Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.894
Filter
1.
Biomed Res Int ; 2024: 4631351, 2024.
Article in English | MEDLINE | ID: mdl-39166218

ABSTRACT

Campylobacter is a zoonotic foodborne pathogen that is often linked with gastroenteritis and other extraintestinal infections in humans. This study is aimed at determining the genetic determinants of virulence-encoding genes responsible for flagellin motility protein A (flaA), Campylobacter adhesion to fibronectin F (cadF), Campylobacter invasion antigen B (ciaB) and cytolethal distending toxin (cdt) A (cdtA) in Campylobacter species. A total of 29 Campylobacter coli isolates (16 from cattle, 9 from chicken, and 4 from water samples) and 74 Campylobacter jejuni isolates (38 from cattle, 30 from chicken, and 6 from water samples) described in an earlier study in Kajiado County, Kenya, were examined for the occurrence of virulence-associated genes using polymerase chain reaction (PCR) and amplicon sequencing. The correlations among virulence genes were analyzed using Pearson's correlation coefficient (R) method. Among the 103 Campylobacter strains screened, 89 were found to harbour a single or multiple virulence gene(s), giving an overall prevalence of 86.4%. C. jejuni strains had the highest prevalence of multivirulence at 64.9% (48/74), compared to C. coli (58.6%, 17/29). The ciaB and flaA genes were the most common virulence genes detected in C. jejuni (81.1% [60/74] and 62.2% [46/74], respectively) and in C. coli (each at 62.1%; 18/29). Campylobacter isolates from chicken harboured the most virulence-encoding genes. C. jejuni strains from chicken and cattle harboured the highest proportions of the cdtA and ciaB genes, respectively. All the C. coli strains from water samples harboured the cadF and flaA genes. The results obtained further revealed a significant positive correlation between cadF and flaA (R = 0.733). C. jejuni and C. coli strains from cattle, chicken, and water harbour virulence markers responsible for motility/colonization, invasion, adherence, and toxin production, evoking their important role in campylobacteriosis development among humans and livestock. The identification of cattle, chicken, and water samples as reservoirs of virulent Campylobacter spp. highlights the possible risk to human health. These data on some virulence genes of Campylobacter will assist food safety and public health officials in formulating policy statements.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Chickens , Feces , Animals , Campylobacter jejuni/genetics , Campylobacter jejuni/pathogenicity , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Cattle , Campylobacter coli/genetics , Campylobacter coli/pathogenicity , Campylobacter coli/isolation & purification , Virulence/genetics , Feces/microbiology , Kenya/epidemiology , Virulence Factors/genetics , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Water Microbiology , Flagellin/genetics , Humans , Bacterial Proteins/genetics
2.
Trop Biomed ; 41(2): 206-208, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-39154274

ABSTRACT

Globally, Campylobacter spp. are responsible for most cases of bacterial gastrointestinal infections in humans and although rare, extraintestinal Campylobacter infections have been described. A 2-yearold neutropenic girl with underlying precursor B-cell acute lymphoblastic leukemia presented with a 3-day history of diarrhea. Her stool culture yielded no enteric bacterial pathogens. However, when her blood culture was flagged as positive for bacterial growth, no colonies could be observed on routine bacteriological isolation media. Nonetheless, gram-negative bacilli with seagull and spiral morphologies were seen when the surface of the isolation media used to subculture her blood was Gram-stained. Bacterial colonies were only visible when a subculture was attempted on a Campylobacter blood-free selective agar medium. The organism was identified as Campylobacter jejuni by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Since the organism was erythromycin-resistant and the patient's age precluded the use of tetracycline and ciprofloxacin, an antibiotic regimen consisting of piperacillin-tazobactam and gentamicin was commenced. Her C. jejuni bacteremia resolved following eight days of antibiotic therapy.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Campylobacter Infections , Campylobacter jejuni , Humans , Female , Bacteremia/microbiology , Bacteremia/drug therapy , Bacteremia/diagnosis , Campylobacter jejuni/isolation & purification , Campylobacter Infections/drug therapy , Campylobacter Infections/microbiology , Campylobacter Infections/diagnosis , Anti-Bacterial Agents/therapeutic use , Child, Preschool , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
3.
Sci Total Environ ; 950: 175234, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39102962

ABSTRACT

Concerns are rising about the contamination of recreational waters from human and animal waste, along with associated risks to public health. However, existing guidelines for managing pathogens in these environments have not yet fully integrated risk-based pathogen-specific criteria, which, along with recent advancements in indicators and markers, are essential to improve the protection of public health. This study aimed to establish risk-based critical concentration benchmarks for significant enteric pathogens, i.e., norovirus, rotavirus, adenovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter jejuni, Salmonella spp., and Escherichia coli O157:H7. Applying a 0.036 risk benchmark to both marine and freshwater environments, the study identified the lowest critical concentrations for children, who are the most susceptible group. Norovirus, C. jejuni, and Cryptosporidium presented lowest median critical concentrations for virus, bacteria, and protozoa, respectively: 0.74 GC, 1.73 CFU, and 0.39 viable oocysts per 100 mL in freshwater for children. These values were then used to determine minimum sample volumes corresponding to different recovery rates for culture method, digital polymerase chain reaction and quantitative PCR methods. The results indicate that for children, norovirus required the largest sample volumes of freshwater and marine water (52.08 to 178.57 L, based on the 5th percentile with a 10 % recovery rate), reflecting its low critical concentration and high potential for causing illness. In contrast, adenovirus and rotavirus required significantly smaller volumes (approximately 0.24 to 1.33 L). C. jejuni and Cryptosporidium, which required the highest sampling volumes for bacteria and protozoa, needed 1.72 to 11.09 L and 4.17 to 25.51 L, respectively. Additionally, the presented risk-based framework could provide a model for establishing pathogen thresholds, potentially guiding the creation of extensive risk-based criteria for various pathogens in recreational waters, thus aiding public health authorities in decision-making, strengthening pathogen monitoring, and improving water quality testing accuracy for enhanced health protection.


Subject(s)
Cryptosporidium , Environmental Monitoring , Water Microbiology , Environmental Monitoring/methods , Humans , Cryptosporidium/isolation & purification , Norovirus/isolation & purification , Fresh Water/virology , Risk Assessment/methods , Giardia lamblia/isolation & purification , Recreation , Seawater/virology , Campylobacter jejuni/isolation & purification , Rotavirus/isolation & purification , Salmonella/isolation & purification
4.
Arch Razi Inst ; 79(1): 41-54, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39192957

ABSTRACT

Campylobacter spp. genera is one of the most common causes of microbial enteritis worldwide. This study aimed to find out how common Campylobacter organisms were in raw meat from large livestock in Iran, as well as to determine their antibiotic susceptibility profiles. Several 550 fresh, ready-to-eat meat samples were collected from slaughterhouses, butcher shops, and restaurants in the study region. The samples were collected from cattle (n=138), goats (n=102), camels (n=56), and sheep (n=254). Campylobacter spp. were isolated and identified using normal bacteriological methods and polymerase chain reaction (PCR). Genotyping was performed using PCR to identify virulence genes. The disc diffusion technique was used to determine antibiotic susceptibility. The two Campylobacter spp. were found in 84 (15.27%) of the 550 meat samples tested. Cattle and camel samples accounted for the highest (52.38%) and lowest (3.57%) frequencies of Campylobacter spp., respectively. There were significant differences in the prevalence of Campylobacter spp. in cattle (2=43.04 or OR=7.68, CI=3.40-17.30, P<0.01). Campylobacter jejuni and Campylobacter coli accounted for 82.14% (n=69) of Campylobacter spp. isolated from raw meat. While C. jejuni was found in 39.28% of the samples (n=33), C. coli was observed in 42.85% (n=36). Other Campylobacter spp. formed 17.85 % (n=15) of the samples. The most common genotypes observed in C. jejuni bacteria collected from different types of large animal samples were ciaB (100%) and flaA (100%). On the other hand, virbll (7.69%) was the C. jejuni strain found with the lowest incidence in different large animal samples. The most frequent genotypes found in C. coli bacteria were ciaB (100%) and flaA (100%). C. coli isolates dnaJ (0%), wlaN (0%), virbll (0%), and ceuE (0%) were detected with the lowest frequency in several samples from large livestock. Campylobacter spp. isolated from different sample types and sources were 100% sensitive to aphA-3-1 and GM10. The isolates were reported to be resistant to E15 (76.93%), cmeB (69.24%), aadE1 (69.24%), CIP5 (69.24%), and AM10 (69.24%). According to this study, Campylobacter was found in food from factory farming. Consequently, the disease can be transmitted by eating raw or undercooked meat. Therefore, proper handling and preparation of meat meals, as well as hygiene measures from the slaughterhouse to the retailer, are critical in preventing Campylobacter infections.


Subject(s)
Anti-Bacterial Agents , Camelus , Campylobacter coli , Campylobacter jejuni , Drug Resistance, Bacterial , Goats , Meat , Animals , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/genetics , Iran/epidemiology , Campylobacter coli/drug effects , Campylobacter coli/isolation & purification , Cattle , Sheep , Camelus/microbiology , Meat/microbiology , Anti-Bacterial Agents/pharmacology , Food Microbiology , Livestock/microbiology
5.
BMC Infect Dis ; 24(1): 808, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123104

ABSTRACT

BACKGROUND: Campylobacter spp. is a significant etiological agent of bacterial gastroenteritis globally. In Burkina Faso (BFA), the actual impact of this pathogen on gastroenteritis is considerably underestimated, primarily due to inadequate surveillance systems. OBJECTIVES: This study aimed to investigate the proportion of Campylobacter species responsible for acute gastroenteritis among patients of all ages in urban and rural areas of BFA, using molecular biology techniques. STUDY DESIGN & METHODS: Between 2018 and 2021, faecal specimens were obtained from 1,295 individuals presenting with acute gastroenteritis. These samples underwent screening for the Campylobacter coli/jejuni/lari complex utilizing real-time polymerase chain reaction (PCR) assays. Subsequently, positive samples were subjected to species-level differentiation through the application of species-specific primers. RESULTS: Campylobacter spp. was detected in 25.0% (324/1,295) of the samples analysed. The majority of positive samples (95%, 308/324) were obtained from children under 5 years of age. Species identification was performed on a subset of 114 isolates, revealing 51 Campylobacter jejuni, 10 Campylobacter coli, and 53 Campylobacter isolates that remained unspeciated. CONCLUSIONS: This study reveals a significant prevalence of Campylobacter species among patients with acute gastroenteritis, with a particularly high incidence observed in children under 5 years of age. Based on these findings, the implementation of routine Campylobacter surveillance in public health laboratories is strongly recommended to better monitor and address this health concern.


Subject(s)
Campylobacter Infections , Campylobacter , Feces , Humans , Burkina Faso/epidemiology , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Child, Preschool , Infant , Campylobacter/isolation & purification , Campylobacter/genetics , Campylobacter/classification , Female , Male , Child , Adult , Adolescent , Feces/microbiology , Young Adult , Middle Aged , Gastroenteritis/microbiology , Gastroenteritis/epidemiology , Prevalence , Infant, Newborn , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/genetics , Campylobacter jejuni/classification , Aged , Enteritis/microbiology , Enteritis/epidemiology , Acute Disease , Incidence
6.
Int J Food Microbiol ; 425: 110855, 2024 Dec 02.
Article in English | MEDLINE | ID: mdl-39191191

ABSTRACT

Campylobacter was considered asaccharolytic, but is now known to carry saccharide metabolization pathways for L-fucose and d-glucose. We hypothesized that these clusters are beneficial for Campylobacter niche adaptation and may help establish human infection. We investigated the distribution of d-glucose and L-fucose clusters among ∼9600 C. jejuni and C. coli genomes of different isolation sources in the Netherlands, the United Kingdom, the United States of America and Finland. The L-fucose utilization cluster was integrated at the same location in all C. jejuni and C. coli genomes, and was flanked by the genes rpoB, rpoC, rspL, repsG and fusA, which are associated with functions in transcription as well as translation and in acquired drug resistance. In contrast, the flanking regions of the d-glucose utilization cluster were variable among the isolates, and integration sites were located within one of the three different 16S23S ribosomal RNA areas of the C. jejuni and C. coli genomes. In addition, we investigated whether acquisition of the L-fucose utilization cluster could be due to horizontal gene transfer between the two species and found three isolates for which this was the case: one C. jejuni isolate carrying a C. coli L-fucose cluster, and two C. coli isolates which carried a C. jejuni L-fucose cluster. Furthermore, L-fucose utilization cluster alignments revealed multiple frameshift mutations, most of which were commonly found in the non-essential genes for L-fucose metabolism, namely, Cj0484 and Cj0489. These findings support our hypothesis that the L-fucose cluster was integrated multiple times across the C. coli/C. jejuni phylogeny. Notably, association analysis using the C. jejuni isolates from the Netherlands showed a significant correlation between human C. jejuni isolates and C. jejuni isolates carrying the L-fucose utilization cluster. This correlation was even stronger when the Dutch isolates were combined with the isolates from the UK, the USA and Finland. No such correlations were observed for C. coli or for the d-glucose cluster for both species. This research provides insight into the spread and host associations of the L-fucose and d-glucose utilization clusters in C. jejuni and C. coli, and the potential benefits in human infection and/or proliferation in humans, conceivably after transmission from any reservoir.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Fucose , Glucose , Campylobacter coli/genetics , Campylobacter coli/isolation & purification , Campylobacter coli/metabolism , Campylobacter jejuni/genetics , Campylobacter jejuni/metabolism , Campylobacter jejuni/isolation & purification , Glucose/metabolism , Humans , Fucose/metabolism , Genome, Bacterial , Gene Transfer, Horizontal , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Multigene Family , Finland , Netherlands , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
7.
Curr Biol ; 34(17): 3955-3965.e4, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39142288

ABSTRACT

Humans are radically altering global ecology, and one of the most apparent human-induced effects is urbanization, where high-density human habitats disrupt long-established ecotones. Changes to these transitional areas between organisms, especially enhanced contact among humans and wild animals, provide new opportunities for the spread of zoonotic pathogens. This poses a serious threat to global public health, but little is known about how habitat disruption impacts cross-species pathogen spread. Here, we investigated variation in the zoonotic enteric pathogen Campylobacter jejuni. The ubiquity of C. jejuni in wild bird gut microbiomes makes it an ideal organism for understanding how host behavior and ecology influence pathogen transition and spread. We analyzed 700 C. jejuni isolate genomes from 30 bird species in eight countries using a scalable generalized linear model approach. Comparing multiple behavioral and ecological traits showed that proximity to human habitation promotes lineage diversity and is associated with antimicrobial-resistant (AMR) strains in natural populations. Specifically, wild birds from urban areas harbored up to three times more C. jejuni genotypes and AMR genes. This study provides novel methodology and much-needed quantitative evidence linking urbanization to gene pool spread and zoonoses.


Subject(s)
Birds , Campylobacter jejuni , Gastrointestinal Microbiome , Animals , Campylobacter jejuni/genetics , Campylobacter jejuni/physiology , Campylobacter jejuni/isolation & purification , Birds/microbiology , Humans , Animals, Wild/microbiology , Drug Resistance, Bacterial/genetics , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Anti-Bacterial Agents/pharmacology , Urbanization , Zoonoses/microbiology , Ecosystem , Bird Diseases/microbiology , Microbiota
8.
Microb Pathog ; 195: 106900, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39208964

ABSTRACT

Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and rarely cause bloodstream infection. Herein, we characterized a multidrug-resistant C. jejuni strain LZCJ isolated from a tumor patient with bloodstream infection. LZCJ was resistant to norfloxacin, ampicillin, ceftriaxone, ciprofloxacin and tetracycline. It showed high survival rate in serum and acidic environment. Whole genome sequencing (WGS) analysis revealed that strain LZCJ had a single chromosome of 1,629,078 bp (30.6 % G + C content) and belonged to the ST137 lineage. LZCJ shared the highest identity of 99.66 % with the chicken-derived C. jejuni MTVDSCj20. Four antimicrobial resistance genes (ARGs) were detected, blaOXA-61, tet(O), gyrA (T86I), and cmeR (G144D and S207G). In addition, a 12,746 bp genomic island GI_LZCJ carrying 15 open reading frames (ORFs) including the resistance gene tet(O) was identified. Sequence analysis found that the GI_LZCJ was highly similar to the duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. 137 non-synonymous mutations in motility related genes (flgF, fapR, flgS), capsular polysaccharide (CPS) coding genes (kpsE, kpsF, kpsM, kpsT), metabolism associated genes (nuoF, nuoG, epsJ, holB), and transporter related genes (comEA, gene0911) were confirmed in LZCJ compared with the best closed chicken-derived strain MTVDSCj20. Our study showed that C. jejuni strain LZCJ was highly similar to the chicken-derived strain MTVDSCj20 but with a lot of SNPs involved in motility, CPS and metabolism coding genes. This strain possessed a tet(O)-positive genomic island GI_LZCJ, which was closed to duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. The above data indicated that the LZCJ strain may originate from foodborne bacteria on animals and the importance of continuous surveillance for the spread of foodborne bacteria.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Campylobacter Infections , Campylobacter jejuni , Drug Resistance, Multiple, Bacterial , Genomic Islands , Microbial Sensitivity Tests , Whole Genome Sequencing , Campylobacter jejuni/genetics , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Humans , Genomic Islands/genetics , Campylobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial , Base Composition , Bacteremia/microbiology , Animals , Phylogeny , Open Reading Frames , Carrier Proteins
9.
Epidemiol Infect ; 152: e101, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39168635

ABSTRACT

Campylobacter spp. are leading bacterial gastroenteritis pathogens. Infections are largely underreported, and the burden of outbreaks may be underestimated. Current strategies of testing as few as one isolate per sample can affect attribution of cases to epidemiologically important sources with high Campylobacter diversity, such as chicken meat. Multiple culture method combinations were utilized to recover and sequence Campylobacter from 45 retail chicken samples purchased across Norwich, UK, selecting up to 48 isolates per sample. Simulations based on resampling were used to assess the impact of Campylobacter sequence type (ST) diversity on outbreak detection. Campylobacter was recovered from 39 samples (87%), although only one sample was positive through all broth, temperature, and plate combinations. Three species were identified (Campylobacter jejuni, Campylobacter coli, and Campylobacter lari), and 33% of samples contained two species. Positive samples contained 1-8 STs. Simulation revealed that up to 87 isolates per sample would be required to detect 95% of the observed ST diversity, and 26 isolates would be required for the average probability of detecting a random theoretical outbreak ST to reach 95%. An optimized culture approach and selecting multiple isolates per sample are essential for more complete Campylobacter recovery to support outbreak investigation and source attribution.


Subject(s)
Campylobacter , Chickens , Chickens/microbiology , Animals , Campylobacter/isolation & purification , Campylobacter/genetics , Campylobacter/classification , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/genetics , Campylobacter coli/isolation & purification , Campylobacter coli/genetics , Food Microbiology , Disease Outbreaks , United Kingdom/epidemiology , Meat/microbiology , Genetic Variation , Campylobacter lari/genetics , Campylobacter lari/isolation & purification
10.
PLoS One ; 19(8): e0305581, 2024.
Article in English | MEDLINE | ID: mdl-39159178

ABSTRACT

Campylobacteriosis outbreaks have previously been linked to dairy foods. While the genetic diversity of Campylobacter is well understood in high-income countries, it is largely unknown in low-income countries, such as Ethiopia. This study therefore aimed to conduct the first genomic characterization of Campylobacter isolates from the Ethiopian dairy supply chain to aid in future epidemiological studies. Fourteen C. jejuni and four C. coli isolates were whole genome sequenced using an Illumina platform. Sequences were analyzed using the bioinformatics tools in the GalaxyTrakr platform to identify MLST types, and single nucleotide polymorphisms, and infer phylogenetic relationships among the studied isolates. Assembled genomes were further screened to detect antimicrobial resistance and virulence gene sequences. Among 14 C. jejuni, ST 2084 and ST 51, which belong to the clonal complexes ST-353 and ST-443, respectively, were identified. Among the 4 sequenced C. coli isolates, two isolates belonged to ST 1628 and two to ST 830 from the clonal complex ST-828. The isolates of C. jejuni ST 2084 and ST 51 carried ß-lactam resistance gene blaOXA-605, a fluoroquinolone resistance-associated mutation T86I in the gryA gene, and a macrolide resistance-associated mutation A103V in 50S L22. Only ST 2084 isolates carried the tetracycline resistance gene tetO. Conversely, all four C. coli ST 830 and ST 1628 isolates carried tetO, but only ST 1628 isolates also carried blaOXA-605. Lastly, C. jejuni ST 2084 isolates carried a total of 89 virulence genes, and ST 51 isolates carried up to 88 virulence genes. Among C. coli, ST 830 isolates carried 71 genes involved in virulence, whereas two ST 1628 isolates carried up to 82 genes involved in virulence. Isolates from all identified STs have previously been isolated from human clinical cases, demonstrating a potential food safety concern. This finding warrants further monitoring of Campylobacter in dairy foods in Ethiopia to better understand and manage the risks associated with Campylobacter contamination and transmission.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Genetic Variation , Phylogeny , Campylobacter coli/genetics , Campylobacter coli/isolation & purification , Campylobacter coli/drug effects , Campylobacter coli/pathogenicity , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/pathogenicity , Ethiopia/epidemiology , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Dairy Products/microbiology , Genome, Bacterial/genetics , Whole Genome Sequencing , Polymorphism, Single Nucleotide , Food Microbiology , Anti-Bacterial Agents/pharmacology , Humans , Multilocus Sequence Typing , Virulence/genetics , Drug Resistance, Bacterial/genetics , Animals
11.
Microb Genom ; 10(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39028633

ABSTRACT

Consumption of raw, undercooked or contaminated animal food products is a frequent cause of Campylobacter jejuni infection. Brazil is the world's third largest producer and a major exporter of chicken meat, yet population-level genomic investigations of C. jejuni in the country remain scarce. Analysis of 221 C. jejuni genomes from Brazil shows that the overall core and accessory genomic features of C. jejuni are influenced by the identity of the human or animal source. Of the 60 sequence types detected, ST353 is the most prevalent and consists of samples from chicken and human sources. Notably, we identified the presence of diverse bla genes from the OXA-61 and OXA-184 families that confer beta-lactam resistance as well as the operon cmeABCR related to multidrug efflux pump, which contributes to resistance against tetracyclines, macrolides and quinolones. Based on limited data, we estimated the most recent common ancestor of ST353 to the late 1500s, coinciding with the time the Portuguese first arrived in Brazil and introduced domesticated chickens into the country. We identified at least two instances of ancestral chicken-to-human infections in ST353. The evolution of C. jejuni in Brazil was driven by the confluence of clinically relevant genetic elements, multi-host adaptation and clonal population growth that coincided with major socio-economic changes in poultry farming.


Subject(s)
Campylobacter jejuni , Chickens , Evolution, Molecular , Genome, Bacterial , Campylobacter jejuni/genetics , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/classification , Brazil , Animals , Chickens/microbiology , Humans , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Host Adaptation/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Phylogeny
12.
Braz J Microbiol ; 55(3): 2547-2556, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38977544

ABSTRACT

Campylobacter is gram-negative bacteria considered the predominant genera isolated from poultry samples and associated with gastroenteritis. Due to the problems in conventional cultural methods of time-consuming and technically demanding requirements, a rapid and feasible method for their identification and discrimination of the closely related spp. Including Campylobacter coli, Campylobacter fetus, and Campylobacter jejuni is needed. This study analyzes the chicken and sheep meats samples (n = 125) using culture and pre-enrichment-based Quadraplex real-time PCR by targeting OrfA, CstA, HipO, and 16 S rRNA genes of C. coli, C. fetus, C. jejuni and Campylobacter spp. Respectively. The analysis of 125 chicken and sheep meat samples by culture and real-time PCR showed high concordance between the results of the two methods. The present study show high prevalence of Campylobacter species (35% and 32% from chicken and meat respectively) of which C. jejuni were the most abundant. Reaction efficiencies were between 90 and 110%, and detect as low as 8.9 fg in C. jejuni. The need for quick detection and discrimination methods in sheep and chicken meat can be met using the described Quadraplex real-time PCR methodology.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Chickens , Meat , Real-Time Polymerase Chain Reaction , Animals , Chickens/microbiology , Sheep/microbiology , Real-Time Polymerase Chain Reaction/methods , Campylobacter coli/genetics , Campylobacter coli/isolation & purification , Campylobacter coli/classification , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/classification , Meat/microbiology , Campylobacter fetus/genetics , Campylobacter fetus/isolation & purification , Campylobacter fetus/classification , Campylobacter/genetics , Campylobacter/isolation & purification , Campylobacter/classification , Food Microbiology , DNA, Bacterial/genetics
13.
PLoS One ; 19(7): e0304409, 2024.
Article in English | MEDLINE | ID: mdl-38959220

ABSTRACT

BACKGROUND: Children with under-five year age disproportionally affected with foodborne illness. Campylobacteriosis is the most common foodborne disease next to Norovirus infection. Macrolides are commonly prescribed as the first line of treatment for Campylobacter gastroenteritis, with fluoroquinolone and tetracycline as secondary options. However, resistance to these alternatives has been reported in various regions worldwide. OBJECTIVE: To determine the prevalence, associated risk-factors and antimicrobial resistance of Campylobacter jejuni and C. coli among under-five children with diarrhea. METHODS: Institution-based cross-sectional study was conducted from November, 2022 to April 2023. The study sites were selected using a random sampling technique, while the study subjects were included using a convenient sampling technique. The data were collected using a structured questionnaire. Stool samples were inoculated onto modified charcoal cefoperazone deoxycholate agar and incubated for 48 hours. The suspected colonies were analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry to confirm the species. Antimicrobial susceptibility testing was performed using a disc diffusion technique. All potential covariates (independent variables) were analyzed one by one using bivariate logistic regression model to identify candidate variables with P value < 0.25. Multivariable logistic analysis was used to identify potential associated factors using the candidate variables. A p value ≤ 0.05 at a 95% confidence interval was statistically significant. RESULT: Among the 428 samples, 7.0% (CI: 4.5-9.3) were confirmed Campylobacter species. The prevalence of C. jejuni and C. coli among under-five children was 5.1% (CI: 3.0-7.0) and 1.9% (CI: 0.7-3.3), respectively. C. jejuni (73.3%) was dominant over C. coli (26.7%). The resident, contact with domestic animals, and parents/guardians education level were significantly associated with campylobacteriosis among under-five children. One-third of the Campylobacter isolates (33.3%, 10/30) were resistant to ciprofloxacin and tetracycline whereas 10.0% (3/30) were resistant to erythromycin. Furthermore, 3.3% (1/30) of the Campylobacter were found to be multidrug-resistant. CONCLUSION: The prevalence of Campylobacter species was 7.0%. The resistance rate of Campylobacter species of ciprofloxacin and tetracycline-resistance strains was 33.3%. Peri-urban residence, contact with domestic animals, and low parental educational statuses were significantly associated factors with increased risk of Campylobacter infection. Continuous surveillance on antimicrobial resistance and health education of personal and environmental hygiene should be implemented in the community.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Diarrhea , Humans , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Campylobacter coli/drug effects , Campylobacter coli/isolation & purification , Campylobacter Infections/epidemiology , Campylobacter Infections/drug therapy , Campylobacter Infections/microbiology , Child, Preschool , Infant , Female , Male , Diarrhea/epidemiology , Diarrhea/microbiology , Diarrhea/drug therapy , Ethiopia/epidemiology , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Prevalence , Microbial Sensitivity Tests , Infant, Newborn , Risk Factors
14.
Foodborne Pathog Dis ; 21(9): 546-559, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38957999

ABSTRACT

Goats are often asymptomatic carriers of Campylobacter, including the foodborne pathogen Campylobacter jejuni. Infections can have significant and economically detrimental health outcomes in both humans and animals. The primary objective of this study was to estimate the prevalence of Campylobacter in U.S. goat herds. Campylobacter species were isolated from 106 of 3,959 individual animals and from 42 of 277 goat operations that participated in fecal sample collection as part of the National Animal Health Monitoring System Goat 2019 study. Weighted animal-level prevalence was 2.3% (SE = 0.5%) and operation prevalence was 13.0% (SE = 3.2%). Animal-level prevalence ranged widely from 0 to 70.0%, however, 52.4% of positive operations (22/42) had only a single isolate. C. jejuni was the most frequently isolated species (68.9%; 73/106), followed by C. coli (29.3%, 31/106). A total of 46.2% (36/78) of viable isolates were pan-susceptible to 8 antimicrobials. Resistance to tetracycline (TET) was observed in 44.9% (35/78) of isolates, while 12.8% (10/78) were resistant to ciprofloxacin (CIP) and nalidixic acid (NAL). Among all isolates, a single resistance profile CIP-NAL-TET was observed in 3.8% (3/78) of isolates. A total of 35 unique sequence types (STs) were identified, 11 of which are potentially new. Multiple C. jejuni STs were observed in 48.1% (13/27) of positive operations. Goats with access to surface water, operations reporting antibiotics in the feed or water (excluding ionophores and coccidiostats), and operations reporting abortions and without postabortion management tasks had significantly greater odds of being Campylobacter positive. This snapshot of the U.S. goat population enriches the limited pool of knowledge on Campylobacter species presence in U.S. goats.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter , Feces , Goat Diseases , Goats , Animals , Feces/microbiology , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter Infections/epidemiology , United States/epidemiology , Prevalence , Campylobacter/drug effects , Campylobacter/isolation & purification , Campylobacter/classification , Anti-Bacterial Agents/pharmacology , Goat Diseases/microbiology , Goat Diseases/epidemiology , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Microbial Sensitivity Tests , Drug Resistance, Bacterial
15.
PLoS Negl Trop Dis ; 18(6): e0012241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833441

ABSTRACT

Campylobacteriosis disproportionately affects children under five in low-income countries. However, epidemiological and antimicrobial resistance (AMR) information at the children-animal interface is lacking. We hypothesized that Campylobacter is a major cause of enteritis in children in Ethiopia, and contact with animals is a potential source of transmission. The objective of the study was to determine Campylobacter occurrence and its AMR in children under five with diarrhea, backyard farm animals, and companion pets. Stool from 303 children and feces from 711 animals were sampled. Campylobacter was isolated through membrane filtration on modified charcoal cefoperazone deoxycholate agar plates under microaerobic incubation, and the technique showed to be feasible for use in regions lacking organized laboratories. Typical isolates were characterized with MALDI-TOF MS and multiplex PCR. Of 303 children, 20% (n = 59) were infected, with a higher proportion in the 6 to 11-month age group. Campylobacter occurred in 64% (n = 14) of dogs and 44% (n = 112) of poultry. Campylobacter jejuni was present in both a child and animal species in 15% (n = 23) of 149 households positive for Campylobacter. MICs using the gradient strip diffusion test of 128 isolates displayed resistance rates of 20% to ciprofloxacin and 11% to doxycycline. MICs of ciprofloxacin and doxycycline varied between C. coli and C. jejuni, with higher resistance in C. coli and poultry isolates. Campylobacter infection in children and its prevalent excretion from backyard poultry and dogs is a understudied concern. The co-occurrence of C. jejuni in animals and children suggest household-level transmission As resistance to ciprofloxacin and doxycycline was observed, therapy of severe campylobacteriosis should consider susceptibility testing. Findings from this study can support evidence-based diagnosis, antimicrobial treatment, and further investigations on the spread of AMR mechanisms for informed One Health intervention.


Subject(s)
Animals, Domestic , Anti-Bacterial Agents , Campylobacter Infections , Campylobacter , Diarrhea , Feces , Pets , Animals , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter Infections/drug therapy , Campylobacter Infections/transmission , Campylobacter Infections/epidemiology , Child, Preschool , Pets/microbiology , Humans , Infant , Anti-Bacterial Agents/pharmacology , Diarrhea/microbiology , Diarrhea/veterinary , Diarrhea/epidemiology , Campylobacter/drug effects , Campylobacter/isolation & purification , Male , Animals, Domestic/microbiology , Female , Feces/microbiology , Dogs , Ethiopia/epidemiology , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Poultry/microbiology , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Infant, Newborn
16.
J Glob Antimicrob Resist ; 38: 27-34, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38821444

ABSTRACT

OBJECTIVES: Campylobacter is a significant zoonotic pathogen primarily transmitted through poultry. Our study aimed to assess antimicrobial resistance and genetic relationships among Campylobacter isolates from retail chicken meat and humans in Taiwan. METHODS: Campylobacter isolates were analysed using whole-genome sequencing to investigate their antimicrobial resistance, genetic determinants of resistance, and genotypes. RESULTS: Campylobacter coli and Campylobacter jejuni accounted for 44.9% and 55.1% of chicken meat isolates, and 11.4% and 88.6% of human isolates, respectively. C. coli displayed significantly higher resistance levels. Furthermore, isolates from chicken meat exhibited higher levels of resistance to most tested antimicrobials compared to isolates from humans. Multidrug resistance was observed in 96.3% of C. coli and 43.3% of C. jejuni isolates from chicken meat and 80.6% of C. coli and 15.8% of C. jejuni isolates from humans. Macrolide resistance was observed in 85.5% of C. coli isolates, primarily attributed to the erm(B) rather than the A2075G mutation in 23S rRNA. Among the 511 genomes, we identified 133 conventional MLST sequence types, indicating significant diversity among Campylobacter strains. Notably, hierarchical Core-genome multilocus sequence typing clustering, including HC0, HC5, and HC10, revealed a significant proportion of closely related isolates from chicken meat and humans. CONCLUSIONS: Our research highlights significant associations in antimicrobial resistance and genetic relatedness between Campylobacter isolates from chicken meat and humans in Taiwan. The genetic analysis data suggest that campylobacteriosis outbreaks may occur more frequently in Taiwan than previously assumed. Our study emphasizes the need for strategies to control multidrug-resistant strains and enhance outbreak prevention.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Chickens , Drug Resistance, Multiple, Bacterial , Meat , Microbial Sensitivity Tests , Multilocus Sequence Typing , Whole Genome Sequencing , Campylobacter jejuni/genetics , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Campylobacter coli/drug effects , Campylobacter coli/genetics , Campylobacter coli/isolation & purification , Chickens/microbiology , Animals , Humans , Taiwan , Anti-Bacterial Agents/pharmacology , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Meat/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genotype , Drug Resistance, Bacterial/genetics , Food Microbiology
17.
Int J Infect Dis ; 144: 107055, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723889

ABSTRACT

OBJECTIVES: To investigate cases of five Campylobacter jejuni outbreaks and describe laboratory characteristics of these infections. METHODS: Whole-genome sequencing and conventional methods were combined to thoroughly investigate the outbreaks, and data of contemporaneous sporadic cases was included for comparison. RESULTS: Seven sequence types (STs) of C. jejuni caused 83 cases, including ST9079 which recurred across 2 years. Trace-back investigation could not identify any food items of infection but detected identical campylobacters from food contacts. Phylogenetic analysis unveiled genetic closeness between outbreak strains and some concurrent sporadic strains, indicating local campylobacteriosis may not be wholly sporadic but rather a series of linked cases. Virulence genes disclosed species/case-specific signatures to differentiate outbreaks from truly non-outbreak strains. Resistance to fluoroquinolones and/or macrolides was prevalent (90.8%, 108/119), with a noteworthy portion exhibiting multidrug resistance (31.1%, 37/119). Five types of plasmids were harbored among outbreak isolates, of which one plasmid harboring anti-stress and resistant genes was rarely found in C. jejuni. CONCLUSIONS: This is the first reported sequential outbreak of C. jejuni in China. Our observations help to define the genomic landscape and antimicrobial resistance patterns of Campylobacter, emphasizing the need for a broader 'One Health' perspective to combat the threats posed by campylobacteriosis.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Disease Outbreaks , Phylogeny , Whole Genome Sequencing , Campylobacter jejuni/genetics , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/classification , Humans , China/epidemiology , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Adult , Child , Male , Female , Anti-Bacterial Agents/pharmacology , Adolescent , Middle Aged , Drug Resistance, Multiple, Bacterial/genetics , Young Adult , Child, Preschool , Microbial Sensitivity Tests , Plasmids/genetics , Genome, Bacterial
18.
Environ Manage ; 74(2): 256-267, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38767663

ABSTRACT

Small water supply systems (SWSSs) are often more vulnerable to waterborne disease outbreaks. In Japan, many SWSSs operate without regulation under the Waterworks Law, yet there is limited investigation into microbial contamination and the associated health risks. In this study, the microbiological water quality of four SWSSs that utilize mountain streams as water sources and do not install water treatment facilities were monitored for over 2 years. In investigated SWSSs, the mean heterotrophic plate counts were below 350 CFU/mL, and the total bacterial loads (16S rDNA concentration) ranged from 4.71 to 5.35 log10 copies/mL. The results also showed the consistent presence of fecal indicator bacteria (FIB), i.e., Escherichia coli and Clostridium perfringens, suggesting the potential of fecal pollution. E. coli was then utilized as an indicator to assess the health risk posed by E. coli O157:H7 and Campylobacter jejuni. The results indicated that the estimated mean annual risk of infection and disability-adjusted life years (DALYs) exceeded acceptable levels in all SWSSs for the two reference pathogens. To ensure microbial water safety, implementing appropriate water treatment facilities with an estimated mean required reduction of 5-6 log10 was necessary. This study highlighted the potential microbial contamination and health risk level in SWSSs that utilize mountain streams as water sources, even though the water sources were almost not affected by human activities. Furthermore, this study would also be helpful in supporting risk-based water management to ensure a safe water supply in SWSSs.


Subject(s)
Environmental Monitoring , Water Microbiology , Water Quality , Water Supply , Japan , Environmental Monitoring/methods , Risk Management/methods , Clostridium perfringens/isolation & purification , Escherichia coli/isolation & purification , Campylobacter jejuni/isolation & purification
19.
Foodborne Pathog Dis ; 21(7): 409-415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38568114

ABSTRACT

Escherichia coli O157:H7 (E. coli O157:H7) and Campylobacter jejuni (C. jejuni) are pathogenic microorganisms that can cause severe clinical symptoms in humans and are associated with bovine meat consumption. Specific monitoring for E. coli O157: H7 or C. jejuni in meat is not mandatory under Chilean regulations. In this study, we analyzed 544 samples for the detection of both microorganisms, obtained from 272 bovine carcasses (280 kg average) at two slaughterhouses in the Bio-Bío District, Chile. Sampling was carried out at post-shower of carcasses and after channel passage through the cold chamber. Eleven samples were found to be positive for E. coli O157:H7 (4.0%) using microbiological and biochemical detection techniques and were subjected to a multiplex PCR to detect fliC and rfbE genes. Six samples (2.2%) were also found to be positive for the pathogenicity genes stx1, stx2, and eaeA. Twenty-two carcasses (8.0%) were found to be positive for C. jejuni using microbiological and biochemical detection techniques, but no sample with amplified mapA gene was found.


Subject(s)
Abattoirs , Campylobacter jejuni , Escherichia coli O157 , Escherichia coli Proteins , Food Microbiology , Animals , Cattle , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/genetics , Escherichia coli O157/isolation & purification , Escherichia coli O157/genetics , Chile , Escherichia coli Proteins/genetics , Flagellin/genetics , Meat/microbiology , Food Contamination/analysis , Adhesins, Bacterial/genetics , Shiga Toxin 1/genetics , Shiga Toxin 2/genetics , Multiplex Polymerase Chain Reaction , Bacterial Proteins/genetics , Transaminases , Carbohydrate Epimerases
20.
Open Vet J ; 14(3): 759-768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682147

ABSTRACT

Background: Poultry is one of the most prominent sources of Campylobacter jejuni, which is also a major means of transmission to people. Campylobacter jejuni contamination in chicken meat comes from chicken feces because it naturally exists in the intestines of chickens. Aim: The purpose of this study is to identify the antibiotic resistance patterns and genes of C. jejuni, which was found in chickens in Pasuruan, Indonesia. Methods: The samples used in this study were 200 contents of the small intestine of broiler chickens from 40 farms in Pasuruan Regency. The enriched sample was streaked on the selective media of modified charcoal cefoperazone deoxycholate agar containing the CCDA selective supplement. Antimicrobial susceptibility test utilizing the Kirby-Bauer diffusion test method in accordance with Clinical and Laboratory Standards Institute standards. The polymerase chain reaction (PCR) method was used to detect the (hipO), which encodes the C. jejuni strain, fluoroquinolone resistance (gyrA), beta-lactam resistance (blaOXA-61), and tetracycline resistance (tetO) genes. Results: The findings revealed a 14% (28/200) prevalence of C. jejuni in the small intestine of broiler chickens. These isolates showed high resistance to enrofloxacin (92.9%). All isolates (100%) were susceptible to amoxicillin-clavulanate. The PCR results showed all C. jejuni isolates (100%) detected the gyrA gene, 96.4% detected the blaOXA-61 gene, and 50% detected the tetO gene. Conclusion: The findings of antimicrobial resistance at a high level from the small intestine of broiler chickens illustrate the potential threat to human health. To lessen the effects now and in the future, coordinated and suitable action is needed, as well as steps to guarantee the poultry industry's economic survival and public health insurance.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Chickens , Drug Resistance, Bacterial , Poultry Diseases , Animals , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Indonesia/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL