Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.075
Filter
1.
BMC Microbiol ; 24(1): 155, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704526

ABSTRACT

BACKGROUND: The in-depth understanding of the role of lateral genetic transfer (LGT) in phage-prophage interactions is essential to rationalizing phage applications for human and animal therapy, as well as for food and environmental safety. This in silico study aimed to detect LGT between phages of potential industrial importance and their hosts. METHODS: A large array of genetic recombination detection algorithms, implemented in SplitsTree and RDP4, was applied to detect LGT between various Escherichia, Listeria, Salmonella, Campylobacter, Staphylococcus, Pseudomonas, and Vibrio phages and their hosts. PHASTER and RAST were employed respectively to identify prophages across the host genome and to annotate LGT-affected genes with unknown functions. PhageAI was used to gain deeper insights into the life cycle history of recombined phages. RESULTS: The split decomposition inferences (bootstrap values: 91.3-100; fit: 91.433-100), coupled with the Phi (0.0-2.836E-12) and RDP4 (P being well below 0.05) statistics, provided strong evidence for LGT between certain Escherichia, Listeria, Salmonella, and Campylobacter virulent phages and prophages of their hosts. The LGT events entailed mainly the phage genes encoding for hypothetical proteins, while some of these genetic loci appeared to have been affected even by intergeneric recombination in specific E. coli and S. enterica virulent phages when interacting with their host prophages. Moreover, it is shown that certain L. monocytogenes virulent phages could serve at least as the donors of the gene loci, involved in encoding for the basal promoter specificity factor, for L. monocytogenes. In contrast, the large genetic clusters were determined to have been simultaneously exchanged by many S. aureus prophages and some Staphylococcus temperate phages proposed earlier as potential therapeutic candidates (in their native or modified state). The above genetic clusters were found to encompass multiple genes encoding for various proteins, such as e.g., phage tail proteins, the capsid and scaffold proteins, holins, and transcriptional terminator proteins. CONCLUSIONS: It is suggested that phage-prophage interactions, mediated by LGT (including intergeneric recombination), can have a far-reaching impact on the co-evolutionary trajectories of industrial phages and their hosts especially when excessively present across microbially rich environments.


Subject(s)
Prophages , Recombination, Genetic , Prophages/genetics , Campylobacter/virology , Campylobacter/genetics , Staphylococcus/virology , Staphylococcus/genetics , Gene Transfer, Horizontal , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Listeria/virology , Listeria/genetics , Salmonella/virology , Salmonella/genetics , Evolution, Molecular , Bacteria/virology , Bacteria/genetics
2.
BMC Infect Dis ; 24(1): 512, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778271

ABSTRACT

AIM: Diarrhea is a common disease in immunocompromised patients and can be associated with greater morbidity and even mortality. Therefore, the present study was designed to determine the prevalence of Aeromonas spp., Campylobacter spp., and C. difficile among immunocompromised children. METHODS: This study was conducted on 130 stool samples from patients with diarrhea who had defects in the immune system and were referred to Hazrat Masoumeh Children's Hospital in Qom. Demographic information, clinical symptoms, immune status, and duration of chemotherapy were also recorded for each child. DNAs were extracted from the stool, and then direct PCR assays were done by specific primers for the detection of Aeromonas spp., Campylobacter spp., and toxigenic C. difficile, including tcdA/B and cdtA/B genes. Co-infection in patients was also evaluated. RESULTS: 60.8% and 39.2% were male and female, respectively, with a m ± SD age of 56.72 ± 40.49 months. Most cases of immunocompromised states were related to Acute Lymphocytic Leukemia (77.7%) and Non-Hodgkin Lymphoma (14.6%). 93.1% of patients were undergoing chemotherapy during the study. Among patients, most clinical symptoms were related to bloody diarrhea (98.5%) and fever (92.3%). Based on PCR, 14.6, 9.2, and 1.5% were positive for Aeromonas spp., C. difficile, and C. jejuni, respectively. Among the C. difficile-positive cases, the tcdA gene was only detected in one patient. In total, three co-infections were identified, which included Aeromonas spp./C. difficile (tcdA+), C. jejuni/C. difficile, and C. jejuni/Aeromonas spp. CONCLUSIONS: This is the first study in Iran to investigate the simultaneous prevalence of some pathogens in immunocompromised children with diarrhea. Because Aeromonas spp., Campylobacter spp., and C. difficile are not routinely detected in some laboratories, infections caused by them are underappreciated in the clinic. Our results showed that these pathogens are present in our region and can cause gastroenteritis in children, especially those with underlying diseases. Therefore, increasing the level of hygiene in some areas and controlling bacterial diarrheal diseases should be given more attention by health officials.


Subject(s)
Aeromonas , Campylobacter , Clostridioides difficile , Clostridium Infections , Diarrhea , Feces , Immunocompromised Host , Humans , Female , Male , Child, Preschool , Diarrhea/microbiology , Diarrhea/epidemiology , Child , Aeromonas/isolation & purification , Aeromonas/genetics , Prevalence , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Campylobacter/isolation & purification , Campylobacter/genetics , Infant , Feces/microbiology , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Adolescent , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Coinfection/microbiology , Coinfection/epidemiology
3.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739120

ABSTRACT

Cutaneous ulcers are common in yaws-endemic areas. Although often attributed to 'Treponema pallidum subsp. pertenue' and Haemophilus ducreyi, quantitative PCR has highlighted a significant proportion of these ulcers are negative for both pathogens and are considered idiopathic. This is a retrospective analysis utilising existing 16S rRNA sequencing data from two independent yaws studies that took place in Ghana and the Solomon Islands. We characterized bacterial diversity in 38 samples to identify potential causative agents for idiopathic cutaneous ulcers. We identified a diverse bacterial profile, including Arcanobacterium haemolyticum, Campylobacter concisus, Corynebacterium diphtheriae, Staphylococcus spp. and Streptococcus pyogenes, consistent with findings from previous cutaneous ulcer microbiome studies. No single bacterial species was universally present across all samples. The most prevalent bacterium, Campylobacter ureolyticus, appeared in 42% of samples, suggesting a multifactorial aetiology for cutaneous ulcers in yaws-endemic areas. This study emphasizes the need for a nuanced understanding of potential causative agents. The findings prompt further exploration into the intricate microbial interactions contributing to idiopathic yaw-like ulcers, guiding future research toward comprehensive diagnostic and therapeutic strategies.


Subject(s)
Microbiota , RNA, Ribosomal, 16S , Skin Ulcer , Humans , RNA, Ribosomal, 16S/genetics , Skin Ulcer/microbiology , Ghana , Male , Yaws/microbiology , Yaws/diagnosis , Retrospective Studies , Female , Adult , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Melanesia , Middle Aged , Staphylococcus/genetics , Staphylococcus/isolation & purification , Staphylococcus/classification , Streptococcus pyogenes/genetics , Streptococcus pyogenes/isolation & purification , Streptococcus pyogenes/classification , Arcanobacterium/genetics , Arcanobacterium/isolation & purification , Campylobacter/genetics , Campylobacter/isolation & purification , Campylobacter/classification
4.
Helicobacter ; 29(3): e13095, 2024.
Article in English | MEDLINE | ID: mdl-38798008

ABSTRACT

The prevalence of multidrug-resistant Campylobacter species in wastewater effluents presents a formidable challenge at the intersection of environmental sustainability and public health. This study examined the presence of multidrug-resistant Campylobacter in wastewater effluents in the Eastern Cape Province, South Africa, and its implications for environmental ecosystems and public health. Forty-five samples from household effluent (HHE) and wastewater treatment plant effluent (WWTPE) were collected at different geographical locations within the province between April and September 2022. The counts of the presumptive Campylobacter genus ranged from 5.2 × 103 to 6.03 × 104 CFU/mL for HHE and 4.93 × 103 to 1.04 × 104 CFU/mL for WWTPE. About 42.55% of the samples were positive for Campylobacter species. Five virulence determinants including the cadF and wlaN were detected in all the isolates; however, flgR (19.23%), ciaB, and ceuE (15.38%) were less prevalent. The antibiogram profiles of confirmed Campylobacter isolates revealed high resistance (>55%) against all tested antibiotics ranging from 55.77% (nalidixic acid) to 92.30% (erythromycin), and resistance against the other antibiotics followed the order ciprofloxacin (51.92%), azithromycin (50%), and levofloxacin (48.08%). On the contrary, gentamicin was sensitive against 61.54% of the isolates, followed by imipenem (57.69%) and streptomycin (51.92%). The WWTPE's antibiotic resistance index (ARI) was 0.19, lower than the permitted Krumperman threshold of 0.2; and HHE's ARIs were higher. The isolates' respective multiple antibiotic resistance indexes (MARI) varied between 0.08 and 1.00. Among the phenotypically resistant Campylobacter isolates examined, 21 resistance determinants encoding resistance against ß-lactam, carbapenems, aminoglycosides, phenicol, quinolones, tetracyclines, and macrolides were detected, which explains the phenotypic resistance observed in the study. This study concludes that the wastewaters in the study areas are important reservoirs of multidrug-resistant and potentially pathogenic Campylobacter species, suggesting the need for proper treatment of the wastewaters to eliminate the organisms in the effluents before discharge the final effluent to the receiving watershed.


Subject(s)
Anti-Bacterial Agents , Campylobacter , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Wastewater , Wastewater/microbiology , Campylobacter/drug effects , Campylobacter/isolation & purification , South Africa/epidemiology , Anti-Bacterial Agents/pharmacology , Prevalence , Public Health , Humans , Virulence Factors/genetics
5.
PLoS One ; 19(5): e0302861, 2024.
Article in English | MEDLINE | ID: mdl-38820282

ABSTRACT

Campylobacter hepaticus, the causative agent of Spotty Liver Disease (SLD) is an important disease in cage-free egg producing chickens causing mortality and production drops. C. hepaticus is a slow growing Campylobacter easily overgrown by fecal bacteria. It is currently only reliably isolatable from bile samples. A selective media for isolation from feces or environment would assist diagnosis and impact assessment. Growth of five Australian C. hepaticus isolates was studied using Horse blood agar (HBA), sheep blood agar (SBA), Bolton, Preston and Brain Heart Infusion (BHI) base media. Blood and/or bile were added to Bolton, Preston and BHI medias. C. jejuni was used as a positive control. Plates were incubated in duplicate under microaerophilic conditions at 42°C for 10 days and examined at days 3-5 and 7-10 of incubation. Each isolate was examined for sensitivity to 14 antimicrobials using HBA sensitivity plates. Growth was inhibited by BHI and by added bile, while blood improved growth. Further replicates using SBA, HBA, Bolton and Preston media showed best growth on Bolton agar with blood. All five C. hepaticus isolates were resistant to trimethoprim and vancomycin, while four were also resistant to rifampicin and bacitracin. Media based upon Bolton plus blood supplemented with vancomycin and trimethoprim might be used as the most appropriate media for selective growth of C. hepaticus. The addition of bile to media for C. hepaticus isolation and growth will inhibit growth and is not advised.


Subject(s)
Anti-Bacterial Agents , Campylobacter , Culture Media , Campylobacter/isolation & purification , Campylobacter/growth & development , Animals , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Microbial Sensitivity Tests , Campylobacter Infections/microbiology , Campylobacter Infections/diagnosis , Bacteriological Techniques/methods , Feces/microbiology
6.
J Microbiol Biotechnol ; 34(5): 987-993, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38719774

ABSTRACT

Campylobacteriosis is a significant foodborne illness caused by Campylobacter bacteria. It is one of the most common bacterial causes of gastroenteritis worldwide, with poultry being a major reservoir and source of infection in humans. In poultry farms, Campylobacters colonize the intestinal tract of chickens and contaminate meat during processing. Vaccines under development against Campylobacters in poultry showed partial or no protection against their cecal colonization. Therefore, this review will elaborate on campylobacteriosis and emphasize the control strategies and recent vaccine trials against Campylobacters in poultry farms. The epidemiology, diagnosis, and treatment of Campylobacter infection, along with specific mention of poultry Campylobacter contamination events in Malaysia, will also be discussed.


Subject(s)
Campylobacter Infections , Campylobacter , Chickens , Farms , Poultry Diseases , Poultry , Animals , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Campylobacter/isolation & purification , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Chickens/microbiology , Poultry/microbiology , Humans , Bacterial Vaccines/immunology , Malaysia/epidemiology , Meat/microbiology
7.
Ann Med ; 56(1): 2356638, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38775490

ABSTRACT

BACKGROUND: Swift identification and diagnosis of gastrointestinal infections are crucial for prompt treatment, prevention of complications, and reduction of the risk of hospital transmission. The radiological appearance on computed tomography could potentially provide important clues to the etiology of gastrointestinal infections. We aimed to describe features based on computed tomography of patients diagnosed with Campylobacter, Salmonella or Shigella infections in South Sweden. METHODS: This was a retrospective observational population-based cohort study conducted between 2019 and 2022 in Skåne, southern Sweden, a region populated by 1.4 million people. Using data from the Department of Clinical Microbiology combined with data from the Department of Radiology, we identified all patients who underwent computed tomography of the abdomen CTA two days before and up to seven days after sampling due to the suspicion of Campylobacter, Salmonella or Shigella during the study period. RESULTS: A total of 215 CTAs scans performed on 213 patients during the study period were included in the study. The median age of included patients was 45 years (range 11-86 years), and 54% (114/213) of the patients were women. Of the 215 CTAs, 80% (n = 172) had been performed due to Campylobacter and 20% (n = 43) due to Salmonella enteritis. CTA was not performed for any individual diagnosed with Shigella during the study period. There were no statistically significant differences in the radiological presentation of Campylobacter and Salmonella infections. CONCLUSION: The most common location of Campylobacter and Salmonella infections was the cecum, followed by the ascending colon. Enteric wall edema, contrast loading of the affected mucosa, and enteric fat stranding are typical features of both infections. The CTA characteristics of Campylobacter and Salmonella are similar, and cannot be used to reliably differentiate between different infectious etiologies.


Subject(s)
Campylobacter Infections , Salmonella Infections , Tomography, X-Ray Computed , Humans , Female , Male , Adult , Campylobacter Infections/diagnostic imaging , Campylobacter Infections/epidemiology , Campylobacter Infections/diagnosis , Middle Aged , Tomography, X-Ray Computed/methods , Retrospective Studies , Aged , Salmonella Infections/diagnostic imaging , Salmonella Infections/epidemiology , Salmonella Infections/diagnosis , Salmonella Infections/microbiology , Adolescent , Sweden/epidemiology , Aged, 80 and over , Child , Young Adult , Campylobacter/isolation & purification , Salmonella/isolation & purification
8.
Sci Rep ; 14(1): 9218, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649444

ABSTRACT

For reducing Campylobacter (C.) in the food production chain and thus the risk to the consumer, the combined application of different measures as a multiple-hurdle approach is currently under discussion. This is the first study to investigate possible synergistic activities in vivo, aiming at reducing intestinal C. jejuni counts by administering (i) bacteriophages (phages) in combination with a competitive exclusion (CE) product and (ii) carvacrol combined with organic acids. The combined application of the two selected phages (Fletchervirus phage NCTC 12673 and Firehammervirus phage vB_CcM-LmqsCPL1/1) and the CE product significantly reduced C. jejuni loads by 1.0 log10 in cecal and colonic contents as well as in cloacal swabs at the end of the trial (33 and 34 days post hatch). The proportion of bacterial isolates showing reduced phage susceptibility ranged from 10.9% (isolates from cecal content) to 47.8% (isolates from cloacal swabs 32 days post hatch) for the Fletchervirus phage, while all tested isolates remained susceptible to the Firehammervirus phage. The use of carvacrol combined with an organic acid blend (sorbic acid, benzoic acid, propionic acid, and acetic acid) significantly reduced Campylobacter counts by 1.0 log10 in cloacal swabs on day 30 only.


Subject(s)
Bacteriophages , Chickens , Cymenes , Cymenes/pharmacology , Animals , Bacteriophages/physiology , Chickens/microbiology , Campylobacter Infections/prevention & control , Campylobacter Infections/microbiology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Campylobacter jejuni/virology , Campylobacter jejuni/drug effects , Campylobacter/drug effects , Campylobacter/virology
9.
BMC Infect Dis ; 24(1): 382, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589812

ABSTRACT

BACKGROUND: Hemophagocytic lymphohistiocytosis (HLH) is a severe disorder characterized by excessive activation of the immune system, leading to hypercytokinemia and damage to multiple organs. We report a rare case of HLH with myopericarditis caused by Campylobacter infection. CASE PRESENTATION: A 28-year-old male patient with a history of hypertension without medicine control presented at the hospital after a four-day fever, decreasing urine amount, rashes on his trunk and limbs, and other symptoms. He was admitted with a provisional diagnosis of atypical infection and allergic skin rash related to diclofenac. However, his condition deteriorated, and he developed shock, tachycardia, chest distress, and bilateral pleural effusion after admission. Further investigations revealed cardiogenic shock related to myopericarditis, and he was transferred to the ICU. In addition, a stool PCR panel subsequently revealed a positive result for Campylobacter. On day 6, he was diagnosed with HLH. Under Clarithromycin and dexamethasone infusion, leukocytosis, anemia and thrombocytopenia with cardiogenic shock status improved. Then, he was later discharged in stable condition. CONCLUSIONS: HLH and myopericarditis caused by Campylobacter are very rare. Early detection of Campylobacter-induced HLH and multiple organ failure, as well as prompt use of antibiotics and immunosuppressants, can be helpful for prognosis.


Subject(s)
Anemia , Campylobacter , Lymphohistiocytosis, Hemophagocytic , Myocarditis , Thrombocytopenia , Male , Humans , Adult , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Shock, Cardiogenic/etiology , Shock, Cardiogenic/complications , Anemia/complications , Thrombocytopenia/complications , Myocarditis/diagnosis , Myocarditis/complications
10.
World J Microbiol Biotechnol ; 40(4): 133, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38480610

ABSTRACT

Campylobacter and Salmonella are the two most prominent foodborne zoonotic pathogens reported in the European Union. As poultry is one of the major sources of these pathogens, it is imperative to mitigate the colonization of these pathogens in poultry. Many strains of lactic acid bacteria (LAB) have demonstrated anti-Salmonella and anti-Campylobacter characteristics to varying degrees and spectrums which are attributed to the production of various metabolites. However, the production of these compounds and consequent antimicrobial properties are highly strain dependent. Therefore, the current study was performed to select a potent LAB and determine its causal attribute in inhibiting Salmonella enterica and Campylobacter jejuni, in-vitro. Six LAB (Lactiplantibacillus plantarum (LP), Lacticaseibacillus casei (LC), Limosilactobacillus reuteri (LR), Lacticaseibacillus rhamnosus (LRh), Leuconostoc mesenteroides (LM) and Pediococcus pentosaceus (PP)) and three serovars of Salmonella enterica (Typhimurium, Enterica and Braenderup) and Campylobacter jejuni were used in the current study. Spot overlays, well diffusion, co-culture and co-aggregation assays against Salmonella and well diffusion assays against Campylobacter jejuni were performed. Organic acid profiling of culture supernatants was performed using HPLC. The results indicated that LRh, LM and PP had the most significant anti-Salmonella effects while LP, LC, LM and PP displayed the most significant anti-Campylobacter effects. Lactic acid and formic acid detected in the culture supernatants seem the most likely source of the anti-Salmonella and anti-Campylobacter effects exhibited by these LAB. In conclusion, Leuconostoc mesenteroides displayed the most significant overall anti-pathogenic effects when compared to the other LAB strains studied, indicating its potential application in-vivo.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Lactobacillales , Lactobacillus plantarum , Poultry Diseases , Salmonella enterica , Animals , Chickens/microbiology , Salmonella , Campylobacter Infections/microbiology , Poultry Diseases/microbiology
11.
mSystems ; 9(4): e0121823, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38530055

ABSTRACT

Campylobacter species are typically helical shaped, Gram-negative, and non-spore-forming bacteria. Species in this genus include established foodborne and animal pathogens as well as emerging pathogens. The accumulation of genomic data from the Campylobacter genus has increased exponentially in recent years, accompanied by the discovery of putative new species. At present, the lack of a standardized species boundary complicates distinguishing established and novel species. We defined the Campylobacter genus core genome (500 loci) using publicly available Campylobacter complete genomes (n = 498) and constructed a core genome phylogeny using 2,193 publicly available Campylobacter genomes to examine inter-species diversity and species boundaries. Utilizing 8,440 Campylobacter genomes representing 33 species and 8 subspecies, we found species delineation based on an average nucleotide identity (ANI) cutoff of 94.2% is consistent with the core genome phylogeny. We identified 60 ANI genomic species that delineated Campylobacter species in concordance with previous comparative genetic studies. All pairwise ANI genomic species pairs had in silico DNA-DNA hybridization scores of less than 70%, supporting their delineation as separate species. We provide the tool Campylobacter Genomic Species typer (CampyGStyper) that assigns ANI genomic species to query genomes based on ANI similarities to medoid genomes from each ANI genomic species with an accuracy of 99.96%. The ANI genomic species definitions proposed here allow consistent species definition in the Campylobacter genus and will facilitate the detection of novel species in the future.IMPORTANCEIn recent years, Campylobacter has gained recognition as the leading cause of bacterial gastroenteritis worldwide, leading to a substantial rise in the collection of genomic data of the Campylobacter genus in public databases. Currently, a standardized Campylobacter species boundary at the genomic level is absent, leading to challenges in detecting emerging pathogens and defining putative novel species within this genus. We used a comprehensive representation of genomes of the Campylobacter genus to construct a core genome phylogenetic tree. Furthermore, we found an average nucleotide identity (ANI) of 94.2% as the optimal cutoff to define the Campylobacter species. Using this cutoff, we identified 60 ANI genomic species which provided a standardized species definition and nomenclature. Importantly, we have developed Campylobacter Genomic Species typer (CampyGStyper), which can robustly and accurately assign these ANI genomic species to Campylobacter genomes, thereby aiding pathogen surveillance and facilitating evolutionary and epidemiological studies of existing and emerging pathogens in the genus Campylobacter.


Subject(s)
Campylobacter , Animals , Phylogeny , Campylobacter/genetics , Genome, Bacterial/genetics , Genes, Bacterial , DNA
12.
Poult Sci ; 103(4): 103548, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442560

ABSTRACT

Campylobacter is a major cause of bacterial foodborne diarrhea worldwide. Consumption of raw or undercooked chicken meat contaminated with Campylobacter is the most common causative agent of human infections. Given the high prevalence of contamination in poultry meat and the recent rise of multi-drug-resistant (MDR) Campylobacter strains, an effective intervention method of reducing bird colonization is needed. In this study, the Campylobacter-specific lytic phage CP6 was isolated from chicken feces. Phage CP6 exhibited a broad host range against different MDR Campylobacter isolates (97.4% of strains were infected). Some biological characteristics were observed, such as a good pH (3-9) stability and moderate temperature tolerance (<50 ℃). The complete genome sequence revealed a linear double-stranded DNA (178,350 bp, group II Campylobacter phage) with 27.51% GC content, including 209 predicted open reading frames, among which only 54 were annotated with known functions. Phylogenetic analysis of the phage major capsid protein demonstrated that phage CP6 was closely related to Campylobacter phage CPt10, CP21, CP20, IBB35, and CP220. CP6 phage exerted good antimicrobial effects on MDR Campylobacter in vitro culture and reduced CFUs of the host cells by up to 1-log compared with the control in artificially contaminated chicken breast meat. Our findings suggested the potential of CP6 phage as a promising antimicrobial agent for combating MDR Campylobacter in food processing.


Subject(s)
Bacteriophages , Campylobacter Infections , Campylobacter jejuni , Campylobacter , Humans , Animals , Poultry/microbiology , Chickens/microbiology , Phylogeny , Meat/microbiology , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Anti-Bacterial Agents/pharmacology , Food Microbiology
13.
Poult Sci ; 103(5): 103568, 2024 May.
Article in English | MEDLINE | ID: mdl-38447312

ABSTRACT

Campylobacter is the most reported zoonotic pathogen in humans in the European Union. Poultry is a major source of human infection with Campylobacter. Although many studies are done on the presence of Campylobacter in broilers and theoretically effective control measures are known, their relative importance at broiler farms remains poorly understood. Therefore, the aim of this study was to investigate the presence of Campylobacter on selected broiler farms in the Netherlands, to determine the moment of introduction, and associated risk factors. A longitudinal study on 25 broiler farms was carried out between June 2017 and December 2020. Fecal samples were collected weekly from 43 broiler houses. In total 497 flocks were sampled. Putative variables on flock and farm characteristics for a risk factor analysis were gathered through questionnaires. Risk factors associated with the presence of Campylobacter in a broiler flock were determined using regression models. In total 30% of the flocks included in the study were positive for Campylobacter. Factors associated with presence of Campylobacter at slaughter age included: season, mowing lawns and presence of agricultural side activities. While summer/autumn and mowing lawns were associated with an increase in Campylobacter presence in flocks, the farmer having agricultural side activities other than poultry production was associated with a decrease. Analysis of the age at which flocks first tested Campylobacter positive revealed that slower growing breeds became positive on average 1 wk later compared to regular growers. This study revealed a delayed introduction of Campylobacter in slower grower vs. regular grower broiler flocks reared indoors. In addition, it confirmed importance of season as major risk factor. The relevance of mowing and preceding positive flocks as risk factors needs further investigation.


Subject(s)
Animal Husbandry , Campylobacter Infections , Campylobacter , Chickens , Poultry Diseases , Animals , Netherlands/epidemiology , Campylobacter/isolation & purification , Campylobacter Infections/veterinary , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Risk Factors , Animal Husbandry/methods , Longitudinal Studies , Feces/microbiology , Seasons
14.
Poult Sci ; 103(5): 103576, 2024 May.
Article in English | MEDLINE | ID: mdl-38430779

ABSTRACT

Chicken and chicken products have been associated with foodborne pathogens such as Salmonella, Campylobacter, and Escherichia coli (E. coli). Poultry comprises an important segment of the agricultural economy (75 million birds processed as of 2019) in West Virginia (WV). The risk of pathogens on processed chickens has risen with the increased popularity of mobile poultry processing units (MPPUs). This study evaluated the microbial safety of broilers processed in a MPPU in WV. This study assessed aerobic plate counts (APCs), E. coli counts and the presence/absence of Salmonella and Campylobacter on 96 broiler carcasses following each MPPU step of scalding, eviscerating, and chilling. Samples were either chilled in ice water only (W) or ice water with 5 ppm chlorine (CW). The highest number of bacteria recovered from carcasses were APCs (4.21 log10CFU/mL) and E. coli (3.77 log10CFU/mL; P = 0.02). A total reduction of 0.30 (P = 0.10) and 0.63 (P = 0.01) log10CFU/mL for APCs and E. coli, respectively, occurred from chilling carcasses in CW. Overall, results show that E. coli, Salmonella, and Campylobacter were significantly (P < 0.05) reduced from the initial scalding to the chilling step. However, Salmonella frequency doubled (15.63-34.38%) after the evisceration step, indicating that washing carcasses after evisceration may be a critical control point in preventing cross-contamination by Salmonella. Proper chilling is also an important microbial mitigation step in MPPU processing. Results indicate that Campylobacter was more resistant to chilling than Salmonella. Campylobacter was not completely inactivated until carcasses were chilled in CW, whereas W was sufficient to reduce Salmonella on carcasses. The results led to the conclusion that although 5 ppm chlorine (Cl2) achieved more bacterial reductions than water alone, the reductions were not always significant (P > 0.05). Further MPPU studies are needed to verify more effective chilling and processing strategies.


Subject(s)
Campylobacter , Chickens , Escherichia coli , Food Handling , Food Microbiology , Salmonella , Animals , Chickens/microbiology , Campylobacter/isolation & purification , Food Handling/methods , Salmonella/isolation & purification , Escherichia coli/isolation & purification , Escherichia coli/physiology , West Virginia , Meat/microbiology , Meat/analysis
15.
Eur J Clin Microbiol Infect Dis ; 43(5): 895-904, 2024 May.
Article in English | MEDLINE | ID: mdl-38472522

ABSTRACT

PURPOSE: Campylobacter is a frequent cause of enteric infections with common antimicrobial resistance issues. The most recent reports of campylobacteriosis in Italy include data from 2013 to 2016. We aimed to provide national epidemiological and microbiological data on human Campylobacter infections in Italy during the period 2017-2021. METHODS: Data was collected from 19 Hospitals in 13 Italian Regions. Bacterial identification was performed by mass spectrometry. Antibiograms were determined with Etest or Kirby-Bauer (EUCAST criteria). RESULTS: In total, 5419 isolations of Campylobacter spp. were performed. The most common species were C. jejuni (n = 4535, 83.7%), followed by C. coli (n = 732, 13.5%) and C. fetus (n = 34, 0.6%). The mean age of patients was 34.61 years and 57.1% were males. Outpatients accounted for 54% of the cases detected. Campylobacter were isolated from faeces in 97.3% of cases and in 2.7% from blood. C. fetus was mostly isolated from blood (88.2% of cases). We tested for antimicrobial susceptibility 4627 isolates (85.4%). Resistance to ciprofloxacin and tetracyclines was 75.5% and 54.8%, respectively; resistance to erythromycin was 4.8%; clarithromycin 2% and azithromycin 2%. 50% of C. jejuni and C. coli were resistant to ≥ 2 antibiotics. Over the study period, resistance to ciprofloxacin and tetracyclines significantly decreased (p < 0.005), while resistance to macrolides remained stable. CONCLUSION: Campylobacter resistance to fluoroquinolones and tetracyclines in Italy is decreasing but is still high, while macrolides retain good activity.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter , Microbial Sensitivity Tests , Humans , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Italy/epidemiology , Female , Male , Adult , Anti-Bacterial Agents/pharmacology , Middle Aged , Young Adult , Adolescent , Aged , Campylobacter/drug effects , Campylobacter/isolation & purification , Child , Child, Preschool , Infant , Feces/microbiology , Drug Resistance, Bacterial , Aged, 80 and over , Infant, Newborn , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification
16.
J Vis Exp ; (204)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38465948

ABSTRACT

This article presents a rapid yet robust protocol for isolating Campylobacter spp. from raw meats, specifically focusing on Campylobacter jejuni and Campylobacter coli. The protocol builds upon established methods, ensuring compatibility with the prevailing techniques employed by regulatory bodies such as the Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) in the USA, as well as the International Organization for Standardization (ISO) in Europe. Central to this protocol is collecting a rinsate, which is concentrated and resuspended in Bolton Broth media containing horse blood. This medium has been proven to facilitate the recovery of stressed Campylobacter cells and reduce the required enrichment duration by 50%. The enriched samples are then transferred onto nitrocellulose membranes on brucella plates. To improve the sensitivity and specificity of the method, 0.45 µm and 0.65 µm pore-size filter membranes were evaluated. Data revealed a 29-fold increase in cell recovery with the 0.65 µm pore-size filter compared to the 0.45 µm pore-size without impacting specificity. The highly motile characteristics of Campylobacter allow cells to actively move through the membrane filters towards the agar medium, which enables effective isolation of pure Campylobacter colonies. The protocol incorporates multiplex quantitative real-time polymerase chain reaction (mqPCR) assay to identify the isolates at the species level. This molecular technique offers a reliable and efficient means of species identification. Investigations conducted over the past twelve years involving retail meats have demonstrated the ability of this method to enhance recovery of Campylobacter from naturally contaminated meat samples compared to current reference methods. Furthermore, this protocol boasts reduced preparation and processing time. As a result, it presents a promising alternative for the efficient recovery of Campylobacter from meat. Moreover, this procedure can be seamlessly integrated with DNA-based methods, facilitating rapid screening of positive samples alongside comprehensive whole-genome sequencing analysis.


Subject(s)
Campylobacter jejuni , Campylobacter , Animals , Horses , Chickens , Food Microbiology , Meat , Campylobacter/genetics , Culture Media
17.
PLoS Negl Trop Dis ; 18(3): e0012018, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427700

ABSTRACT

Campylobacter causes bacterial enteritis, dysentery, and growth faltering in children in low- and middle-income countries (LMICs). Campylobacter spp. are fastidious organisms, and their detection often relies on culture independent diagnostic technologies, especially in LMICs. Campylobacter jejuni and Campylobacter coli are most often the infectious agents and in high income settings together account for 95% of Campylobacter infections. Several other Campylobacter species have been detected in LMIC children at an increased prevalence relative to high income settings. After doing extensive whole genome sequencing of isolates of C. jejuni and C. coli in Peru, we observed heterogeneity in the binding sites for the main species-specific PCR assay (cadF) and designed an alternative rpsKD-based qPCR assay to detect both C. jejuni and C. coli. The rpsKD-based qPCR assay identified 23% more C.jejuni/ C.coli samples than the cadF assay among 47 Campylobacter genus positive cadF negative samples verified to have C. jejuni and or C. coli with shotgun metagenomics. This assay can be expected to be useful in diagnostic studies of enteric infectious diseases and be useful in revising the attribution estimates of Campylobacter in LMICs.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Child , Humans , Campylobacter coli/genetics , Polymerase Chain Reaction , Campylobacter Infections/diagnosis , Campylobacter Infections/microbiology , Feces/microbiology
18.
Am J Trop Med Hyg ; 110(4): 809-814, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38412529

ABSTRACT

Acute gastroenteritis (AGE) in children can be attributed to a multitude of bacterial and viral pathogens. The objective of this study was to investigate the epidemiology of bacterial and viral AGE in children and to compare clinical characteristics between single and multiple enteric pathogen infections. A total of 456 stool samples were collected from outpatient children under 5 years old with AGE, which were subsequently analyzed for nine bacteria and three viruses using the Luminex xTAG® Gastrointestinal Pathogen Panel. The presence of at least one pathogen was detected in 260 cases (57.0%), with Salmonella being the predominant agent, followed by norovirus, Campylobacter, and rotavirus. A total of 69 cases (15.1%) exhibited positive results for two or more enteric pathogens. Although certain co-infections demonstrated significant differences in primary clinical features compared with mono-infections, no statistical variance was observed in terms of disease severity. In outpatient children from southern China, Salmonella emerged as the most prevalent causative agent of AGE, succeeded by norovirus and Campylobacter. This study underscores the burden posed by coinfections and highlights the clinical characteristics associated with AGE when accompanied by coinfections among children under 5 years old.


Subject(s)
Campylobacter , Coinfection , Enteritis , Gastroenteritis , Norovirus , Rotavirus , Child , Humans , Infant , Child, Preschool , Outpatients , Feces/microbiology , Gastroenteritis/microbiology , Bacteria , Salmonella , Diarrhea/epidemiology
19.
Epidemics ; 46: 100749, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367286

ABSTRACT

The prevalence of Campylobacter infection is generally high among children in low- and middle-income countries (LMIC), but the dynamics of its acquisition and clearance are understudied. We aim to quantify this process among children under two years old in eight LMIC using a statistical modeling approach, leveraging enzyme-immunoassay-based Campylobacter genus data and quantitative-PCR-based Campylobacter jejuni/coli data from the MAL-ED study. We developed a Markov model to compare the dynamics of acquisition and clearance of Campylobacter across countries and to explore the effect of antibiotic usage on Campylobacter clearance. Clearance rates were generally higher than acquisition rates, but their magnitude and temporal pattern varied across countries. For C. jejuni/coli, clearance was faster than acquisition throughout the two years at all sites. For Campylobacter spp., the acquisition rate either exceeded or stayed very close to the clearance rate after the first half year in Bangladesh, Pakistan and Tanzania, leading to high prevalence. Bangladesh had the shortest (28 and 57 days) while Brazil had the longest (328 and 306 days) mean times from last clearance to acquisition for Campylobacter spp. and C. jejuni/coli, respectively. South Africa had the shortest (10 and 8 days) while Tanzania had the longest (53 and 41 days) mean times to clearance for Campylobacter spp. and C. jejuni/col, respectively. The use of Macrolide accelerated clearance of C. jejuni/coli in Bangladesh and Peru and of Campylobacter spp. in Bangladesh and Pakistan. Fluoroquinolone showed statistically meaningful effects only in Bangladesh but for both Campylobacter groups. Higher prevalence of Campylobacter infection was mainly driven by a high acquisition rate that was close to or surpassing the clearance rate. Acquisition rate usually peaked in 11-17 months of age, indicating the importance of targeting the first year of life for effective interventions to reduce exposures.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Child , Humans , Infant , Campylobacter Infections/drug therapy , Campylobacter Infections/epidemiology , Developing Countries , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology
20.
J Food Prot ; 87(4): 100250, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382707

ABSTRACT

Campylobacter jejuni is the leading foodborne bacterial pathogen that causes human gastroenteritis worldwide linked to the consumption of undercooked broiler livers. Application of bacteriophages during poultry production has been used as an alternative approach to reduce contamination of poultry meat by Campylobacter. To make this approach effective, understanding the presence of the bacteriophage sequences in the CRISPR spacers in C. jejuni is critical as they may confer bacterial resistance to bacteriophage treatment. Therefore, in this study, we explored the distribution of the CRISPR arrays from 178 C. jejuni isolated from chicken livers between January and July 2018. Genomic DNA of C. jejuni isolates was extracted, and CRISPR type 1 sequences were amplified by PCR. Amplicons were purified and sequenced by the Sanger dideoxy sequencing method. Direct repeats (DRs) and spacers of CRISPR sequences were identified using the CRISPRFinder program. Further, spacer sequences were submitted to the CRISPRTarget to identify potential homology to bacteriophage types. Even though CRISPR-Cas is reportedly not an active system in Campylobacter, a total of 155 (87%) C. jejuni isolates were found to harbor CRISPR sequences; one type of DR was identified in all 155 isolates. The CRISPR loci lengths ranged from 97 to 431 nucleotides. The numbers of spacers ranged from one to six. A total of 371 spacer sequences were identified in the 155 isolates that could be grouped into 51 distinctive individual sequences. Further comparison of these 51 spacer sequences with those in databases showed that most spacer sequences were homologous to Campylobacter bacteriophage DA10. The results of our study provide important information relative to the development of an effective bacteriophage treatment to mitigate Campylobacter during poultry production.


Subject(s)
Bacteriophages , Campylobacter Infections , Campylobacter jejuni , Campylobacter , Animals , Humans , Chickens , Campylobacter/genetics , Campylobacter Infections/veterinary , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...