Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 184: 109603, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31473561

ABSTRACT

Manganese (Mn) pollution in soil, especially around the mining areas, is a severe problem in China. Seeking for effective remediation methods for Mn-contaminated soil is therefore urgent and necessary. Camellia oleifera (C. oleifera) is one of the world's four major woody oil plants, which is widely cultivated in subtropical acidic soils for oil production and has become an important economic and ecological resource in Guangxi Province. Nitrogen (N) is one of the most common limiting factors for plant growth and development in soils. We carried out this study to evaluate the effects of different N fertilization levels (0, 100, 300 and 500 mg kg-1) on the morphological and physiological characteristics of C. oleifera in two soils with different Mn-contamination degrees. The results indicate that N fertilization affected the plant growth and the content of photosynthetic pigments, while C. oleifera accumulated great amounts of Mn in both soils. However, the plant biomass reduced significantly at the high-level N fertilization (≥300 mg kg-1), and the oxidative stress was stimulated under Mn contamination. As a comparison, the plant biomass remained unaffected at the low-level N fertilization (100 mg kg-1), and the ascorbate peroxidase (APX) activity in C. oleifera leaves were enhanced to alleviate the oxidative stress and therefore protecting the plant from Mn contamination. Meanwhile, plants supplemented with a low-level of N fertilizer (100 mg kg-1) had appropriate antioxidant enzyme and nonenzymatic antioxidant activities, which indicates that this was favorable growth conditions for C. oleifera. Thus, the recommended N fertilization level for maintaining plant biomass and increasing Mn accumulation in plant is 100 mg kg-1 N; at which level the efficiency of Mn phytoremediation by C. oleifera can be further enhanced.


Subject(s)
Camellia/drug effects , Fertilizers , Manganese/metabolism , Nitrogen/pharmacology , Soil Pollutants/metabolism , Biodegradation, Environmental , Biomass , Camellia/growth & development , Camellia/metabolism , Camellia/physiology , China , Fertilizers/analysis , Nitrogen/analysis , Oxidative Stress , Soil/chemistry
2.
J Plant Physiol ; 170(13): 1202-11, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23790533

ABSTRACT

Camellia nitidissima Chi (Theaceae) is a world-famous economic and ornamental plant with golden-yellow flowers. It has been classified as one of the rarest and most endangered plants in China. Our objective was to induce somatic embryogenesis, shoot organogenesis and plant regeneration for C. nitidissima. Three types of callus (whitish, reddish and yellowish) were induced from immature cotyledons on improved woody plant medium (WPM) with different plant growth regulators (PGRs). Among the callus, whitish callus was induced by 4.5 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and reddish and yellowish callus were induced by strongly active cytokinins, thidiazuron (TDZ) or 6-benzylaminopurine (BAP), singly or combined with weakly active auxin, α-naphthaleneacetic acid (NAA). The embryogenic callus could differentiate into somatic embryos, nodular embryogenic structures (large embryo-like structures) or adventitious shoots depending on the PGR used in WPM. BAP was best for adventitious buds and zeatin was best for somatic embryogenesis while kinetin (Kt) was best for the formation of nodular embryogenic structures. The three regeneration pathways often occurred in the same embryogenic callus clumps. Most shoots (80.0%) developed roots in WPM supplemented with 24.6 µM IBA and 0.3 µM NAA while 47.5% of somatic embryos could germinate directly and develop into plantlets on induction medium supplemented with 0.9 µM BAP and 0.1 µM NAA. The nodular embryogenic structures could be sub-cultured and cyclically developed in one of two differentiation pathways: shoot organogenesis or somatic embryogenesis. Plantlets derived from shoot buds rooted and somatic embryos germinated when transplanted into soil in a greenhouse; 66.7% of plantlets from shoot culture and 78.6% of plantlets from somatic embryos survived after 8 weeks' acclimatization.


Subject(s)
Camellia/embryology , Organogenesis, Plant , Plant Growth Regulators/pharmacology , Plant Somatic Embryogenesis Techniques/methods , Camellia/drug effects , Camellia/growth & development , China , Plant Shoots/growth & development , Regeneration
3.
Plant Physiol Biochem ; 56: 35-40, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22579942

ABSTRACT

Theanine synthetase (TS) is an enzyme involved in theanine biosynthesis in tea plants. Recent studies have revealed that theanine biosynthesis, derived from nitrogen metabolism in tea (Camellia sinensis L.) plants, could be influenced by salt treatment. We have characterized CsTS at the molecular and biochemical level. The expression pattern of CsTS protein was examined by western blot using a self-prepared polyclonal antibody with high specificity and sensitivity. The effect of salt treatment on the levels of theanine synthesis was investigated in this study. Levels of theanine and the total free amino acids were gradually increased in shoots, and reached the maximum on the 8th day after treatment (DAT). The immunoblotting analysis suggested the accumulation of CsTS protein had increased gently up to 8 DAT, and subsequently declined, both in roots and shoots, which is one of the main evidences that resulted in the variation of theanine concentration under salt treatment. Together, these data revealed that theanine synthesis takes place both in root and shoot and CsTS accumulation is positively affected by salt treatment.


Subject(s)
Amide Synthases/metabolism , Camellia/drug effects , Glutamates/biosynthesis , Plant Proteins/metabolism , Salt Tolerance , Sodium Chloride/pharmacology , Stress, Physiological , Amino Acids/metabolism , Camellia/metabolism , Nitrogen/metabolism , Plant Roots/drug effects , Plant Shoots/drug effects , Seedlings/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...