.


Subject(s)
Calpain , Drug Carriers , Nanoparticles , Paclitaxel , Pancreatic Neoplasms , Silicon Dioxide , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Silicon Dioxide/chemistry , Humans , Animals , Paclitaxel/pharmacology , Paclitaxel/administration & dosage , Nanoparticles/chemistry , Cell Line, Tumor , Calpain/metabolism , Drug Carriers/chemistry , Xenograft Model Antitumor Assays , Mice , Porosity , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Mice, Nude , Female
10.
Biomed Pharmacother ; 174: 116539, 2024 May.
Article in English | MEDLINE | ID: mdl-38615610

ABSTRACT

This study aimed to investigate the effects of the calpain inhibitor N-Acetyl-Leu-Leu-norleucinal (ALLN) on neuroapoptotic cell damage caused by Copper Oxide Nanoparticles (CuO-NP) and exacerbation of damage through brain ischemia/reperfusion (I/R) in a rat model. Male Wistar Albino rats (n=80) were divided into eight groups: Control, I/R, CuO-NP, CuO-NP+I/R, I/R+ALLN, CuO-NP+ALLN, CuO-NP+I/R+ALLN, and DMSO. Biochemical markers (MBP, S100B, NEFL, NSE, BCL-2, Cyt-C, Calpain, TNF-α, Caspase-3, MDA, and CAT) were measured in serum and brain tissue samples. Histological examinations (H&E staining), DNA fragmentation analysis (TUNEL) were performed, along with Caspase-3 assessment. The ALLN-treated groups exhibited significant improvements in biochemical markers and a remarkable reduction in apoptosis compared to the damaged groups (CuO-NP and I/R). H&E and Caspase-3 staining revealed damage-related morphological changes and reduced apoptosis in the ALLN-treated group. However, no differences were observed among the groups with TUNEL staining. The findings suggest that ALLN, as a calpain inhibitor, has potential implications for anti-apoptotic treatment, specifically in mitigating neuroapoptotic cell damage caused by CuO-NP and I/R.


Subject(s)
Calpain , Copper , Disease Models, Animal , Glycoproteins , Leupeptins , Rats, Wistar , Reperfusion Injury , Animals , Male , Reperfusion Injury/pathology , Reperfusion Injury/drug therapy , Copper/toxicity , Calpain/metabolism , Calpain/antagonists & inhibitors , Rats , Apoptosis/drug effects , Nanoparticles , Oligopeptides/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Brain Ischemia/chemically induced , Brain/drug effects , Brain/pathology , Brain/metabolism , Neuroprotective Agents/pharmacology , Caspase 3/metabolism
11.
Exp Gerontol ; 189: 112400, 2024 May.
Article in English | MEDLINE | ID: mdl-38484904

ABSTRACT

Alzheimer's disease (AD) stands as a neurodegenerative disorder causing cognitive decline, posing a significant health concern for the elderly population in China. This study explored the effects of outer membrane vesicles (OMVs) from the gut microbiota of AD patients on learning and memory abilities and Tau protein phosphorylation in mice. In contrast to the OMVs from healthy controls and the PBS treatment group, mice treated with AD-OMVs exhibited notable declines in learning and memory capabilities, as evidenced by results from the Morris water maze, Y-maze, and novel object recognition tests. Immunohistochemistry and Western blot assessments unveiled elevated levels of hyperphosphorylated Tau in the cortex and hippocampus of mice treated with AD-OMVs. However, there were no alterations observed in the total Tau levels. In addition, AD-OMVs treated mice showed increased neuroinflammation indicated by elevated astrocytes and microglia. Molecular mechanism studies demonstrated that AD-OMVs could activate GSK3ß, CDK5-Calpain and NF-κB pathways in mice hippocampus. These studies suggest AD patient gut microbiota derived OMVs can promote host Tau phosphorylation and improved neuroinflammation.


Subject(s)
Alzheimer Disease , Lactobacillus pentosus , Aged , Mice , Humans , Animals , tau Proteins/metabolism , Phosphorylation , Calpain/metabolism , Lactobacillus pentosus/metabolism , Neuroinflammatory Diseases , Alzheimer Disease/metabolism , Hippocampus/metabolism , Disease Models, Animal
12.
Sci Rep ; 14(1): 6761, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514708

ABSTRACT

Voltage-gated sodium channels (NaV) are pivotal proteins responsible for initiating and transmitting action potentials. Emerging evidence suggests that proteolytic cleavage of sodium channels by calpains is pivotal in diverse physiological scenarios, including ischemia, brain injury, and neuropathic pain associated with diabetes. Despite this significance, the precise mechanism by which calpains recognize sodium channels, especially given the multiple calpain isoforms expressed in neurons, remains elusive. In this work, we show the interaction of Calpain-10 with NaV's C-terminus through a yeast 2-hybrid assay screening of a mouse brain cDNA library and in vitro by GST-pulldown. Later, we also obtained a structural and dynamic hypothesis of this interaction by modeling, docking, and molecular dynamics simulation. These results indicate that Calpain-10 interacts differentially with the C-terminus of NaV1.2 and NaV1.6. Calpain-10 interacts with NaV1.2 through domains III and T in a stable manner. In contrast, its interaction with NaV1.6 involves domains II and III, which could promote proteolysis through the Cys-catalytic site and C2 motifs.


Subject(s)
Calpain , Voltage-Gated Sodium Channels , Animals , Mice , Action Potentials , Calpain/metabolism , Neurons/metabolism , Protein Isoforms/metabolism , Voltage-Gated Sodium Channels/metabolism
13.
PLoS One ; 19(3): e0298184, 2024.
Article in English | MEDLINE | ID: mdl-38547301

ABSTRACT

ß-catenin is an important regulator of malignant progression. 17ß-Estradiol (E2), an important sex hormone in women, promotes the growth and metastasis of triple-negative breast cancer (TNBC). However, whether ß-catenin is involved in E2-induced metastasis of TNBC remains unknown. In this study, we show that E2 induces the proliferation, migration, invasion, and metastasis of TNBC cells. E2 induces ß-catenin protein expression and nuclear translocation, thereby regulating the expression of target genes such as Cyclin D1 and MMP-9. The inhibition of ß-catenin reversed the E2-induced cell malignant behaviors. Additionally, E2 activated Calpain by increasing intracellular Ca2+ levels and reducing calpastatin levels. When Calpain was inhibited, E2 did not induce the proliferation, migration, invasion, or metastasis of TNBC cells. In addition, E2 promoted translocation of YAP into the nucleus by inhibiting its phosphorylation. Calpain inhibition reversed the E2-induced YAP dephosphorylation. Inhibition of YAP transcriptional activity reversed the effects of E2 on the proliferation, migration, invasion, and ß-catenin of TNBC cells. In conclusion, we demonstrated that E2 induced metastasis-related behaviors in TNBC cells and this effect was mediated through the Calpain/YAP/ß-catenin signaling pathway.


Subject(s)
Triple Negative Breast Neoplasms , beta Catenin , Female , Humans , beta Catenin/metabolism , Triple Negative Breast Neoplasms/pathology , Calpain/metabolism , Cell Line, Tumor , Signal Transduction , Estradiol/pharmacology , Cell Proliferation
14.
Neurochem Int ; 175: 105697, 2024 May.
Article in English | MEDLINE | ID: mdl-38364938

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. Unfortunately, there is no cure for it. Current therapies that target immunomodulation and/or immunosuppression show only modest beneficial effects, have many side effects, and do not block neurodegeneration or progression of the disease. Since neurodegeneration and in particular axonal degeneration is implicated in disability in progressive MS, development of novel therapeutic strategies to attenuate the neurodegenerative processes is imperative. This study aims to develop new safe and efficacious treatments that address both the inflammatory and neurodegenerative aspects of MS using its animal model, experimental allergic encephalomyelitis (EAE). In EAE, the cysteine protease calpain is upregulated in CNS tissue, and its activity correlates with neurodegeneration. Our immunologic studies on MS have indicated that increased calpain activity promotes pro-inflammatory T helper (Th)1 cells and the severity of the disease in EAE, suggesting that calpain inhibition could be a novel target to combat neurodegeneration in MS/EAE. While calpain inhibition by SNJ1945 reduced disease severity, treatment of EAE animals with a novel protease-resistant altered small peptide ligand (3aza-APL) that mimic myelin basic protein (MBP), also decreased the incidence of EAE, disease severity, infiltration of inflammatory cells, and protected myelin. A reduction in inflammatory T-cells with an increase in Tregs and myeloid suppressor cells is also found in EAE mice treated with SNJ1945 and 3aza-APL. Thus, a novel combination strategy was tested in chronic EAE mouse model in B10 mice which showed multiple pathological mechanisms could be addressed by simultaneous treatment with calpain inhibitor SNJ1945 and protease-resistant 3aza-APL to achieve a stronger therapeutic effect.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Calpain/metabolism , Calpain/therapeutic use , Inflammation/drug therapy , Central Nervous System/metabolism , Mice, Inbred C57BL , Disease Models, Animal
15.
Cell Commun Signal ; 22(1): 92, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38303059

ABSTRACT

Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.


Subject(s)
Egtazic Acid/analogs & derivatives , Retinal Degeneration , Sirtuins , Mice , Animals , Retinal Degeneration/metabolism , Calpain/metabolism , Sodium-Calcium Exchanger , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Cell Death , Sirtuins/metabolism
16.
Reprod Biol ; 24(2): 100862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402721

ABSTRACT

Calpain role has been shown in the cumulus cell-oocyte complexes and, corpus luteum. We investigated the association of calpains-1 and -2 in ovarian folliculogenesis using the Sprague-Dawley (SD) rat model and steroidogenesis in the human granulosa cells (hGCs). We induced PCOS in 42-day-old SD rats by letrozole oral gavage for 21 days. Premature ovarian failure (POF) was induced in 21-day-old SD rats by 4-vinylcyclohexene diepoxide (VCD). Ovulation and ovarian hyperstimulatory (OHS) syndrome were induced by pregnant mare gonadotropin (PMSG) + human chorionic gonadotropin (hCG) treatments in 21 days SD rats, respectively. Steroidogenesis is stimulated in human granulosa cells (hGCs) by forskolin and the response of 17-beta-estradiol (E2) on calpains expression was checked in hGCs. The protein expression by immunoblotting and activity by biochemical assay of calpains-1 and -2 showed an oscillating pattern in the ovarian cycle. PMSG-induced follicular recruitment showed upregulation of calpains-1 and -2, but with no change during ovarian function cessation (POF). Upregulated calpain-2 expression and calpain activity was found in the hCG +PMSG-induced ovulation. Letrozole-induced PCOS showed downregulation of calpain-1, but upregulation of calpain-2. PMSG+hCG-induced OHS led to the upregulation of calpain-1. Letrozole and metformin separately increased the expression level of calpains-1 and -2 in the hGCs during luteinization. In conclusion, the expression levels of calpains -1 and -2 are increased with ovarian follicular recruitment by PMSG and calpain-1 is decreased in the PCOS condition, and letrozole and metformin upregulate the expression of calpains-1 and -2 during luteinization in the hGCs possibly via E2 action.


Subject(s)
Calpain , Ovarian Follicle , Rats, Sprague-Dawley , Up-Regulation , Female , Animals , Calpain/metabolism , Rats , Up-Regulation/drug effects , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/chemically induced , Chorionic Gonadotropin/pharmacology , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Estradiol/pharmacology , Letrozole/pharmacology , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/chemically induced , Gonadotropins/metabolism
17.
J Cell Sci ; 137(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38305737

ABSTRACT

Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.


Subject(s)
Neural Stem Cells , Transcription Factors , Animals , Mice , Calpain/genetics , Calpain/metabolism , Cell Differentiation , Cell Proliferation , Endopeptidases/metabolism , Lateral Ventricles/metabolism , Neural Stem Cells/metabolism , Neurogenesis/genetics , Neurons/metabolism , Peptide Hydrolases/metabolism , Transcription Factors/metabolism
18.
mBio ; 15(3): e0228723, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38349185

ABSTRACT

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (Mpro), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein but not Mpro. In contrast, calpain inhibitors did not exhibit antiviral activities toward the wild-type VSV with its native glycoprotein. Genetic knockout of calpain-2 by CRISPR/Cas9 conferred resistance of the host cells to the chimeric VSV-SARS-CoV-2 virus and a clinical isolate of wild-type SARS-CoV-2. Mechanistically, calpain-2 facilitates SARS-CoV-2 spike protein-mediated cell attachment by positively regulating the cell surface levels of ACE2. These results highlight an Mpro-independent pathway targeted by calpain inhibitors for efficient viral inhibition. We also identify calpain-2 as a novel host factor and a potential therapeutic target responsible for SARS-CoV-2 infection at the entry step. IMPORTANCE: Many efforts in small-molecule screens have been made to counter SARS-CoV-2 infection by targeting the viral main protease, the major element that processes viral proteins after translation. Here, we discovered that calpain inhibitors further block SARS-CoV-2 infection in a main protease-independent manner. We identified the host cysteine protease calpain-2 as an important positive regulator of the cell surface levels of SARS-CoV-2 cellular receptor ACE2 and, thus, a facilitator of viral infection. By either pharmacological inhibition or genetic knockout of calpain-2, the SARS-CoV-2 binding to host cells is blocked and viral infection is decreased. Our findings highlight a novel mechanism of ACE2 regulation, which presents a potential new therapeutic target. Since calpain inhibitors also potently interfere with the viral main protease, our data also provide a mechanistic understanding of the potential use of calpain inhibitors as dual inhibitors (entry and replication) in the clinical setting of COVID-19 diseases. Our findings bring mechanistic insights into the cellular process of SARS-CoV-2 entry and offer a novel explanation to the mechanism of activities of calpain inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Calpain/metabolism , Calpain/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacology , Virus Internalization
19.
Food Chem ; 441: 138287, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38218141

ABSTRACT

While calpain's role in myofibrillar protein degradation is well-established, its impact on post-mortem apoptosis remains fully elucidated. This study aimed to examine how calpain influences the mitochondrial apoptotic pathway in post-mortem muscle cells and assess its potential impact on chicken tenderness. The findings indicate that the calpain inhibitor treatment could decelerate the rate of lysosome destruction in post-mortem chicken, which is a crucial factor in delaying the mitochondrial apoptotic pathway. Subsequently, this inhibition enhanced the mitochondrial membrane's stability and suppressed the apoptosis-inducing factor Cyt c release into the sarcoplasm. The Western blot results in a greater myofibrillar protein degradation degree in the caspase inhibitor samples compared to the calpain inhibitor samples. Interestingly, the two groups had no significant difference in shear force. Based on these reasons, a novel perspective was introduced in this paper: Calpain could affect the change in meat tenderness by regulating mitochondrial apoptosis in the post-mortem period.


Subject(s)
Calpain , Meat , Animals , Calpain/metabolism , Proteolysis , Meat/analysis , Apoptosis , Chickens/metabolism , Postmortem Changes
20.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199568

ABSTRACT

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Subject(s)
Armadillo Domain Proteins , Cytoskeletal Proteins , Neurons , Animals , Mice , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Calpain/metabolism , Cytoskeletal Proteins/metabolism , Dendrites/metabolism , Neurons/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...