Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(15): 8649-8656, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32234787

ABSTRACT

For more than 225 million y, all seed plants were woody trees, shrubs, or vines. Shortly after the origin of angiosperms ∼140 million y ago (MYA), the Nymphaeales (water lilies) became one of the first lineages to deviate from their ancestral, woody habit by losing the vascular cambium, the meristematic population of cells that produces secondary xylem (wood) and phloem. Many of the genes and gene families that regulate differentiation of secondary tissues also regulate the differentiation of primary xylem and phloem, which are produced by apical meristems and retained in nearly all seed plants. Here, we sequenced and assembled a draft genome of the water lily Nymphaea thermarum, an emerging system for the study of early flowering plant evolution, and compared it to genomes from other cambium-bearing and cambium-less lineages (e.g., monocots and Nelumbo). This revealed lineage-specific patterns of gene loss and divergence. Nymphaea is characterized by a significant contraction of the HD-ZIP III transcription factors, specifically loss of REVOLUTA, which influences cambial activity in other angiosperms. We also found the Nymphaea and monocot copies of cambium-associated CLE signaling peptides display unique substitutions at otherwise highly conserved amino acids. Nelumbo displays no obvious divergence in cambium-associated genes. The divergent genomic signatures of convergent loss of vascular cambium reveals that even pleiotropic genes can exhibit unique divergence patterns in association with independent events of trait loss. Our results shed light on the evolution of herbaceousness-one of the key biological innovations associated with the earliest phases of angiosperm evolution.


Subject(s)
Cambium/chemistry , Genome, Plant , Magnoliopsida/genetics , Nymphaea/genetics , Plant Proteins/genetics , Wood/chemistry , Cambium/genetics , Cambium/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant , Magnoliopsida/growth & development , Nymphaea/growth & development , Phylogeny , Transcriptome , Wood/genetics , Wood/growth & development
2.
Plant Cell Environ ; 41(12): 2899-2914, 2018 12.
Article in English | MEDLINE | ID: mdl-30107635

ABSTRACT

Stable isotope ratios in tree rings have become an important proxy for palaeoclimatology, particularly in temperate regions. Yet temperate forests are often characterized by heterogeneous stand structures, and the effects of stand dynamics on carbon (δ13 C) and oxygen isotope ratios (δ18 O) in tree rings are not well explored. In this study, we investigated long-term trends and offsets in δ18 O and δ13 C of Picea abies and Fagus sylvatica in relation to tree age, size, and distance to the upper canopy at seven temperate sites across Europe. We observed strong positive trends in δ13 C that are best explained by the reconstructed dynamics of individual trees below the upper canopy, highlighting the influence of light attenuation on δ13 C in shade-tolerant species. We also detected positive trends in δ18 O with increasing tree size. However, the observed slopes are less steep and consistent between trees of different ages and thus can be more easily addressed. We recommend restricting the use of δ13 C to years when trees are in a dominant canopy position to infer long-term climate signals in δ13 C when relying on material from shade-tolerant species, such as beech and spruce. For such species, δ18 O should be in principle the superior proxy for climate reconstructions.


Subject(s)
Cambium/metabolism , Carbon Isotopes/metabolism , Oxygen Isotopes/metabolism , Trees/metabolism , Cambium/chemistry , Cambium/growth & development , Carbon Isotopes/analysis , Climate , Fagus/chemistry , Fagus/growth & development , Fagus/metabolism , Oxygen Isotopes/analysis , Picea/chemistry , Picea/growth & development , Picea/metabolism , Trees/chemistry , Trees/growth & development
3.
Plant Cell Environ ; 41(12): 2758-2772, 2018 12.
Article in English | MEDLINE | ID: mdl-29995977

ABSTRACT

We developed novel approaches for using the isotope composition of tree-ring subdivisions to study seasonal dynamics in tree-climate relations. Across a 30-year time series, the δ13 C and δ18 O values of the earlywood (EW) cellulose in the annual rings of Pinus ponderosa reflected relatively high intrinsic water-use efficiencies and high evaporative fractionation of 18 O/16 O, respectively, compared with the false latewood (FLW), summerwood (SW), and latewood (LW) subdivisions. This result is counterintuitive, given the spring origins of the EW source water and midsummer origins of the FLW, SW, and LW. With the use of the Craig-Gordon (CG), isotope-climate model revealed that the isotope ratios in all of the ring subdivision are explained by the existence of seasonal lags, lasting several weeks, between the initial formation of tracheids and the production of cellulosic secondary cell walls during maturation. In contrast to some past studies, modification of the CG model according to conventional methods to account for mixing of needle water between fractionated and nonfractionated sources did not improve the accuracy of predictions. Our results reveal new potential in the use of tree-ring isotopes to reconstruct past intra-annual tree-climate relations if lags in cambial phenology are reconciled with isotope ratio observations and included in theoretical treatments.


Subject(s)
Cambium/chemistry , Carbon Isotopes/analysis , Oxygen Isotopes/analysis , Cambium/growth & development , Carbon Isotopes/metabolism , Climate , Oxygen Isotopes/metabolism , Pinus ponderosa/chemistry , Pinus ponderosa/growth & development , Seasons , Trees/chemistry , Trees/growth & development
4.
Tree Physiol ; 38(8): 1152-1165, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29718459

ABSTRACT

In Mediterranean mountains, Pinus sylvestris L. is expected to be displaced under a warming climate by more drought-tolerant species such as the sub-Mediterranean Quercus pyrenaica Willd. Understanding how environmental factors drive tree physiology and phenology is, therefore, essential to assess the effect of changing climatic conditions on the performance of these species and, ultimately, their distribution. We compared the cambial and leaf phenology and leaf gas exchange of Q. pyrenaica and P. sylvestris at their altitudinal boundary in Central Spain and assessed the environmental variables involved. Results indicate that P. sylvestris cambial phenology was more sensitive to weather conditions (temperature at the onset and water deficit at the end of the growing season) than Q. pyrenaica. On the other hand, Q. pyrenaica cambial and leaf phenology were synchronized and driven by photoperiod and temperatures. Pinus sylvestris showed lower photosynthetic nitrogen-use efficiency and higher intrinsic water-use efficiency than Q. pyrenaica as a result of a tighter stomatal control in response to summer dry conditions, despite its less negative midday leaf water potentials. These phenological and leaf gas exchange responses evidence a stronger sensitivity to drought of P. sylvestris than that of Q. pyrenaica, which may therefore hold a competitive advantage over P. sylvestris under the predicted increase in recurrence and intensity of drought events. On the other hand, both species could benefit from warmer springs through an advanced phenology, although this effect could be limited in Q. pyrenaica if it maintains a photoperiod control over the onset of xylogenesis.


Subject(s)
Climate Change , Droughts , Pinus sylvestris/physiology , Quercus/physiology , Cambium/anatomy & histology , Cambium/chemistry , Cambium/growth & development , Nitrogen/metabolism , Pinus sylvestris/anatomy & histology , Pinus sylvestris/chemistry , Pinus sylvestris/growth & development , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Stomata/physiology , Quercus/anatomy & histology , Quercus/chemistry , Quercus/growth & development , Spain , Water/metabolism
5.
Stem Cell Res Ther ; 8(1): 134, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28583167

ABSTRACT

BACKGROUND: There is a critical need for the management of large bone defects. The purpose of this study was to engineer a biomimetic periosteum and to combine this with a macroporous ß-tricalcium phosphate (ß-TCP) scaffold for bone tissue regeneration. METHODS: Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were harvested and cultured in different culture media to form undifferentiated rBMSC sheets (undifferentiated medium (UM)) and osteogenic cell sheets (osteogenic medium (OM)). Simultaneously, rBMSCs were differentiated to induced endothelial-like cells (iECs), and the iECs were further cultured on a UM to form a vascularized cell sheet. At the same time, flow cytometry was used to detect the conversion rates of rBMSCs to iECs. The pre-vascularized cell sheet (iECs/UM) and the osteogenic cell sheet (OM) were stacked together to form a biomimetic periosteum with two distinct layers, which mimicked the fibrous layer and cambium layer of native periosteum. The biomimetic periostea were wrapped onto porous ß-TCP scaffolds (BP/ß-TCP) and implanted in the calvarial bone defects of rats. As controls, autologous periostea with ß-TCP (AP/ß-TCP) and ß-TCP alone were implanted in the calvarial defects of rats, with a no implantation group as another control. At 2, 4, and 8 weeks post-surgery, implants were retrieved and X-ray, microcomputed tomography (micro-CT), histology, and immunohistochemistry staining analyses were performed. RESULTS: Flow cytometry results showed that rBMSCs were partially differentiated into iECs with a 35.1% conversion rate in terms of CD31. There were still 20.97% rBMSCs expressing CD90. Scanning electron microscopy (SEM) results indicated that cells from the wrapped cell sheet on the ß-TCP scaffold apparently migrated into the pores of the ß-TCP scaffold. The histology and immunohistochemistry staining results from in vivo implantation indicated that the BP/ß-TCP and AP/ß-TCP groups promoted the formation of blood vessels and new bone tissues in the bone defects more than the other two control groups. In addition, micro-CT showed that more new bone tissue formed in the BP/ß-TCP and AP/ß-TCP groups than the other groups. CONCLUSIONS: Inducing rBMSCs to iECs could be a good strategy to obtain an endothelial cell source for prevascularization. Our findings indicate that the biomimetic periosteum with porous ß-TCP scaffold has a similar ability to promote osteogenesis and angiogenesis in vivo compared to the autologous periosteum. This function could result from the double layers of biomimetic periosteum. The prevascularized cell sheet served a mimetic fibrous layer and the osteogenic cell sheet served a cambium layer of native periosteum. The biomimetic periosteum with a porous ceramic scaffold provides a new promising method for bone healing.


Subject(s)
Biomimetics , Bone Regeneration , Bone Substitutes/therapeutic use , Calcium Phosphates/therapeutic use , Periosteum , Skull/physiology , Skull/surgery , Tissue Scaffolds , Analysis of Variance , Animals , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Cambium/chemistry , Cell Differentiation , Culture Media/chemistry , Endothelial Cells/cytology , Female , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Osteogenesis , Rats , Rats, Wistar , Skull/injuries , Tissue Engineering , Tissue Scaffolds/chemistry
6.
Life Sci ; 135: 138-46, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26141997

ABSTRACT

AIMS: As an alternative strategy to obtain large amounts of ginseng extract with high yield of ginsenosides, we have utilized culture of cambial meristematic cells (CMCs) from wild ginseng. The anti-tumor effects of methanol extract of ginseng CMCs (MEGC) and their action mechanisms were investigated. MAIN METHODS: Mice were intraperitoneally administered with MEGC, and we explored NK cell activity, suppression of in vivo growth of tumor cells and relevant molecule expression. KEY FINDINGS: MEGC significantly potentiated NK cell activity and suppressed in vivo growth of B16 melanoma cells. However, we observed no increase in NK cell number and unaltered expression of NK cell-activating (NKG2D) and inhibitory (Ly49, CD94/NKG2A) receptors as well as NK cell activation markers (CD25, CD69, CD119, and CD212) in MEGC-treated group compared to the controls. Instead, MEGC significantly enhanced IL-2 responsiveness in the early effector phase and the constitutive expression of granzyme B. SIGNIFICANCE: Our data indicate that culture of CMCs is an attractive alternative method for sustainable production of ginseng extracts and clinical use. In addition, we have unraveled a novel mechanism underlying the potentiation of NK cell activity and antitumor effect of ginseng extract, in which it upregulates the constitutive expression of cytotoxic mediator(s) and IL-2 responsiveness.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cambium/chemistry , Killer Cells, Natural/immunology , Neoplasms, Experimental/drug therapy , Panax/chemistry , Plant Cells/chemistry , Plant Extracts/pharmacology , Adjuvants, Immunologic/chemistry , Animals , Antigens, Differentiation/immunology , Antineoplastic Agents, Phytogenic/chemistry , Immunity, Cellular/drug effects , Killer Cells, Natural/pathology , Male , Methanol/chemistry , Mice , Neoplasms, Experimental/immunology , Plant Extracts/chemistry
7.
Biotechnol Genet Eng Rev ; 28: 47-59, 2012.
Article in English | MEDLINE | ID: mdl-22616481

ABSTRACT

Humans have utilised plant derived natural products as medicines for millenia. Moreover, many contemporary pharmaceuticals are also natural products or derivatives thereof. However, the full potential of these compounds remains to be exploited because often they are: complex and difficult to synthesise; found in low quantities; produced by undomesticated and sometimes rare plants; and, their synthesis is routinely influenced by weather conditions. Potentially, the in vitro culture of cells from the corresponding plant species could circumvent some of these problems but the growth of plant cells on an industrial scale is also problematic. The recent isolation and culture of cambial meristematic cells (CMCs), stem cells which ordinarily generate the plant vasculature, may now provide a key platform technology to help realise the full potential of plant natural products.


Subject(s)
Biological Products/chemistry , Biological Products/metabolism , Cambium/cytology , Cambium/metabolism , Biological Products/history , Biotechnology/methods , Cambium/chemistry , Cell Culture Techniques , Cell Dedifferentiation , Cell Proliferation , Cells, Cultured , Diterpenes/isolation & purification , History, 17th Century , History, 18th Century , History, 19th Century , History, Ancient , History, Medieval , Humans , Paclitaxel/biosynthesis , Plant Cells/chemistry , Plant Cells/metabolism , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Taxus/chemistry , Taxus/cytology
8.
Biotech Histochem ; 85(5): 285-93, 2010 Oct.
Article in English | MEDLINE | ID: mdl-19701827

ABSTRACT

Mangroves synthesize novel secondary chemicals that are poorly understood. Among the euphorbiaceous mangrove species, Excoecaria agallocha Linn. produces novel terpenoids and alkaloids of medicinal importance. We conducted a comparative tissue level histochemical study of E. agallocha L. to determine whether in vitro propagation alters the content of phytochemicals within the plant parts. Transverse sections of the root, stem and leaves of seed-raised saplings and in vitro propagated plants stained with 10% vanillin-perchloric acid revealed accumulation of terpenoids in the cork cambium. Alkaloids were localized using Dragendorf's reagent in the cortex of the root sections as brown layers. Methylene blue staining revealed that seed-raised plants possessed more lignified cells, distinct latex ducts and ellipsoidal guard cells compared to the plants propagated in vitro, which revealed abnormal, circular guard cells. The phytochemical content of E. agallocha propagated by the in vitro method was comparable to the seed-raised plants. Phytochemical studies of the species of E. agallocha propagated in vitro would confirm whether the species could be used for its medicinal compounds.


Subject(s)
Alkaloids/metabolism , Euphorbiaceae/metabolism , Lignin/metabolism , Seeds/metabolism , Staining and Labeling/methods , Terpenes/metabolism , Alkaloids/analysis , Cambium/chemistry , Cambium/cytology , Euphorbiaceae/growth & development , Histocytochemistry , Lignin/analysis , Plant Leaves/chemistry , Plant Leaves/cytology , Seeds/growth & development , Starch/analysis , Terpenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...